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Abstract. Let (R,m) be a local ring of prime characteristic p and of
dimension d with the embedding dimension v, type s and the Frobenius
test exponent for parameter ideals Fte(R). We will give an upper bound for
the multiplicity of Cohen-Macaulay rings in prime characteristic in terms
of Fte(R), d, v and s. Our result extends the main results for Gorenstein
rings due to Huneke and Watanabe [8].

1. Introduction

Throughout this paper, let (R,m) be a Noetherian commutative local ring
of prime characteristic p and of dimension d. In 2015, Huneke and Watanabe
[8] gave an upper bound of the multiplicity e(R) of an F -pure ring R in terms
of the dimension d and the embedding dimension v. Namely, Huneke and
Watanabe proved that

e(R) ≤
(
v

d

)
for any F -pure ring. If R is F -rational, the authors of [8] provided a better
bound that e(R) ≤

(
v−1
d−1

)
(cf. [8, Theorem 3.1]). If R is Gorenstein, the upper

bound is largely reduced by the duality as follows (cf. [8, Theorem 5.1])
(1) If R is Gorenstein and F -pure then

e(R) ≤

{
2
(
v−r−1
r

)
if dim(R) = 2r + 1(

v−r
r

)
+
(
v−r−1
r−1

)
if dim(R) = 2r.
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(2) If R is Gorenstein and F -rational then

e(R) ≤

{(
v−r−1
r

)
+
(
v−r−2
r−1

)
if dim(R) = 2r + 1

2
(
v−r−1
r−1

)
if dim(R) = 2r.

In 2019, Katzman and Zhang tried to remove the F -pure condition in Huneke-
Watanabe’s theorem by using the Hartshorne-Speiser-Lyubeznik number HSL(R).
Notice that HSL(R) = 0 if R is F -injective (e.g. R is F -pure). If R is Cohen-
Macaulay, Katzman and Zhang [13, Theorem 3.1] proved the following inequal-
ity

e(R) ≤ Qv−d
(
v

d

)
,

where Q = pHSL(R). They also constructed examples to show that their bound
is asymptotically sharp (cf. [13, Remark 3.2]). Recall that the Frobenius test
exponent for parameter ideals of R, denoted by Fte(R), is the least integer (if
exists) e satisfying that (qF )[p

e] = q[p
e] for every parameter ideal q, where qF

is the Frobenius closure of q. It is asked by Katzman and Sharp that whether
Fte(R) < ∞ for every (equidimensional) local ring (cf. [12]). If R is Cohen-
Macaulay then Fte(R) = HSL(R). Moreover the question of Katzman and
Sharp has affirmative answers when R is either generalized Cohen-Macaulay
by [7] or F -nilpotent by [18] (see the next section for the details). Recently, we
(cf. [10, Theorem 3.]) extended the result for any ring of finite Frobenius test
exponent for parameter ideals. Set Q = pFte(R), we have:
(1) Suppose Fte(R) <∞. Then

e(R) ≤ Qv−d
(
v

d

)
.

(2) If R is F -nilpotent then

e(R) ≤ Qv−d
(
v − 1

d− 1

)
.

The main result of this paper is to give a reduced upper bound for the multi-
plicity of the ring when the ring is Cohen-Macaulay, that is a natural extension
of Huneke and Watanabe’s result in Gorenstein cases (cf. [8, Theorem 5.1]).

Theorem 1.1. Let (R,m) be a Cohen-Macaulay local ring of prime character-
istic p with the dimension d, the embedding dimension v and the type s. Set
Q = pFte(R). Then

(1) We have

e(R) ≤

{
(s+ 1)Qv−d

(
v−r−1
r

)
if dim(R) = 2r + 1

(s+1)
2 Qv−d

((
v−r
r

)
+
(
v−r−1
r−1

))
if dim(R) = 2r.
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(2) If R is F -nilpotent then

e(R) ≤

{
(s+1)

2 Qv−d
((
v−r−1
r

)
+
(
v−r−2
r−1

))
if dim(R) = 2r + 1

(s+ 1)Qv−d
(
v−r−1
r−1

)
if dim(R) = 2r.

We will prove the above theorem in the last section. In the next section we
collect some useful materials.

2. Preliminaries

We firstly give the definition of the tight closure and the Frobenius closure
of ideals.

Definition 2.1 ([5, 6]). Let R have characteristic p. We denote by R◦ the set
of elements of R that are not contained in any minimal prime ideal. Then for
any ideal I of R we define

1. The Frobenius closure of I, IF = {x | xpe ∈ I [p
e] for some pe}, where

I [p
e] = (xp

e | x ∈ I).

2. The tight closure of I, I∗ = {x | cxpe ∈ I [p
e] for some c ∈ R◦ and for all

pe ≫ 0}.

The Frobenius endomorphism of R induces the natural Frobenius action on
local cohomology F : Hi

m(R) → Hi
m(R) for all i ≥ 0. By a similar way, we

can define the Frobenius closure and tight closure of zero submodule of local
cohomology, and denote by 0FHi

m(R) and 0∗Hi
m(R) respectively.

Let I be an ideal of R. The Frobenius test exponent of I, denoted by Fte(I),
is the smallest number e satisfying that (IF )[p

e] = I [p
e]. By the Noetherianess

of R, Fte(I) exists (and depends on I). In general, there is no upper bound
for the Frobenius test exponents of all ideals in a local ring by the example
of Brenner [1]. In contrast, Katzman and Sharp [12] showed the existence
of a uniform bound of Frobenius test exponents if we restrict to the class of
parameter ideals in a Cohen-Macaulay local ring. For any local ring (R,m)
of prime characteristic p we define the Frobenius test exponent for parameter
ideals, denoted by Fte(R), is the smallest integer e such that (qF )[p

e] = q[p
e]

for every parameter ideal q of R, and Fte(R) = ∞ if we have no such integer.
Katzman and Sharp raised the following question.

Question 1. Is Fte(R) a finite number for any (equidimensional) local
ring?
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The Frobenius test exponent for parameter ideals is closely related to an
invariant defined by the Frobenius actions on the local cohomology modules
Hi

m(R), namely the Hartshorne-Speiser-Lyubeznik number of Hi
m(R). The

Hartshorne-Speiser-Lyubeznik number ofHi
m(R) is a nilpotency index of Frobe-

nius action on Hi
m(R) and it is defined as follows

HSL(Hi
m(R)) = min{e | F e(0FHi

m(R)) = 0}.

By [3, Proposition 1.11] and [14, Proposition 4.4], HSL(Hi
m(R)) is well defined

(see also [19]). The Hartshorne-Speiser-Lyubeznik number of R is

HSL(R) = max{HSL(Hi
m(R)) | i = 0, . . . , d}.

Remark 2.1. 1. If R is Cohen-Macaulay then Fte(R) = HSL(R) by
Katzman and Sharp [12]. In general, we proved in [9] that Fte(R) ≥
HSL(R). Moreover, Shimomoto and Quy [17, Main Theorem B] con-
structed a local ring satisfying that HSL(R) = 0, i.e. R is F -injective,
but Fte(R) > 0.

2. Huneke, Katzman, Sharp and Yao [7] gave an affirmative answer for Ques-
tion 1 for generalized Cohen-Macaulay rings.

3. In 2019, Quy [18] provided a simple proof for the theorem of Huneke,
Katzman, Sharp and Yao. By the same method he also proved that
Fte(R) < ∞ if R is F -nilpotent. In 2019, Maddox [15] extended this
result for generalized F -nilpotent rings (i.e. Hi

m(R)/0
F
Hi

m(R) has finite

length for all i < d), and more general in [11] by us.

We next recall some classes of F -singularities mentioned in this paper.

Definition 2.2. A local ring (R,m) is called F -rational if it is a homomorphic
image of a Cohen-Macaulay local ring and every parameter ideal is tight closed,
i.e. q∗ = q for all q.

Definition 2.3. A local ring (R,m) is called F -pure if the Frobenius endomor-
phism F : R → R, x 7→ xp is a pure homomorphism. If R is F -pure, then it is
proved that every ideal I of R is Frobenius closed, i.e. IF = I for all I.

Definition 2.4. 1. A local ring (R,m) is called F -injective if the Frobenius
action on Hi

m(R) is injective, i.e. 0FHi
m(R) = 0, for all i ≥ 0.

2. A local ring (R,m) is called F -nilpotent if the Frobenius actions on all
lower local cohomologies Hi

m(R), i ≤ d− 1, and 0∗Hd
m(R) are nilpotent, i.e.

0FHi
m(R) = Hi

m(R) for all i ≤ d− 1 and 0FHd
m(R) = 0∗Hd

m(R).
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Remark 2.2. 1. It is well known that an equidimensional local ring R
is F -rational if and only if it is Cohen-Macaulay and 0∗Hd

m(R) = 0.

2. An excellent equidimensional local ring is F -rational if and only if it is
both F -injective and F -nilpotent.

3. Suppose every parameter ideal of R is Frobenius closed. Then R is F -
injective (cf. [17, Main Theorem A]). In particular, an F -pure ring is
F -injective.

4. An excellent equidimensional local ring R is F -nilpotent if and only if
q∗ = qF for every parameter ideal q (cf. [16, Theorem A]).

3. Proof of the main result

This section is devoted to prove the main result of this paper. Without
loss of generality we will assume that R is complete with an infinite residue
field. We recall Briançon-Skoda’s Theorem (cf. [5, Theorem 5.6]) that gives a
relation between the tight closure and the integral of an ideal.

Theorem 3.1 (Briançon-Skoda). Let R be a Noetherian ring of prime char-
acteristic p, I an ideal generated by n elements. Then for all w ≥ 0 we have

In+w ⊆ (Iw+1)∗.

Corollary 3.1. Keeping all assumptions of Theorem 3.1, then for all w ≥ 0
we have

Id+w ⊆ (Iw+1)∗.

In particular, if w = 0 then
Id ⊆ I∗.

Proof. Let J be a minimal reduction of I. We have µ(J) = ℓ(I) ≤ d (cf. [20,

Proposition 8.3.7 and Corollary 8.3.9]) and Ik = Jk for every positive integer
k. Applying Theorem 3.1 for J ,

Iℓ(I)+w = Jℓ(I)+w = Jµ(J)+w ⊆ (Jw+1)∗ ⊆ (Iw+1)∗.

Thus, Id+w ⊆ (Iw+1)∗. ■

Corollary 3.2. Let (R,m) be a Noetherian local ring of dimension d and q a
parameter ideal. We have
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(1) If R is excellent and F -nilpotent then qd ⊆ qF .

(2) If all associated prime ideals of R are minimal then qd+1 ⊆ qF .

Proof. (1) By Corollary 3.1 we have qd ⊆ q∗. Moreover, q∗ = qF since R is
F -nilpotent. Thus the first assertion holds.
(2) Take any x ∈ qd+1, by [20, Theorem 6.8.12], there exists c ∈ R◦ such that
cxN ∈ q(d+1)N for all large N , so cxN ⊆ cR ∩ q(d+1)N . By Artin-Rees Lemma,
there is k ≥ 1 such that for large N we have

cxN ∈ cR ∩ q(d+1)N = q(d+1)N−k(qk ∩ cR) ⊆ cq(d+1)N−k.

Because all associated prime ideals of R are minimal, c is a non-divisior of zero
so xN ∈ q(d+1)N−k for large N . Hence, for large N = pe we have

xp
e

∈ q(d+1)pe−k ⊆ qdp
e

⊆ q[p
e].

Thus x ∈ qF . ■

We recall the concepts of type and socle of a module (cf. [2, Section 1.2]).
Let (R,m) be a Noetherian local ring,M a R-finitely generated nonzero module
with depth(M) = t. Set k = R/m. Then the type of M is

r(M) := dimk(Ext
t
R(k,M)).

The socle of M is

Soc(M) := (0 : m)M ∼= HomR(k,M).

If x is a maximal M -sequence then r(M) = dimk(Soc(M/xM)).

Lemma 3.1. Let (R,m) be an Artinian local ring with infinite residual field k =
R/m, and letM be a finitely generated module over R such that dimk(Soc(M)) =
s. Then ℓR(M) ≤ sℓR(R).

Proof. Since M is finitely generated over Artinian ring, M is an Artinian
module and Soc(M) ⊆M is an essential extension. We have

M ⊆ ER(Soc(M)).

Set k = R/m and E = ER(k). By Matlis duality, E has finite length over
R and ℓR(E) = ℓR(R). Moreover, dimk(Soc(M)) = s so Soc(M) ∼= ks and
ER(Soc(M)) ∼= Es. Thus M ⊆ Es and

ℓR(M) ≤ sℓR(E) = sℓR(R).

The proof is complete. ■
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Theorem 3.2. Let (R,m) be a Cohen-Macaulay ring with prime characteristic
p, of dimension d with the embedding dimension v and the type s. Set Q =
pFte(R). Then we have

(1)

e(R) ≤

{
(s+ 1)Qv−d

(
v−r−1
r

)
if dim(R) = 2r + 1

(s+1)
2 Qv−d

((
v−r
r

)
+
(
v−r−1
r−1

))
if dim(R) = 2r.

(2) If R is F -nilpotent then

e(R) ≤

{
(s+1)

2 Qv−d
((
v−r−1
r

)
+
(
v−r−2
r−1

))
if dim(R) = 2r + 1

(s+ 1)Qv−d
(
v−r−1
r−1

)
if dim(R) = 2r.

Proof. Because the proofs of two assertions are almost the same, we will only
prove (2). Let q = (x1, . . . , xd) be a minimal reduction of m. Since R is F -

nilpotent, Fte(R) <∞. By Corollary 3.2(1), md ⊆ md = qd ⊆ qF . On the other
hand, we have (qF )[Q] = q[Q]. Thus (md)[Q] ⊆ q[Q]. Set k = R/m, A = R/q[Q],
n = m/q[Q]. Then (A, n) is an Artinian local ring and (nd)[Q] = 0. Let l be
arbitrary positive integer such that l ≤ d. We have (nd−l)[Q] ⊆ 0 :A (nl)[Q] for
all 1 ≤ l ≤ d. In other words, (nd−l)[Q] ⊆ AnnA(n

l)[Q] and we can consider
(nd−l)[Q] as a A′ := A/(nl)[Q]-module. Moreover, R is Cohen-Macaulay so

x1, . . . , xd and xQ1 , . . . , x
Q
d are maximal regular sequences. We have

dimk(Soc(n
d−l)[Q]) ≤ dimk(Soc(A)) = dimk(Soc(R/q

[Q])) = rR(R) = s.

The first inequality due to Soc(nd−l)[Q] ⊆ Soc(A). By Lemma 3.1, ℓA((n
d−l)[Q]) =

ℓA′((nd−l)[Q]) ≤ sℓA′(A′) = sℓA(A
′). Thus,

e(R) = e(m) = e(q) =
1

Qd
e(q[Q]) ≤ 1

Qd
ℓR(R/q

[Q])

≤ 1

Qd
ℓA(A)

≤ 1

Qd
(ℓA((n

d−l)[Q]) + ℓA(A/(n
d−l)[Q]))

≤ 1

Qd
(sℓA(A/(n

l)[Q]) + ℓA(A/(n
d−l)[Q])).

Extend x1, . . . , xd to a minimal set of generators x1, . . . , xd, y1, . . . , yv−d of m.
Then x̄1, . . . , x̄d, ȳ1, . . . , ȳv−d is a set of generators of n. Now A/(nl)[Q] is
spanned by monomials

x̄α1
1 · · · x̄αd

d ȳβ1Q+γ1
1 · · · ȳβv−dQ+γv−d

v−d ,
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where 0 ≤ α1, . . . , αd, γ1, . . . , γv−d < Q and 0 ≤ β1 + · · · + βv−d < l. The
number of such monomials is less than or equal to Qv

(
v−d+l−1
l−1

)
, thus

ℓA(A/(n
l)[Q]) ≤ Qv

(
v − d+ l − 1

l − 1

)
.

Similarly

ℓA(A/(n
d−l)[Q]) ≤ Qv

(
v − d+ d− l − 1

d− l − 1

)
.

So we have

e(R) ≤ Qv−d
(
s

(
v − d+ l − 1

l − 1

)
+

(
v − d+ d− l − 1

d− l − 1

))
.

Choosing l = r if d = 2r, choosing l = r and l = r + 1 if d = 2r + 1, we obtain
that

e(R) ≤

{
(s+1)

2 Qv−d
((
v−r−1
r

)
+
(
v−r−2
r−1

))
if dim(R) = 2r + 1

(s+ 1)Qv−d
(
v−r−1
r−1

)
if dim(R) = 2r.

The proof is complete. ■

Remark 3.1. If R is Gorenstein then r(R) = 1, by Theorem 3.2 we have
the result of Huneke and Watanabe [8, Theorem 5.1].

Example 3.3. Let S = Fp[X,Y ] be a polynomial ring over Fp with prime
p, m = (X,Y ) maximal ideal S, f = XaY a. Set R = S/(f)S, then R is a
Gorenstein ring of dimension d = 1, of embedding dimension v = 2 with the
type r(R) = s = 1 and H0

m(R) = 0.
Next, we will find Fte(R). The Čech cocomplex Č(X,Y ;S):

0 → S −−→ SX ⊕ SY
ϕ−→ SXY → 0,

where ϕ(u, v) = v − u. For simplification we also use u and v to denote their
images in the localizations of R respectively.
The set of the exponents of all monomials of SX is

{(s, r) | s, r ∈ Z, r ≥ 0}.

The set of the exponents of all monomials of SX ⊕ SY is

{(s, r) | s, r ∈ Z; s ≥ 0 or r ≥ 0}.

The set of the exponents of all monomials of SXY is {(s, r) | s, r ∈ Z}. Then

H2
m(S) = SXY /Im(ϕ) = ⊕s,r<0FpXsY r.
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Thus, (H2
m(S))(s,t) ̸= 0 if and only if s < 0 and t < 0. From an exact sequence

0 −→ S1 := S(−a,−a) .f−→ S −→ R −→ 0,

induces the following exact

0 = H1
m(S) −→ H1

m(R) −→ H2
m(S1)

ψ−→ H2
m(S) → 0,

where ψ is the multiplication by f .
We have H1

m(R) = Ker(ψ) has the set of exponents E defined as follows

E = {(s, r) | s, r < a; s ≥ 0 or r ≥ 0}.

(E is the coloring area between angle x̂′My′ and angle x̂′Oy′ including ray Ox′

and ray Oy′.)

The e-th Frobenius map F e : H1
m(R) → H1

m(R) corresponds to a homothety on
set E of center O and ratio k = pe. Then the set of all exponents of 0FH1

m(R) is

E1 = (E \ (Ox′ ∪Oy′)) ∪O.

So Fte(R) = HSL(R) = ⌈logp(a)⌉, where ⌈u⌉ is minimal integer such that
greater than or equal to u. If we choose p = a = 2, then the Hilbert seri of R is

HR(t) =
1 + t+ t2 + t3

1− t
.

Thus, e(R) = Q(1) = 4 where Q(t) = 1 + t + t2 + t3 (cf. [4, Section 6.1.1]).
We have the equality in Theorem 3.2(1).
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