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Degeneracy theorems for holomorphic mappings from a
complex disc with finite growth index
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Abstract. In this paper, we prove degeneracy theorems for holomorphic
mappings from a complex disc A(R) C C with finite growth index into
P™(C) sharing hyperplanes in general position. We further consider the
case that intersecting points of the mappings and the hyperplanes with
multiplicities more than a certain number do not need to be counted.
These results generalize the previous degeneracy theorems for meromor-
phic mappings from C™ into P"(C).

1. Introduction

Let f be a meromorphic mapping of C™ into P"(C) which is linearly non-
degenerate over C. Let d be a positive integer and Hj, ..., Hy be g hyperplanes
of P*(C) in general position with

dim f~Y(H;,NH;) <m -2 (1<i<j<gq).

For each point 2, let v, ()(2) denote the intersecting multiplicity of the map-
ping f with the hyperplane H; at z. We consider Fe(f,{H;}{_;,d) the set
of all linearly non-degenerate over C meromorphic mappings g : C"™ — P"(C)
that satisfies

hd min{y(f,Hj)(Z)ad} - min{y(g,Hj)(Z)ad} (1 <j< Q)a

Key words and phrases: Nevanlinna theory, holomorphic mapping, hyperplane, degeneracy
theorem.
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o f(2) = g(z) on Uj_, f~1(H)).

If d = 1, we will say that f and g share ¢ hyperplanes {H; }‘]1-:1 regardless of
multiplicity.

Degeneracy problems find conditions to give the relation between these
mappings. S. Ji [2] was the first one who proved a degeneracy theorem for three
meromorphic mappings sharing 3n + 1 hyperplanes regardless of multiplicity.
After that, H. Fujimoto [1] gave a degeneracy theorem for n 4+ 2 meromorphic
mappings sharing 2n + 2 hyperplanes with multiplicities are counted to level
% + n. The results of L. Smiley and H. Fujimoto have been extended
by many authors such as S. D. Quang - L. N. Quynh [4, 8], Q. Yan and Z.
Chen [10]. In 2012, S. D. Quang [5] showed a finite theorem for meromorphic

mappings sharing 2n + 2 hyperplanes regardless of multiplicity.

We note that, all the results mentioned above, the number of hyperplanes is
always assumed to be at least 2n + 2. To show the relation between mappings
sharing less than 2n + 2 hyperplanes, N. T. Nhung and L. N. Quynh [3] proved
the following theorem.

Theorem A. Let f be a linearly non-degenerate meromorphic mapping of C™
into P*(C) and let Hy,...,H, be q hyperplanes of P"(C) in general position
such that

dim f~'(H;) N f7H(Hy) <m =2, V1 <i<j<q.
Let f1, fa, f3 be three mappings in Fe(f, {H;}{_,,1). Assume that

n+64+/7n2+2n+4
g > nreEVTnTEInEd

Then there exist [3] hyperplanes H;, ..., H; ,. among

H|s such that: -
(f1,Hi;)  (f2, Hi;) (f2, Hi;)  (fs, Hi) (f3,Hi;)  (f1, Hi;)

(fl?Hil) (vaHil) (anHil) (f3,Hi1) (f3aHi1) (fhj_-’il)7

for every j € {2,...,[2]}.

For the degeneracy result related to a family of k£ mappings, S. D. Quang
[7] proved a degeneracy theorem for a family of meromorphic mappings of a
complete Kéhler manifold into P™(C). We state here his result in case mappings
from C™.

Theorem B. Let f be a linearly non-degenerate meromorphic mapping of C™
into P"(C) (n > 2). Let Hy,...,H, be q hyperplanes of P"(C) in general
possition such that
dim f~H(H)NfH(H)<m-2 (1<i<j<gq).
Let fi,..., fr be k mappings in Fe (f,(H;){_, ,n). Assume that
knq
kn+(k—1)qg—Fk

g>n+1+



Degeneracy theorems for holomorphic mappings 3

Then fy X -+ X fi is algebraic degenerate.

Now, we turn our consideration to a case that f is a holomorphic mapping
from a complex disc A(R) := {z;]z] < R} C C in to P*(C). In 2020, M. Ru
and N. Sibony [9] introduced the definition of growth index for f as follows.

R
CfZinf{c>0/ exp(ch(r))dr:—i—oo},
0

and in case {¢ > 0 UOReXp(ch(r))dr = 400} = &, we set ¢y = +00, here
T¢(r) is the characteristic function of f (defined in Section 2). They also
studied a new class of holomorphic mappings from A(R) into P*(C), which has
finite growth index and they showed the Second Main Theorem for these ones
involving hyperplanes in general position.

The goal of this paper is generalizing Theorem A and Theorem B to the
case that the mappings from A(R) into P*(C) with finite growth index. In
addition, we extend ours in the case that intersecting points of the mappings
and the hyperplanes with multiplicities more than a certain number can be
omited. Because of the difference in error term in the Second Main Theorem
for holomorphic curves from A(R), some quantities can not be estimated like
ones from C. To overcome the difficulty, we give some new ways to evaluate
these inequalities in this case.

In order to state our results, we need some notations.

For a hyperplane H in P™(C) and a positive integer k or k = 0o, we set

0 if vy H)(Z) >k,
Vs, H),<k(2) = e
o {u<f,H><z> if v m (2) < K,
and v (2) 0 fvgm(z) <k,
JH),>k(Z) = .
R vrm(z) i vipm(z) >k,

for every z € A(R).
Let Hy,...,Hy be ¢ hyperplanes of P™(C) in general position such that

{Z | V(f.H;),<k; > 0} N {Z | V($,H;),<k; > O} e @,Vl <i<j<gq.

Let k1, k2, ..., k, be ¢ positive integers or +o00 and let d be an integer. Denote
by Fa (f,{H;i, ki}{_, ,d) the family of all linearly nondegenerate holomorphic
curves g of A(R) into P™(C) with finite growth index satisfying:

(a) min {d, V(g,Hi),Ski} = min {d, V(f,Hi),Ski} Ni=1,...,q;

(b) g=fon {Z V(f,H;),<k; > 0}

Theorem 1.1 and Theorem 1.2 stated below are our generalizations of The-

orem A and Theorem B respectively to the case of mappings with finite growth
index.
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Theorem 1.1. Let f : A(R) — P*(C) (0 < R < +400) be a holomorphic
mapping. Let Hy,...,Hy be q hyperplanes of P™(C) in general position such
that

{Z | V(f,H;),<k; > 0}0{2 | V(f,H;),<k, > 0} = @,Vl <i1<j3<q.

Let f1, fa, f3 be three mappings in Fa(f, {H;, ki}{1,1). Assume that

3ng N+Te~ n nn+7)
1
qg>n+1+4+ 1 ;ki-i-l

20 +3n—06 B (Cfl+Cf2+Cf3).

and

n(q—2) 50\ o~ 7 n(n+1)
_— 14— E .
q>n+3+q+n_3+( +6)i:1k‘i+1+ 2 (Cf1+cf2+cf3)

Then there exist [] hyperplanes H;,, ..., H; , among Hjs such that:

(4]

(f1,Hi;)  (f2, Hi)) (f2,Hi;)  (fs, Hi)) (f3,Hi;)  (f1, Hij)

= or = or =

(thil) (f27Hi1) (f27Hi1) (f3vHi1) (fdﬂHll) (f17Hil)’

for every j € {2,...,[4]}.

Remark. When R = 400 and f; is not constant, then c;, = 0. Letting

3
k; = +oo then the result of the theorem obtained if ¢ > n + 1 + _=°nd
2¢9+3n—6
_9 .
and ¢ > n+ 3+ % It is easy to check that if ¢ > nA6EvVTn42n+d W
qTn—

as in Theorem A, then ¢ satisfies these inequalities. So Theorem 1.1 implies
Theorem A.

Theorem 1.2. Let f and Hy,...,H, be as in Theorem 1.1. Let f1,..., fi be
k mappings in Fa (f,{H;, ki}i_, ,n). Assume that

g>n+1+ 5 1I§nil£k’{cfi}.

kng o kn(n+1)
kn+(k—1)q—k+;ki+l+

Then f1 x -+ X fir is algebraic degenerate.
Remark. When R = 400 and f; is not constant, then c;, = 0. If we further

consider a special case that k; = 400, then we can see directly that Theorem
1.2 implies Theorem B.



Degeneracy theorems for holomorphic mappings 5

2. Basic notions and auxiliary results from Nevanlinna theory

We denote by A(R) a disc in C, A(R) := {z € C;|z|] < R}, (0 < R < +00).
Let v be a divisor on A(R). We consider v as a function on A(R) with values
in Z such that Supp (v) := {z;v(2) # 0} is a discrete subset of A(R). Let k be
a positive integer or +oo. The truncated counting function of v is defined by:

T k(1) — p k]
A (0) — nll(0)

ntkl(t) = Z min{k,v(z)} (0 <t < R) and N¥(r,v) = / "

|z <t 0

We will omit the character ¥ if k& = +o0.
Let ¢ : A(R) — CU {oo} be a non-constant meromorphic function. We

denote by 1) (resp. v3°) the divisor of zeros (resp. divisor of poles) of ¢ and
set v, = v) — v, As usual, we will write Ng[pk] (r) and Nl[lj]w(r) for N (r, v))

and NI (r, Vgo) respectively. The proximity function of ¢ with respect to the
point oo is defined by

2
m(r, ) = / log* [p(ret?)|db.

We consider ¢ as a holomorphic map into P!(C) and denote by €; the Fubini-
Study form on P!(C). The characteristic function of ¢ is defined by

T dt .
Ty (r) :/ 7/ o (.
0 |z| <t

By Jensen’s formula, we have
Ty(r) = m(r, @) + Nijp(r) + O(1).

Let f : A(R) — P"(C) be a holomorphic map with a reduced representation
(fo: -+ fun), where fo,..., fn are holomorphic functions on A(R) without
common zeros. Let H be a hyperplane in P"(C) defined by H := {(wg : --- :
Wn )i Yoo @iw; = 0}, where a; (0 < i < n) are constants, not all zero. We
define

(f, H) = aifs.
=0

The function (f, H) depends on the choices of the reduced representation of f
and the presentation of H, but the divisor vy p) is well-defined, not depending
on these choices. The proximity function of f with respect to H is defined by

[fll(re®®) - ||

2 |
mf(’”’H):/o o8 T e
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where ||| = (1ol +|fal?)/2 and | H|| = (Jao?++ -+ |an[?)/2. The char-
acteristic function of f (with respect to the Fubini-Study form €, on P"(C))

l.S defi“ed by
— / dt /
0 t |Z|<i

The first main theorem states that

Ty(r) =my(r, H) + N(g,my(r) + O(1).

Theorem 2.1. (Lemma on logarithmic derivatives [9, Theorem 5.1]). Let
0 < R < +o0 and let v(r) be a non-negative measurable function defined on
(0, R) with fOR'y(r)dr = oo. Let f(z) be a meromorphic function on A(R).
Then, for every € > 0, we have the following inequality

|, m <r, J;,) < (1+e¢)logy(r) +elogr+ O (logTy(r)).

Here and throughout this paper, we use the notation ||gP to say that
the proposition P holds for all » € (0; R) outside a subset F of (0; R) with
fE ~(r)dr < 4o0.

Theorem 2.2. (see [9, Theorem 1.7]). Let f be a linearly non-degenerate
holomorphic map from A(R) (0 < R < 4o00) into P*(C). Let v(r) be a non-
negative measurable function defined on (0, R) with fOR ~v(r)dr = oo and let
Hy,...,H, be q hyperplanes in general position in P*(C). Then, for every
e > 0, we have

n n+1
HE q—n—1)T(r ZN[fH) %(1+5)10g7(7’)
n(n+1)

+ O(log T (1)) + 5

elogr.

In case f has finite growth index (i.e., ¢y < 400 ), then in Theorem 2.1 and
Theorem 2.2, we may take v(r) = exp ((Cf +¢e)Ty(r)).

In degeneracy theorems, Cartan’s function play an essential role in our
proofs. We recall here its definition as well as some necessary properties.

For meromorphic functions F, G, H on A(R), the Cartan’s function is de-
fined by
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From the definition, we can deduce easily that

1 1 1 1
(2.3) o(F,GH =FGH| F ¢, F H, |
(7F-3) G %)
Also, Cartan’s function can be written as follows.
F G H
(I)(FvaH): 11 / 11 / 11 ’
r(z) () #(z)

(2.4) 1\/ N N 1/
=r (H(H> -6(g) ) +G(F(F) -1(g) >
1\’ 1\’
+H (G(a) (%) )
From the property of proximity function and Theorem 2.1, we can show the
following inequality:
lem(r,®) <m(r,F)+m(r,G) +m(r,H) + 2m(r,(1/F)"/(1/F))
+2m(r, (1/G)' /(1/G)) + 2m(r,(1/H)'/(1/H)) + O(1)
<m(r,F)+m(r,G) +m(r,H) + 6(1 + ¢)logv(r)
+ 6elogr + O (logTr(r) + log T (r) + log T (r)).

(2.5)

In addition, for every meromorphic function i, we have
O(hF,hG,hH) =h-®(F,G, H).

Lemma 2.6 (see [3], Lemma 3.2). If ®(F,G,H) = 0 then there exist constants
g, Bo, not all zeros, such that

1oyl
W\F qg) \F H)
3. Proof of Theorems

Proof of Theorem 1.1 For convenience, with three mappings fi, f2, f3 €
Fa(fi{Hi ki}i_;,1), we set

(fr, H;)
(fr, Hj)

o FV = 1<k<3 1<i<j<gq);
k J=>4q
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e S(r)=(1+¢)logy(r) +elogr;

o T(r) =Ty (r) +Tp,(r) + Try(r);

T = {2 | vpm,<h(2) > 0
Si = Uner {2 [ V(gm0 50,(2) > 0}

* R = ﬂi:l {Z | V(fu:Hi)7>ki(Z) > 0}'

Now we need some preparation lemmas before going into main proofs.

Lemma 3.1. Let g € Fa(f,{Hi, ki}i_;,1). Suppose that

q>n+1+i n +n(n+1)( e,
] Cf Cg)-
Lkt 1 2

Then || , Ty(r) = O(Ty(r)) and ||, Ty(r) = O(Ty(r)).

I

Proof. By the Second Main Theorem, we have

g (@ —n—1T, i G

W((l 1 &) log(r) + elogr) + o(Ty(r)
< Zn N+ 2D 500) 4oy ()
< Xq; RNy < (1) A NG 2 (0) + wg(r) +o(Ty(r))
ginmg;{m)ék )+ 5 1,0) + L s0) (73 0)
gin(Tf(r) ) + S0 o7 0),

By taking v(r) = exp((cq + €)Ty(r)) and letting ¢ — 0, we get

: L n+1)

2

HE q—n—1)T, <Zan cgTy(r)+o(Ty(r)).



Degeneracy theorems for holomorphic mappings 9

This implies that

—n—1- Z T ”; Y )T, (r) < ngTy(r) + oI, (r)).

Hence HE Ty(r) = O(Ty(r)). Similarly, we get ||E Ty (r) = O(T,(r)).

The following lemma is proved similarly Lemma 3.6 in [4] for the case map-
pings from complex discs into P™(C).

Lemma 3.2. Let f1, fo, f3 be three mappings in Fa(f, {H;, k; }z 1 ) Assume
that there existi,j € {1,2,...,q} (i # j) such that ®;; = ®(FH F FP) £ 0.
Then for every e > 0, the following assertions hold:

1. We have

T(r) + 65(r) szfu” +ZN(fu’H) (r)
2n—+2
1
—&-QZN(th t)—(2n+1)N((f)H) () - (n+1)N((f)H)7<k()

t;ﬁm
(1) 2n — 2
) Negup) >, ~ <1 T3 ) N(fu,Hi>,>m> :

(e
it. Furthermore, if we also have @(Ffi, FQ”,FgZ) %0 then

3

n 3n+6 1
| T(r)+65(r) +o(T(r)) > Z (Z N([fi,Ht),gkt (r) — 5 N([f]Ht) ()
t=i,j u=1
3
+22me <k (T fu,Ht),>kt)~
t=1 u=1

Proof.
(i) From Inequality 2.5, we have

(3.3) m(r, ®;;) <

I

HMW

3
m(r, F¥9) +6S(r) + O (Z log T'is (r)) .

u=1
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Therefore, we have

m(r,q)ij)—FZNl (r)—6S(r —l—O(Zlog >

=N (r,ve,)+ > N (r)=6S(r) +o(T(r)).

ij
F,
u=1 v

On the other words, it is easy to see that

N (r,S;) + N (r.5;) + (20 — 2)N (. Ri) + (n — )N (r, Ry)
Sz::(( )N((l) >>kj+<1+2n3_2) N((}Z,Hi),>ki>~

Then, in order to prove Lemma 3.2, it is sufficient for us to show

3 3 2n+2

(n) (n) (1)
N (r,ve) > ZN(fu,H),gk )+ZN(fu,Hj),<k +QZN(th ke (r)
u=1 u=1 t;MJ
(1) L
—@n+ Ny <, (1) = (0 + DN < ZN (r)

—N(r,S;)—N(r,S;) —(2n—-2)N (r,R;) — (n — 1) (r, Rj) o(T(r)).

We also find that the above inequality follows from the truth of the following
one

(3.4)
2n+2
Def n
Z ’/(fu),H) <k T Z (f“,H Yoy T2 Z xr, — (2n+ xr, — (n+ 1)x1;
t#z]

- Z V;Zj —Xs: = xs; —2(n —1)xr, — (n — D)xr, < Voo,
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on A(R).

Indeed, for z € A(R), we consider these cases:

Case 1. z € T)\S; US;(t # i,7). We see that P(z) = 2. From (2.3), we write
®;; in the form

(4 12), (5-22)

I % B % A Y]
(IDZ] F1 F2 FS X (Flﬂ B Fé’)l (Flﬂ B Fgl)/

Then by the assumption that fy, fo, f3 are identify on T}, we have Flj = F2j =
th on T;\S;. The property of the wronskian implies that v (2) > 2 = P(2).
Case 2. z€ T, N (S;US;)(t #1,5). We see that P(z) < 722:1 v (2) — 1.
By computing ®;; as in (2.4) ’

B, = F ((F) B (F)) . ((F{'i)/ _ (ng-)’> e ((ng)’ B (Flji)/> |

i Ji Ji g Ji Ji
F3 F2 Fl F3 F2 Fl

we find that
vp,,;(z) > min {I/Flij(z) — Lvgi(z) — 1, VFSz'j(z) — 1} > P(z).

Case 3. z € T;\S;. We have

M

P(z) = V((?B,Hi),éki (2)—(2n+1) < 121323 {V((;ngHi)7<ki (z)} - 1.

u=1

We may assume that vt m,)(2) < Vs, m1,)(2) < V(s,,m,)(2). We write
oy = Y By (F) - ) Ry (R - ng)/ ~ (R - R Ry (R - ng)/] :

It is easy to see that F/ (Ffl — FQ”) and F;J (FfZ — ng) are holomorphic

on a neighborhood of z and

V;EJ(Ff,-,_FBﬁ),(z) <1
and
v < 1.

o (py -ty (?)

Therefore, it follows that

ve(2) 2 u((}ll)7Hi)7<ki(z) — 1= P(z2).
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Case 4. z € T; N S;. The assumption that fi, f2, f3 are identity on T; implies
that z € R;. We get

3
<X v Z%w - Cn+1) vaw
u=1
We have
ve,;(2) = min{VFlu(z) - 17VF2”( z)—1 Z/FU - 1} Z v ” > P(2).

Case 5. z € T;. We may assume that
VFIJI(Z) = dl > Vng(Z) = dg > UF;I(Z) = dg.

Choose a holomorphic function h on A(R) with multiplicity 1 at z such that
Fit = hdup, (1 < u < 3), where ¢, are meromorphic on A(R) and holomorphic
on a neighborhood of z. Then

Jt Jt Jt Jt
F2 _Fl F3 _Fl ‘

o =ry . FyY-Fy ‘ (ng _Flji>' (ng _Fljz‘)/

_ pdi1—d2 _ pdi1—ds
I I YT Il s VI R
=47 Lyt e by T (W2 —hT1 0 dy—ds !

hd2—d3 (303 - h 801)

This yields that
ZUFW )+ da + d3 —max {0, min{1,dy — d3}}.

Now we put
vi = {ziki > v(p, 1,)(2) > V(o om,)(2) = Vst m,)(2) for a permutation (u,v,t) of (1,2,3).
If z ¢ S; then

3 3
=3 () + Y min{n,du} — (n+1) + x,
u=1 u=1

and

3
_ZV;%’ +ZV” z) +dy+d3s —1+xy,

ZI/F” z) +dy+ds — 1+ x,, = P(2).
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Otherwise, if z € S; then z € R;, we have
3

3
PO € 3 s, = S~ 1 €= Y030

u=1 u=1

and

i (2) + max {0, —d; } + max {dz,0} + max {d3,0} — 1 > P(z)

?18

3
V@(Z)} Z F; +ZVF” +d2+d371
u:l
W
u=1

Case 6. z € (S; US;)\ ( fﬁﬂ Tt) Similarly as Case 5, we obtain

Z Vi (2) 4+ max {0, —d1} + max {d2,0} + max {ds,0} — 1

3
—Zl/;f’ij(z)— Z —Xs; — Xxs; = P(2).

From the above six cases, we see that the inequality (3.4) holds. Hence the
first assertion of the lemma is proved.

(ii). Now we assume that ®(F7, FJ’, Fi*) # 0. From (i) we see that

3

| o T(r) +6S(r) + o(T(r)) > Zl N((;’u,H < Z N, ;jjﬂ e (7)
™ (1) (1)
1 1 1
+2§:A%Hn<m r) = 2n+ DN gy <, (1) = (0 DN < ()
t#l J

n—1 on — 2
_ Z (( ) N(fu,Hj)v>kj - (1 + 3 ) N(fuqu‘,),>k‘i> .

Simllarly, we also have

3
(n) (n)
I T(r) +65(r) +o(T(r) = D N 1y o (r Z NG < (1)
u=1
= ) ) )
1 1 1
+2 ) Nipy en (1) = @A DNy o (7) = (0 DNy o, ()
t=1
t£i,j

n— 1) 2n — 2 (1)
— Z ((1 + 3 ) N(fu;H ), >k (1 + 3 ) N(mej)7>’fj> '
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Summing up both sides of the above two inequalities, we get

12T (r) +125(r) + o(T(r) = ) ( Z N(fu,Ht) <k, (7)

t=1,j u=1

3
" (1)
= B+ 6N,y <, (F +4ZN(fH <k 7 Z n+ DN, >’“)

t=1

Dividing both sides of the above inequality to 2, we get the desired inequality
of the assertion (ii). The lemma is proved.

Lemma 3.5. Let f and Hy,...,H, be as in Theorem 1.1. Let fi, f2, f3 be
three mappings in F(f,{H;, ki}i_,,1). Assume that

3ng 3n+7zq: n n(n—+17)
6 ki+1

> 1 ).
g>n+ +2q—|—3n— 5 (cr, +cpy +cpy)

4]+ 1) hyperplanes H;, ... Hv[ 4, among H]s such that for
)

Then there exist (]
each j (1 < j < [4]) there exist two constants ozj,ﬁj, not all zeros, satisfying

N ((thz‘j) B (f2aHij)) _ 5, <(f17H,) B (f37Hij)>

"N Hiy) o (fo, Hig) "\ Hiy) o (fs Hig)

) (fl’Hio) _ (f27Hio) _ 3. (thio) _ (f37Hio>
o <(f17Hij) (fQJHij)) 5] <(f17H ) (f37H )> .

Proof. We take an arbitrary ¢ (1 < ¢ < ¢) and set

~ 3n+6 1)
n 1 1
Z Gotr izt (1) = =5 Npay< (1) = D0+ DNG
Let Z denote the set of all permutations of the g—tupe (1,...,q), i.e.,

7= {(’Llo,...,’t'qfl) ‘ {io,...,iqfl} == {1,,q}}

For every permutation I = (ig,...,iq—1), let A; denote the set containing all
rin (0, R) satisfying T;,(r) > Til(T) > 2T (7).
By the assumption fo = 400, we find that there is a set Iy € Z, for

instance Iy = (ig,...,iq—1) such that fA ydr = +oo.
Fix j (1 <j <[4]). We prove that ®(F} W” FWJ FW’)
or ®(FI Flit | Fiiio) — g,

0
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Indeed, we suppose that ®(F Friois Fum sz]) £0
and @(F'LJZU FZZJZ[) FZ]ZO) 0. Then by Lemma 3.2(ii), we have

(3.6) || Ti(r) +2ZN8JH> T(r) +68(r) + o(T(r)).

On the other side, for all » € Aj,, we get

1 2[4]-1
Ty (r) + Ty (r) 2 Tiy(r) + T g (r) = T3 T;, (r)
0" =) &
L 204/ 2N
o t:oT”() q;n()

From the above inequality and (3.6) together with the Second Main Theorem
2.2, we obtain

|5 T(r) +65(r) +o(T(r)) > Ty (r) +2ZN8JH
2 ¢ [
> §2Tz +2ZN(fH
2 < 3 [n] 3n+6 kd 1]
= QZZNUWH)% () +@-—, ) D NGz, (7)
i=1 u=1 i=1

3
B9 SLEE I
A 2 (fuvHi)7>kt

i=1 u=1
2 L2 [n] 2q—3n— 1]
= gzlle(fu,H)<k (r) + lelN(fu, (r)
IS~ (n+1
DS o
2 2q — 3n —
> (22 ) S S )

u=1 i=1

3
B9 SLEE I
A 2 (fuvHi)7>kt
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2 29— 3n G ]

- - n

<q+ 3nq >ZZ (0 () = NG 5, (1)
u=1i=1

3
1)
ZZ n+ ((}37H'i)7>k3t
2 20—3n—6 1
= <q+qg,,:;>Z(ZN<[le>( )

2¢+3n—6 on 3n(n+1
= q+3nq (( _”_1_;ki+1) (r) - (2 )S()>
~ (n+1)
“2 3t

By taking v(r) = exp{(min{cy,,cy,,cs, } +¢)T(r)}, we have

<6+ (2¢+3n—6)(n+1)

7 ) ((1+ o) min{er s epyyera} +)T(r) +logr) +o(T(r))

29+ 3n —6 L on L (n+1)
> ( 4 3nq(q_n—1—2ki+1)—;2(ki“)—1>T(7~).

Letting ¢ — 0,7 — R,r € A, \E in this inequality, we get

(2¢+3n—6)(n+1)\ . (2q—|—3n—6)( on
s 294306 . N~ n
(6 + 2 min{cy,, cf,, a5} > 3ng g—n-—1 Z ki + 1)

—Z ”+1 _
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This implies that

3ng on 3q(n+1)
< 14— (1 )
aen +QQ+3n—6+;ki+1 +2(2q+3n—6)
. n(n+1) 6nq
+3m1n{cf1,cf2,cf3}( 5 +2q+3n—6)
3ng 3n 4+ 7 < n n(n+7)
< 1 .
=nt +2q—|—3n—6 4 ;ki‘Fl 2 (cf1+cf2+cf3)

This is a contradiction. S

Thus, we have ®(F}°"7, F,°" | F3°7) = 0 or ®(F’", F,;’", Fy’**) = 0 for every
Jj (1 <j <[4]). From Lemma 2.6, we deduce that for each j (1 < j < [Z])
there exist constants «;, 8;, not all zeros such that

o ((thij) _ (f2,Hz‘,-)) _ 5 <(f17Hz‘j) _ (f37Hij)>
! (thio) (vaHio) ! (thio) (f37Hi0)
oo (Yntl)  (F2 Hi)\ _ o ((F Hi)  (f3, Hio)
o ((thz‘j) (fz,Hz'j)) & ((fl?Hij) (favHij))

The theorem is proved.

Proof. Turn back to the Theorem 1.1, we will prove the theorem by contra-
diction. Assume that the conclusion of the theorem is not true. It follows from
Lemma 3.5 that there are ([3] + 1) hyperplanes H;,, ..., H; ,, among Hjs and

2

for each j (1 < j < [2]) there are constants «, 3;, not all zeros, such that
f27 i j f17 i j f37

() ()
Hio ,Hio 7Hi0
or a; ( (:) Ef%Hij;) =0 (Efl ng - Efg Hiji) .

f?a flv f37
From the premises of the theorem, there exists an index j (1 < j < [Z]) such
that a; # 0, 5; # 0 and «; # B;, for instance

o ((thij) (fszz‘j)) _ 8, <(f1»Hij) (fs»Hz'j)>_

Ji,Hi;)
J1, Hiy)
H)

J1,
f17

(
(
(
(

(f1, Hi,)  (f3, Hi,)

(flvHiO) (f27Hig)
Hence

(f1, Hi;) (f2, Hi;)

; (f37Hij)
(f1, Hiy) (f2, Hi,)

(f3, Hiy)

(3.7) (Bj — ) = B;
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For every z and permutations (k, [, s) of (1,2, 3), we can deduce from (3.7) that

V(g (2) 2 mindvig, g, ) (2), vg, ;) (2)

(3.8)
Vi Hio) (2) S max{vig, m, ) (2), v(5,,m,)(2) )

For each z € A(R), we consider two holomorphic functions hi, he chosen by
Vh, (Z) = 11%13%(3 l/(fu,H,-O)(Z)a

vhy(2) = min vis, m,)(2)

and denote by F the meromorphic mapping of A(R) into P*(C) with a reduced
hy U.Hiy) gy (fz,quj))

ha (f1,Hig) * ha (f2,Hig)
For each t € {1,...,q}, we define the following divisor

representation F' = (

y (Z) . 1 if minlgugg, l/(f'u,,Ht)(Z) < maxi<y<3 V(fu,Ht)(Z)
t(2) = . .
0 if minj<y<s I/(met)(Z) = maxXi<yu<3 I/(met)(Z).

By (3.8), we may suppose that I/(fk’Hij)(z) = V(thij)(Z) < V(f&Hij)(z) for each
z € A(R) and for a permutation (k,1, s) of (1,2, 3).
This implies that
3
Zmin{l, Visaon;) (2)} = min{1, V(fs;Hij)(Z) — V(fl’Hij)(Z)}
u=1 ha
= Vi (Z) < min{l’ V(fk,Hij),Skij (Z)} + VS'ij :

This follows that

ZNBLH) ) < N(rwi,) < N g,y <, () No (r).

ha

By the same argument, we also have

' 1]
X_:N(f“ ) <N(fk, lo)<k10( )+NS¢O~

We suppose that F' is not constant, then by the Second Main Theorem we
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have

1 1
Tr(r) < N,l oy M AN O+ N )

2 (F1.H;g) ’12 (F2, HLO) ha (F3,H;)

+ (1+¢e)logy(r) +elogr + O(log Tr (1))

3
<Z< NGw ) )+ N, ()>+S )+ 00> log Ty, (1))

T T i)

I

u=1

< N{ a2 )+ Nl i, (1) + S(0) + N, + N, + 0T (1)

On the other hand, applying the first main theorem to the map F and the
hyperplane {wy —w; = 0} in P*(C), we have

q
Tp(r) =N, tim) o g2m) (1) +0(1) > Z N([]lclHt)ékt (r) +O(1).

Po (F1.Hiy) ~ o (F2,Hyg) t=1
t#i0,1;

I

Thus

(1
16 Mgy < (7 )+ NG, )<k, Z N ,<n, (1) = S()

tioni;
= Ns,, (r) = Ns,  (r) + o(T(r))

> Z Nty < ( Z Gty skig ) F NG ) s, () +0(T(0)).

=1 :
t;tzo,z]'

Without loss of generality, we may take {ig,i;} = {¢ — 1,q}. For each i €
{1,...,q4 — 2}, we set
n n 1
Ni(r) = N([fj,Hi)éki (r) +N([f;Hz) < (1) = (n+ )N([f]H) (1)

For each permutation I = (s1,...,54-2) of (1,...,¢—2), let A; denote the set
containing all r in (0, R) satisfying

Nsl(T)ZNSQ(T)— >N8q 2(7’)
Since fOR y(r)dr = +o0, there exists Iy € Z such that [, ~(r)dr = +oc0. We
0

assume that Iy = (1,...,q — 2).

By the assumption, there is an index s € {2,...,[¢/2]} such that (fl’Hl) -

(f1.Hs)
(? glg # 0. Therefore

P = (fi,H1) - (fo, Hs) — (f1, Hs) - (f2, Hy) # 0.
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It is easily to see that: If z is a zero of (f, H1) with multiplicity at most k;
(resp. zero of (f, Hs) with multiplicity at most k) then it is a zero of P with
multiplicity at least min{y F1.HY), <k (2), V(fz,H1),§k1(Z)}

(resp. at least mm{y FuHL) <k (2)s V(fa,H.), <k, (2)}) and if 2 is a zero of some

(f,H;) (2 <1i<q,1 7é s) with multiplicity at most k; then it is a zero of P.
Thus, we have

vp(z) > min{vis, w1y, <k (2)s Viga,my) <k (2)} +min{vis m), <k, (2)s Vg B, <k, (2) )

q
+ Y min{1, v, <k, (2)}, 2 € A(R).

i#s
=2

Moreover, because min{a,b} > min{a,n} + min{b,n} — n for all positive
integers a, b, it follows from this inequality that

vp(z) = Y (min{n, vs, m,),<k, (2)} + min{n, v, 1) <k, (2)}

i=1,s
—nmln{l VfH)<k —I—Zmln{l VfH)<k( )LZGA(R)
its
=2

Integrating the both sides of the above inequality and applying the Theorem
2.2, we obtain

o Ne() = 7 (NG ), (1) F NGy < (0) = NGy <, ()

i=1,s

~ )
+ > N (1)

its

=2
_ (1]
= Nir +ZN(fH)<k

i=1,s

9 q—2 3

[ [
Zq,QZN +QZN<fH <) = D (NG w1k 2 )+ Ny sk, (1)
i=1 =1 u=1

2 1 qg—n—3
_ ] —n—3
=2> (> 7o NGum <k )+ 5 N, <k, (1)

=1 u=1,2

0 0
=2 (NG a1y sk )+ N 1y 5, ()
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1+n=3
q, ZZ (qu)<k()
u=1,2 i=1
: [1] [1]
1 1
=2 Nty st )+ Ny 5, (1)
u=1
qg+n—3 —/ \in
= n(q —2) Z Z N[f]u H)
[n] . [ ] [1]
1 1
= Npuor), >k, Z Nty ks M+ N 1) 51, (1)
q+n o2 1 1
- ["]
n(q —2) uzl:zzz:: (st (7 Zk+1 fu (T qu1+1+k +1)Tfu
g+n-3
(q—2) Zk +1)Z 7
C@+n=3)(n+l) o v 1 1
2 S(r) :1(,&]71 i +1)Tfu + o(Tt, (r) + Ty, (1))
Furthermore, we have
Ty, (r) < 5 n (T, (r) + Ty (1)) + o(T,)
far—Q L n (n_|_1)c f1\r f2\T 0\dfs)
I e S
and
HETfa ) O(Tfl( )) and HETfS ) O(Tf2(’l“)).

So we see that

I M) 2 T (g =3 = 3 ) B Tl - R sy
1 1 1 n
_(kq71+1+kq+1)(1+§ qn nn+ 1) ) > Tr.(r)

q—n—1-—

o( Y T, (r)

u=1,2

“Ic+1
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On the other hand, by Jensen formula, we get
Ne(r) :/ log |P|n + O(1)
S(r)
< /S( )log((|(f1,H1)|2 + \(ths)F) R (|(f2,H1)\2 + ‘(f?vHs)‘2))1/2’r]+ O(l)

< / log([IAll - [ f2)n + O1) = T, () + Ty (r) + O(1).
S(r)

Then we have

q—

o Th0) + Tl > TS (g Z

_(g+n=3)(n+1)
q—2

(1 + &) (min{cy,, cp, } +¢) Z Tfu(r)—i—alogr))

u=1,2
1 1 qn
- (142 ) T
(kq71+kq)( +2 a1 g n _n(n+1)c uzl:Q fu
1 =g+ 1 o
o( Y Tr.(r)
u=1,2
Letting r — R, r € A, \F and letting £ — 0, we get
-2
(g+n-3)(n+1) (g+n—3) -
| S
+ - min{cy,,cp, } > =2) qg—n 2 G
1 1 1 qn
14 =
kq_1+1+kq+1)< 3 o1 q n (n+1)c )
1 =+ 1 SRS
This follows that
q<n+3+z + nlg - )+n(n+1)m1n{0f ¢ty }
k+1 g+n-—3 1R
(q—Q) 1 1 1 qn
q+n—3(kq_1+1+kq+1)(1+2 4 n n(n+1) )

q_n_l_ 1:1ki+1_ 2 Cfs
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On the other side, we have

. zq: n n(n+1) < 1 Zq: n
—-n—1- — c —-n—1-
1 Lkt 1 g =l Lkt 1

n(n+1)
- T(Cfl +cyp, +cf3)
3ng 3q(n+1) o 6ngq
>
= 29 +3n—6 2(2q+3n—6);k‘i+1+2q+3n—6(cfl+cf2+cf3)
>3n+3n 1 n +6n( 4 i )>3n
— 4+ — —+ —(c c cy. —.
=5 W04kl 5 TR
This implies that
n(q—2)( 1 1 )(1+} qn )
g+n—3 kg1 +1 ks+1 2 1oy n _n(n—l—l)c
e =11 2
n n 5q
_|_7
kq71+1+kq+1)( 6)

Thus

n(q—2) 5\~ N n(n+1)
< 3+ —+ (1+ — 5 )
g<n+ +q+n_3+( + 6);ki+1+ 5 (en +ep +ep)
Therefore, the mapping F' must be constant map. Then there exists nonzero
constant 7 so that

(f17Hi_j) _ ’Y(f%Hij)

(fi,Hiy)  (f2, Hiy)

If v =1 then 8; = 0, this is a contradiction. If v # 1, then Y? ,_, f~'(H;) =
t#i0,1;
0, since fi and fo agree on | J? _—y f~1(H;). This follows that

t#£i0,i;

q
(@ —n=3)Ts(r) < D> Npmy(r) +o(Ty(r)) = o(Ty(r)).
tioni;
This is a contradiction. Therefore, the conslusion of the theorem holds. This
finishes the proof of Theorem 1.1.

Proof of the Theorem 1.2 In order to prove the Theorem 1.2, we need
the following lemma which based on Lemma 3.1 in [7].
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Lemma 3.9. Let f be a horomorphic mapping from A(R) into P*(C). Let
f1, fo, -, [ be k mappings in Fa (f,{H;, ki}}_,,n). Suppose that each f, has
a reduced representation f, = (ffj Do ff}) , 1 < u < k. Assume that there
are integers 1 < i1 < ig < -+ < i < q such that

(f17Hil) (flaHiz) (f17H'lk)
P :=det : : : # 0.
(fro, Hiy)  (fw,Hiy) -+ (fro Hiy)

Then we have for any z € A(R),
e 1]
>Z<12}2k{y(hH)<k( )} - Vi H) < ) +(k-1) ZV(fH

Proof. For simplicity, we may choose 11 = 1,...,i; = k. We take a point
z € A(R) and consider the following cases.

If z is a zero of a function (f, H;) (1 < j < k) with the multiplicity at most
k;, for instance z is a zero of (f, Hl) with the multiplicity at most ki, then z
is a zero of (f,, H1) with multiplicity at least minj<,<g {V(mel)ékl(z)} and

also is a zero of all Efugf;; Eﬁgég Put

(f1,H1)  (fo.Hr) _ (F,H1) 0 (fe.Hy) _ (f1,H1)
(flqu) (vaHq) (flqu) (fkaq) (fl-,Hq)
(f1,Hrk)  (f2,Hi) _ (f1.He) . (FeoHe) _ (f1,He)
(flqu) (f27Hq) (fl’Hq) (fkqu) (fl’Hq)

We see that P = (Hﬁzl (fu,Hq)) det A. Therefore, z is a zero of all mem-

bers in the columns 2,3,... k. In addition, it is easy to find that z is a zero
of all members in the first row of the matrix A with multiplicities at least
ming <y, <g {V(fu7H1)7Sk1 (z)} This follows that

vp(z) > (k—1)+ ( min {v(s, 1)<k (2)} — 1)

1<u<k

k q
— A [1]
o Z <1I<I32k{ Y(fu Hi )( )} (f H;),< ( )> + (k - 1) Zl V(f7Hi)7Sk?i(Z)

Otherwise, if z is a zero of a function (f, H;) with the multiplicity at most
k; with 7 > k and we may suppose that k < g, then z is a zero of all members
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in the columns 2 , k of the matrix A. This implies that

k
vp(z) 2 (k= 1) =) (émgk{v(fuﬂ @)} = )

Jj=1
=03l
i=1

The lemma is complete.
We now turn to prove Theorem 1.2.
Let Z denote the set of all k-tuples I = (i1,...,4x) € NF with 1 < 47 < ig <
- < i < g, and put p = 4Z. We suppose that f; X fo X .-+ X fi is not
algebraically degenerate. Then for every I = (i1,...,i;) € Z,
P[ = det ((fs,Hit) ; 1 < S,t < ]{3) 5_'5 0

It follows from Lemma 3.9 that

k q
; [1] (1]
VP 2 Z (mln {l/(fuvHi ), <ki q’l sux< k} o V (£.H;, ), <k; ) +(k — l)zy(szi)yﬁki
s=1 e rmts i=1
k q
= Z i — ! +(k—-1) Z yH .
<\ (FHig)Shiy (£ Hi) <k, £ V(S ), <
sS= 1=

Setting P = [[;.7 Pr and summing up both sides of the above inequality over
all I € 7, we get

MQ

(pk ) p((k—1)g—k) p )

vr Vipmask) T MH) sk

1

o
Il

(A4
7N
JE

kE—1) k)
(( q )ZVfH)<k

i=1
(Z p((k—lq— )zi:i oo

Applying the Second Main Theorem, we have

-yl - kn(n +1)
lelg—n—1)Y Tr(r) < ZZ oy () +o > Ty, (r) + 5 8()
k q k
<D (M b ™)+ Ny s, () o <Z Ty, (T)> + L("; Y s(r)
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P n n n+1
Sz;;(N([fi,Hi,Ski)() il Ty, (r ) <ZTfu ) %S(r)

kng 1
<
_pkn—i-p(k—l)q—k zzz

k
+o (Z Ty, (7“)) + WS(T)
u=1

k k
<<kn+(k—1q— Zk +1>Z 7 (7)
k
+o (Z T} (r)> 4 WS(T).

Taking (r) = exp{(mim <i<i{er,} +€) Sy 77, (1)}
and letting e — 0,7 € E, we get

kng on kn(n+1)
< 1
g=nt +kn+(k—1)q—k+;ki+1+ 5 i denk

This is a contradiction. Thus we complete the proof.
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