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Abstract. We extend classical results by Debreu and Dierker about
equilibrium prices of a regular economy with continuously differentiable
demand functions/excess demand function to a regular exchange economy
with these functions being locally Lipschitz. Our concept of a regular
economy is based on Clarke’s concept of regular value and we show that
such a regular economy has a finite, odd number of equilibrium prices, the
set of economies with infinite number of equilibrium prices has Lebesgue
measure zero and there exist locally Lipschitz selections of equilibrium
prices around a regular economy.

1. Introduction

Many economic problems can be reduced to solving and analyzing solutions
to an equation

f(x) = y,

around a regular value y, where f : Ω ⊆ Rn → Rp is a function and Ω is an
open set. Recall that a regular point of a differentiable map is a point where
the derivative is onto and a value is regular if all pre-images are regular points.
When f is continuously differentiable (briefly, C1) and y is regular, the inverse
function theorem implies the finiteness of the solution set and Sard’s theorem
implies that the set of values y such that the solution set is infinite has the
Lebesgue measure zero.
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An economy is defined by demand functions (which in its turn is defined
by a utility function) or an excess demand function. It is of interest to know
what the set of equilibrium prices of a given economy looks like and how it
depends on the parameters describing this economy. This can be done in the
case of regular economies, see [1], [5], [7], [17] and the references in [1] for a
survey on contributions to the regular exchange economies. Roughly speaking,
one assumes an economy to be regular in the sense that some value is a regular
value of some map associated to this economy (for instance, the endowment is
a regular value of a map involving demand functions, see [1], [5], [17], or zero
is a regular value of an excess demand function, see [7]) and deduce properties
of the set of equilibrium prices from the ones of the solution set to an equation
given by this map.

In [5], Debreu studied a regular economy with C1 demand functions. He
proved that the number of equilibrium prices is finite and locally constant and
the set of endowments for which the associated economies have an infinite
number of equilibrium prices is of Lebesgue measure zero. Using index of
fixed point, Dierker precised Debreu’s result by showing that the number of
equilibrium prices of a regular economy is odd [7].

When demand functions are merely continuous, Shannon [17] uses Rader’s
concept of regularity [15], namely a point is a Rader’s regular point if the
derivative exists at this point and is onto. Biheng and Bonnisseau [1] consider
a special case when the preferences of consumers are represented by utility func-
tions satisfying some natural conditions so that demand functions are locally
Lipschitz and C1 on an open set of full Lebesgue measure and the concept of
regular economy takes into consideration only points at which some projection
map is C1. It has been established that set of equilibrium prices of regular
economies in these nonsmooth cases retains most properties of the C1 case.
Debreu’s result on generic finiteness of equilibrium prices has been extended to
economies with concave definable utility functions by Blume and Zame [2] and
to economies with semi-algebraic utility functions by Ioffe [11, Theorem 9.65].

Continuing this direction of research, we extend results by Debreu and
Dierker to a regular economy demand functions or excess demand function
of which are locally Lipschitz. Here, we use Clarke’s concept of regularity to
define and study a ”regular economy” and our results can be applied to some
economies which may not be considered in [17] and [1].

The note is organized as follows. In Section 2, we recall concepts of Clarke’s
regular values, Sard’s theorem and Brower’s degree (motivated by Shannon’s
approach [17], we use the latter instead of index of fixed points). Section 3 is
devoted to the behaviour of a locally Lipschitz map around a Clarke’s regular
value. In the last section, we formulate results about equilibrium prices of a
regular economy with locally Lipschitz data.
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2. Clarke’s regular values, Sard’s theorem and Brower’s degree

Notations Let be given a normed space X. We denote by B and B(x, r)
the open unit ball of X and the open ball centered at x ∈ X with radius r,
respectively. For a nonempty set U ⊂ X, Ū and ∂U stand for the closure
and the boundary of U . Let Rn be the n-dimensional euclidean space and
Rn×p be the space of n × p-matrices equipped with the norm ∥(aij)∥Rn×p :=
(
∑n

i=1

∑p
j=1 a

2
ij)

1/2.

Let Ω ⊆ Rn be an open nonempty set and f = (f1, ..., fp) : Ω̄ → Rp

(n ≥ p) be a map. If each fi (and hence f) is locally Lipschitz on Ω, then
it follows from the Rademacher theorem that f is Fréchet differentiable (each
fi is Fréchet differentiable) a.e. on any neighborhood of x in Ω. The Fréchet
derivative f ′(x) coincides with the n×p-matrix of partial derivatives of f at x.
Clarke’s subdifferential of f at x ∈ Ω, denoted by ∂f(x), is the convex hull of
all n× p-matrices obtained as the limit of a sequence of the form f ′(xi) where
xi → x and f ′(xi) is defined

∂f(x) := clconv {v ∈ Rn×p : v = lim
xi→x,f ′(xi) exists

f ′(xi)}

[4, Definition 2.6.1]. The set ∂f(x) is nonempty compact convex for each x ∈ Ω.
We refer an interested reader to [4, Propositions 2.2.2, 2.2.4. 2.6.2] for other
properties of Clarke’s subdifferential.

Recall that a Clarke’s regular point of a locally Lipschitz map is a point
where all elements in Clarke’s subdifferential are onto [4] and a value is Clarke’s
regular if all pre-images are Clarke’s regular points. We provide some examples
illustrating that the set of Clarke’s regular values and the sets of Rader’s regular
values are not contained one in other. In what follows, a point is critical in
some sense if it is not regular in this sense and a value is critical in some sense
if there exists one preimage which is critical in this sense.

Example 2.1. (i) See [12, Proposition (1.9)]. LetM be a measurable subset
of R, which intersects every nonempty open interval I ⊂ R in a set of
positive measure 0 < mes(M ∩ I), and let g be the indicator function
of M . Let f : R → R be the continuous function defined on R by
f(x) :=

∫ x

0
g(t)dt. The function f is well-defined, strictly increasing, and

locally Lipschitz on R. The derivative of f is almost everywhere 0 or 1
and each value is achieved on a dense subset of R. Thus, ∂f(x) = [0, 1]
for all x ∈ R and f is nowhere C1.

Let h : R → R be the continuous function defined on R by h(x) :=
f(x) + x. Since ∂h(x) = [1, 2] for all x ∈ R, all values of h are Clarke’s
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regular. Meanwhile, since f ′(x) exists only a.e., not every value of h is
Rader’s regular.

(ii) Let f : R → R be the function defined by

f(x) =

{
x2 sin 1

x if x ̸= 0
0 if x = 0,

see [13, p.324]. This function is locally Lipschitz on R and

∂f(x) =

{
{2x sin 1

x − cos 1
x} if x ̸= 0

[−1, 1] if x = 0

Thus, f is C1 everywhere except at x = 0 (it has Fréchet derivative
f ′(0) = 0).

Let h : R → R be the continuous function defined on R by h(x) :=
f(x) + x. It is easy to see that h is locally Lipschitz on R,

∂h(x) =

{
{2x sin 1

x − cos 1
x + 1} if x ̸= 0

[0, 2] if x = 0

and the Fréchet derivative h′(0) = 1. Note that h−1(0) = {0}. Thus,
0 is a Rader’s regular value of h, but it is not a Clarke’s regular value.
Moreover, this map is not one-to-one in any neighborhood of zero. Note
that the function h is due to Andrew McLennan, see [17, p. 152] and [18,
p. 2756].

(iii) For the map f : R2 → R2 given by f(x, y) = (|x|+ y, 2x+ |y|), it holds

∂f(0, 0) =

{[
s 1
2 t

]
: |s| ≤ 1, |t| ≤ 1

}
,

see [4, Remarks 7.1.2.(iii)]). Since f−1(0, 0) = {(0, 0)} and for any A ∈
∂f(0, 0), we have detA ≤ −1, it follows that (0, 0) is a Clarke’s regular
value of f . Note that (0, 0) is not a Rader’s regular value because f is
not differentiable at (0, 0).

Classical Sard’s theorem [16] in the special case n = p states that the set of
critical value of a C1 map from Ω ⊆ Rn to Rn has the Lebesgues measure zero.
There have been obtained refinements of Sard’s theorem for the set of Rader’s
critical value of a continuous map [15, Lemma 2], for the set of Clarke’s critical
values of piecewise essentially smooth Lipschitz map [9, Theorem 3.2] and [10,
Theorem 4.1]. Recall that a continuous map f : Ω ⊆ Rn → Rp is said to be
essentially smooth if it is locally Lipschitz on Ω and is C1 a.e. on Ω [3, p.68]
and f is said to be piecewise essentially smooth Lipschitz if it is a continuous
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selection of a finite number of essentially smooth Lipschitz maps gi : Ω → Rp,
i ∈ I, I is a finite index set , i.e. f(x) ∈ {gi(x), i ∈ I}, ∀x ∈ Ω [10]. Essentially
smooth Lipschitz maps on an open subset of Rn form a broad linear space. In
particular, the demand functions considered in [1] are an example of essentially
smooth Lipschitz maps, see Proposition 3.1 in this paper.

We conclude this section with Brower’s degree. Let Ω ⊆ Rn be an open
set, f : Ω → Rn be a continuous map, U ⊂ Ω is an open bounded set such
that Ū ⊂ Ω and y ∈ Rn \ f(∂U). Brower’s degree of f on U at y, denoted by
d(f, U, y), is a function with values in Z satisfying some basic properties (see,
e.g., [6, p.5]). We recall here two properties that will be used later.

(1) (homotopy invariance) If h : [0, 1]× Ū → Rn is continuous, y : [0, 1] → Rn

is continuous, and y(t) /∈ h(t, ∂U) for every t ∈ [0, 1], then d(h(t, .), U, y(t))
is independent of t ∈ [0, 1].

(2) If A : Rn → Rn is a nonsingular matrix and A−1y ∈ U , then d(A,U, y) =
sign detA.

A classical result states that if f is a C1 map and y is a regular value of f ,
then

d(f, U, y) =
∑

x∈U,f(x)=y

sign detf ′(x).

This formula remains true in the case f is merely continuous and y is a Rader’s
regular value [17, Theorem 9]. When f is locally Lipschitz and y is a Clarke’s
regular value of f , Pourciau proved that the following equality holds [14, The-
orem 3.5]

(2.1) d(f, U, y) =
∑

x∈U,f(x)=y

sign det∂f(x),

where sign det∂f(x) := sign detA for any A ∈ ∂f(x) (it is known that in this
case, for each x ∈ f−1(y), one has detA ̸= 0 and sign detA ≡ constant for all
A ∈ ∂f(x) [14]). This formula will be used to prove that the set of equilibrium
prices

3. Behaviour of a locally Lipschitz map around a Clarke’s regular
value

Let us recall Shannon’s result on the behaviour of f around a Rader’s regular
value.
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Theorem 3.1. [17, Theorem 12] Suppose that Ω ⊂ Rn is an open bounded
set, f : Ω → Rn is a locally Lipschitz map, y is a Rader’s regular value of f
and d(f,Ω, y) ̸= 0. Then there exist x1, ..., xk in Ω and neighborhoods Wi of xi

for each i such that f−1(y) = {x1, ..., xk} and Wi ∩ f−1(y) = {xi}. Moreover,
there exist λ > 0 and a neighborhood V of y such that for all v ∈ V one has
Wi ∩ f−1(v) ̸= ∅ and if ui ∈ Wi ∩ f−1(v), then ∥ui − xi∥ ≤ λ∥v − y∥.

We will prove a result about the behaviour of f around a Clarke’s regular
value.

Theorem 3.2. Suppose that Ω ⊂ Rn is an open bounded set and a map f :
Ω̄ → Rn is locally Lipschitz on Ω and continuous on ∂Ω (the latter means that
if x ∈ ∂Ω and xi ∈ Ω, xi → x, then f(xi) → f(x)). Let y ∈ Rn \ f(∂Ω) be a
Clarke’s regular value of f . Then

(i) There exist x1, ..., xk in Ω, open neighborhoods Wi of xi and Vi of y, locally
Lipschitz maps gi : Vi → Wi (i = 1, ..., k) such that f−1(y) = {x1, ..., xk},
W̄i ∩ f−1(y) = {xi}, gi(y) = xi, and Wi and Vi are lipeomorphic by the
map f and gi (here, f

−1(y) := {x ∈ Ω̄ : f(x) = y}).

(ii) There exists a neighborhood V of y such that V ⊂ ∩k
i=1Vi and for all

v ∈ V , v is a Clarke’s regular value of f and the equation f(x) = v has
exact k solutions, namely, f−1(y) = {g1(v), ..., gk(v)}.

To prove Theorem 3.2, we need the inverse function theorem and some
auxiliary results.

Proposition 3.3. [4, Theorem 7.1.1] Suppose that Ω ⊂ Rn is an open set,
f : Ω → Rp is Lipschitz near x ∈ Ω. If ∂f(x) is of maximal rank, i.e., any
A ∈ ∂f(x) has the maximal rank, then there exist open neighborhoods U and V
of x and f(x), resp., and a Lipschitz map g : V → Rn such that g(f(u)) = u
for all u ∈ U and f(g(v)) = v for all v ∈ V .

Proposition 3.4. Suppose that Ω ⊂ Rn is an open set, f : Ω → Rn is Lips-
chitz near x ∈ Ω. If ∂f(x) is of the maximal rank, then there exists an open
neighborhood U of x such that for all u ∈ U , ∂f(u) is of the maximal rank, and

sign det ∂f(u) ≡ sign det ∂f(x),∀u ∈ U.

Proof. Since ∂f(x) is of the maximal rank, it follows from [14] that either
sign det ∂f(x) = −1 or sign det ∂f(x) = 1. This means that either sign detA =
−1 for all A ∈ ∂f(x) or sign detA = 1 for all A ∈ ∂f(x). Consider the first
case. The continuity of the function det(.) implies that for any A ∈ ∂f(x),
there exists δA > 0 such that detB = −1,∀B ∈ B(A, δA). It is clear that
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∂f(x) ⊂A∈∂f(x) B(A, δA/2). Since the set ∂f(x) is compact, there exists a
finite number of matrices, say A1, ..., Aq, such that

∂f(x) ⊂ ∪q
i=1B(Ai,

1

2
δAi).

Let ϵ := min{ 1
3δAi

, i = 1, .., q}. The upper-semicontinuity of the set-valued
map ∂F (.) implies the existence of a scalar δ > 0 such that

∂f(u) ⊆ ∂f(x) + ϵB, ∀u ∈ B(x, δ).

We show that U := B(x, δ) is the desired neighborhood. Indeed, take u ∈ U
and let T ∈ ∂f(u). Then we have

T ∈ ∂f(x) + ϵB ⊂ ∪q
i=1B(Ai,

1

2
δAi

) + ϵB.

Hence, T ∈ B(Ai,
1
2δAi

) + ϵB for some i ∈ {1, ..., q}. It follows that

T ∈ B(Ai,
5

6
δAi

) ⊂ B(Ai, δAi
)

and therefore, detT = −1. Thus, sign det ∂f(u) = −1 = sign det ∂f(x), as it
was to be shown. The second case can be considered similarly.

Proposition 3.5. Suppose that Ω ⊂ Rn is an open set, f : Ω → Rn is Lipschitz
near x ∈ Ω and y = f(x). If ∂f(x) is of the maximal rank, then there exists
an open neighborhood W of x such that f−1(y) ∩ W̄ = {x}.

Proof. Let U be an open neighborhood of x as in Proposition 3.4. Without
loss of generality, we may assume that the open ball B(x, r) with r sufficiently
small is included in U . We show that f−1(y) ∩ B(x, r) = {x} and therefore,
W := B(x, 1

2r) is the set with the desired property. Indeed, suppose to the
contrary that for some u ∈ B(x, r), u ̸= x one has f(u) = y. By Leburg’s mean
value theorem [4, Theorem 2.3.7], there exist t ∈ [x, u] =: {λx+ (1− λ)u : 0 ≤
λ ≤ 1} and A ∈ ∂f(t) such that f(u)−f(x) = A(u−x). Since t ∈ B(x, r) ⊂ U ,
∂f(t) is of maximal rank and A is therefore nonsingular. As f(x) = f(u) = y,
it follows that A(u− x) = 0. This is a contradiction because u− x ̸= 0 and A
is nonsingular.

We are ready to prove Theorem 3.2.

Proof. (i) First we show that f−1(y) is a compact subset of Ω. Let {xi}
be a sequence in Ω ∩ f−1(y) converging to some x ∈ Ω̄. As f(xi) = y, we get
f(x) = y. The assumption y /∈ f(∂Ω) implies x ∈ Ω. Thus, f−1(y) is a closed
subset of Ω. Since Ω is bounded, it follows that f−1(y) is a compact subset of
Ω.
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Next, we show that f−1(y) is a finite set. Let x ∈ f−1(y) be an arbitrary
point. Since y is a Clarke’s regular value of f , ∂f(x) is of maximal rank. The
inverse function theorem stated in Proposition 3.3 implies the existence of open
neighborhoods W̃ and Ṽ of x and y, resp., and a Lipschitz map g : Ṽ → Rn

such that W̃ ∩ f−1(y) = {x} and f and g are one-to-one and onto on W̃ and
Ṽ , resp. Thus, all points of the compact set f−1(y) are isolated. Hence, this
set consists of a finite number of points, say f−1(y) = {x1, ..., xk}.

By Propositions 3.4 and 3.5, we can find open neighborhoods Ui of xi for
each i = 1, ..., k such that for all u ∈ Ui, ∂f(u) is of the maximal rank and
Ūi ∩ f−1(y) = {xi}. Applying Proposition 3.3 we can find for each i = 1, ..., k
open neighborhoods Wi ⊆ Ui of xi, open neighborhoods Vi of y and locally
Lipschitz maps gi : Vi → Rn such that Wi and Vi are lipeomorphic by the map
f and gi, namely, gi(f(u)) = u for all u ∈ Wi and f(gi(v)) = v for all v ∈ Vi.

(ii) Let V := B(y, ρ) be an open ball such that B(y, ρ) ⊂ ∩k
i=1Vi and v ∈ V .

Then v ∈ Vi and for wi = gi(v) ∈ Wi one has f−1(v) ∩ Wi = {wi} for all
i = 1, ..., k. Thus, the equation f(x) = v has exactly k solutions wi on the set
∪k
i=1Wi and we claim that for ρ sufficiently small, this equation has no other

solution outside this set. Suppose to the contrary that one can find sequences
{vj} converging to y and {uj} such that f(uj) = vj and uj /∈ ∪k

i=1Wi for
all j = 1, 2, .... Since the sequence {uj} is bounded, we may assume that
it converges to some x and therefore, f(x) = y. On the other hand, since
uj /∈ ∪k

i=1Wi, we get x /∈ ∪k
i=1Wi and hence x /∈ f−1(y), a contradiction.

Finally, since Wi ⊂ Ui, it follows that ∂f(wi) is of the maximal rank for all
i = 1, ..., k and therefore, v is a Clarke’s regular value of f .

Remark 3.1. Let us provide some comments about applications of Theo-
rem 3.2 in the cases of Clarke’s regular values and Rader’s regular values.

(i) The assertion (ii) in Theorem 3.2 implies that the set of Clarke’s regular
values is open. In contrast, the set of Rader’s regular values may not be
open. To see this, let us consider the function h in Example 2.1 (ii). Note
that h−1(0) = {0}. Recall that ȳ = 0 is a Rader’s regular value but it is
not a Clarke’s regular value. Let xk = 1/(kπ) and yk := h(xk) = 1/(kπ).
Since h′(xk) = 0, yk is a Rader’s critical value. On the other hand, we
have yk → 0.

(ii) If y only is a Rader’s regular value, then it may happen that f−1(v) = ∅
for v near y and f may not be one-to-one in any neighborhood of y and
x ∈ f−1(y) (see the function h in Example 2.1(ii)).

(iii) Let f : Ω → R with Ω =] − 2, 2[ be the function given by f(x) = |x|
if |x| ≤ 1, f(x) = 2|x| − 1 if |x| > 1. Then each value y ̸= 0 is a
Clarke’s regular value of f , and one can apply Theorem 3.2 to study
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the equation f(x) = y. Meanwhile, although each y /∈ {0, 1} is a Rader’s
regular value of f , Theorem 3.1 cannot be applied because the assumption
d(f,Ω, y) ̸= 0 is not satisfied; in fact, we have d(f,Ω, y) ≡ 0.

4. Regular exchange economies

Our aim in this section is to extend Debreu’s and Dierker’s results about
equilibrium prices of an exchange economy to the case the demand functions
or the excess demand function are locally Lipschitz.

Let us first recall some concepts about an exchange economy, see for instance
[5] and [8]. Consider a pure exchange economy with l goods/commodities and
m consumers whose needs and preferences are fixed and whose resources vary
as in [5]. Let

P := {p ∈ Rl
++ :

l∑
i=1

pi = 1} andQ := {q = (p1, ..., pl−1) ∈ Rl−1
++ :

l−1∑
i=1

pi < 1}

be the price simplex and the open price simplex. Points of P and Q are
in one-to-one correspondence, and in what follows, we associate to a point
q = (p1, ..., pl−1) ∈ Q the point p = (p1, ..., pl) ∈ P with pl = 1−

∑l−1
i=1 pi.

It is convenient to specify the preferences of the ith consumer by his demand
function fi, fi : P ×R++ → Rl

+. Given the price vector p in P and his wealth
vi in R+, the ith consumer demands the commodity vector fi(p, vi) in Rl

+. The
demand functions are supposed to fulfill pfi(p, v)− v = 0 for any price-wealth
pair (p, v). The preferences of the ith consumer can also be represented by a
utility function ui : Rl

+ → R and the demand function fi is the solution of a
(maximizing) optimization problem with the objective map being the utility
function ui.

An economy E is defined by (f1, ..., fm, ω1, ..., ωm), an m-tuple (f1, ..., fm)
of demand functions, and an m-tuple ω = (ω1, ..., ωm) of initial endowment
vectors in Rlm

++ (each ωi ∈ Rl
++, i ∈ {1, ...,m}). Since the demand functions fi

are fixed, this economy is actually defined by ω ∈ Rlm
++ and we then denote it

by Eω. The space of economies is Rlm
++.

The economy E can also be characterized by an excess demand function η =
(η1, .., ηl) : P → Rl, which satisfies Walras’ Law pη(p) = 0. For our purpose,
we will use a function ϕ : Q → Rl−1 defined by ϕ(q) = (η1(p), .., ηl−1(p)) for
any q ∈ Q.

An element p in P is an equilibrium price vector (shortly, an equilibrium
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price) of the economy E if it is a zero of the excess demand function η, i.e.,

η(p) = 0

(and hence, a zero of the map ϕ). Given an initial endowment vector ω ∈ Rlm
++,

we say that p in P is an equilibrium price of the economy Eω if

m∑
i=1

fi(p, pωi) =

m∑
i=1

ωi.

It is clear that these definitions coincide when η is of the form η(p) =

m∑
i=1

(fi(p, pωi))−

ωi).

Denote by W (ω) the set of equilibrium prices of the economy Eω

W (ω) := {p ∈ P |
m∑
i=1

fi(p, pωi) =

m∑
i=1

ωi}.

Debreu proved [5, p.390] that W (ω) is nonempty for every ω ∈ Rlm
++ if

demand functions are continuous and satisfy the following desirability assump-
tion.

Assumption (A) [5] If the sequence {(pk, vk)}∞k=1 in P × R++ converges
to an element (p, v) in ∂P × R++, then limk→∞ ∥fi(pk, vk)∥ = +∞.

Assumption (A) expresses the idea that every commodity is desired by the
ith consumer and is satisfied provided each consumer has a strictly monotone
utility function, see [17].

Let us formulate the first result of this section, which is an application of
Theorem 3.2.

Theorem 4.1. Assume that the demand functions fi (i = 1, ...,m) are locally
Lipschitz and one function, say f1, satisfies Assumption (A).

(i) Assume that the economy Eω̄ is regular in the sense that ω̄ is a Clarke’s
regular value of the map F : U → Rlm defined as follows: for u =
(q, v, z2, ..., zm) ∈ U

F (u) = (f1(p, v) +

m∑
i=2

fi(p, p · zi)−
m∑
i=2

ωi, z2, ..., zm),

where U := Q × R++ × Rl(m−1)
++ . Then there are an open neighborhood

V of ω̄ and k locally Lipschitz functions g1, ..., gk from V to Q such
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that for every ω ∈ V , the set W (ω) consists of the k distinct elements
g1(ω), ..., gk(ω). The set of regular economies (i.e., the set of the endow-
ments ω which is a regular value of F ) is open in Rlm

++.

(ii) If the functions fi (i = 1, ...,m) are piecewise essentially smooth, then
the set of economies Eω with infinite equilibrium (i.e., the set of ω ∈ Rlm

++

for which W (ω) is infinite) has a Lebesgue measure zero.

Proof. We follow the scheme of the proof of [5, Theorem 1 and Remark,
p.390]. Observe that for a given endowment ω = (ω1, ..., ωm) ∈ Rlm

++, the
equality F (u) = ω is satisfied if and only if v = p · ω1, zi = ωi for i = 2, ...,m
and p ∈ W (ω). In other words,

p ∈ W (ω) ⇐⇒ F (q, pω1, ω2, ..., ωm) = ω.

Thus, points of W (ω) are in one-to-one correspondence with points of F−1(ω)
and one can deduce properties of the set W (ω) from the ones of the solution
sets of the equation F (u) = ω.

(i) First, we show that for any ω ∈ Rlm
++, the set F

−1(ω) is a compact subset
of U . Observe that U is an open subset of Rlm. Recall that

F−1(ω) = {(q, pω1, ω2, ..., ωm) ∈ U :

m∑
i=1

fi(p, pωi)−
m∑
i=1

ωi = 0}.

Note that F−1(ω) is bounded. We claim that F−1(ω) stays away from the
boundary of U . Suppose to the contrary that there exists a sequence {uj}
in F−1(ω), uj = (qj , pjω1, ω2, ..., ωm), such that uj → ũ ∈ ∂U . Then we have
ũ = (q̃, p̃ω1, ω2, ..., ωm). It is clear that (pj , pjω1) tends to (p̃, p̃ω1) ∈ ∂P×R++.
Since the function f1 satisfies Assumption (A), we get limj→∞ ∥f1(pj , pjω1)∥ =
∞. On the other hand, since f1(p

k, pkω1) =
∑m

i=1 ωi −
∑m

i=2 fi(p
k, pkωi) and

fi (i = 1, ...,m) take values in Rl
+, the sequence {∥f1(pk, pkω1)∥} is bounded.

This contradiction implies that ũ /∈ ∂U . Now, it is easy to see that F−1(ω) is
closed.

Next, since F−1(ω̄) is a compact subset of U , we can choose a scalar ρ > 0
such that F−1(ω̄) ⊂ ρB and ω̄ /∈ F (∂(U ∩ ρB). Theorem 3.2 implies the
existence of an open neighborhood V of ω̄ and k locally Lipschitz functions
ĝ1, ..., ĝk from V to U such that for every ω ∈ V , the set F−1(ω) consists of
the k distinct elements ĝ1(ω), ..., ĝk(ω). Denote by gi(ω) ∈ Q the coordinate
of ĝi(ω) which corresponds to the variable belonging to Q. One can easily see
that gi(ω), i = 1, .., k are the desired locally Lipschitz functions.

Theorem 3.2 also implies that the set of regular economies is open in Rlm
++.

(ii) Since the functions fi (i = 1, ...,m) are piecewise essentially smooth, so
is the map F . The version of Sard’s theorem for a piecewise essentially smooth
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map [10, Theorem 4.1] implies that the set of critical values of F has a Lebesgue
measure zero. As the set W (ω) is infinite if and only if ω is a Clarke’s critical
value of the map F (see the assertion (i)), it follows that the set of ω ∈ Rlm

++

for which W (ω) is infinite has a Lebesgue measure zero.

Next, we show that a regular economy with a locally Lipschitz excess de-
mand function has an odd number of equilibrium prices. The definition of a
regular economy is motivated by the one introduced by Dierker in [7].

Theorem 4.2. Assume that the excess demand function η is locally Lipschitz
and satisfies the following desirability assumption

Assumption (D) [7] If the sequence {qk}∞k=1 in Q converges to an element
q in ∂Q, then there exists an h ∈ {1, .., l} such that {pkh} (pkh is the h-th
coordinate of pk) converges to zero and limk→∞ηh(p

k) = +∞.

If the economy E is regular in the sense that zero is a Clarke’s regular point
of ϕ, then it has an odd number of equilibrium prices.

Note that this definition of a regular economy is independent of the order
in which the commodities are indexed.

Proof. Our proof is motivated by the ones for [7, Theorem 1] and [17,
Theorem 15]. Recall that ϕ : Q → Rl−1 is the map defined by ϕ(q) =
(η1(p), ..., ηl−1(p)). Let g : Q → Rl−1 be the map defined by g(q) = 1

l el−1 − q,
where el−1 is the vector in Rl−1 with all components being 1. For any t ∈ [0, 1],
we define a map Ht : Q → Rl−1 by

Ht(q) = (1− t)ϕ(q) + tg(q).

Denote
S := {q ∈ Q : ∃t ∈ [0, 1] such that Ht(q) = 0}.

We claim that S is a compact subset ofQ. Since S is bounded, it suffices to show
that S stays away from the boundary of Q. Suppose to the contrary that there
exists a sequence {qk} in Q converging to q̄ ∈ ∂Q. By Assumption (D), there
exists an h ∈ {1, ..., l} such that {pkh} tends to zero and limk→∞ηh(p

k) = ∞.
Then for any integer N sufficiently large, we have

(4.1)
1

l
− pNh > 0 and ηh(p

N ) > 0

(here and in what follows, N stands for an index and not for a power). Recall
that since qN ∈ S, there exists tN ∈ [0, 1] such that (1−tN )ϕ(qN )+tNg(qN ) = 0
or equivalently,

(4.2) (1− tN )ηj(p
N ) + tN (

1

l
− pNj ) = 0, ∀j ∈ {1, ..., l − 1}.
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If h ∈ {1, ..., l − 1}, the inequalities in (4.1) imply

(1− tN )ηh(p
N ) + tN (

1

l
− pNh ) > 0,

which is a contradiction to (4.2).

Next, assume that h = l. In this case we have
∑l−1

j=1 p̄j = 1 and p̄l =

0. Multiplying j-th equality in (4.2) with pNj for each j = 1, ..., l − 1 and
summarizing from j = 1 up to j = l − 1, we get

(1− tN )

l−1∑
j=1

pNj ηj(p
N ) + tN

l−1∑
j=1

pNj (
1

l
− pNj ) = 0.

By Walras’ Law, we have
∑l−1

j=1 p
N
j ηj(p

N ) = −pNl ηl(p
N ). Hence,

(4.3) −(1− tN )pNl ηl(p
N ) + tN

l−1∑
j=1

pNj (
1

l
− pNj ) = 0.

It follows from the equalities

min
pj>0,

∑l−1
j=1 pj=1

l−1∑
j=1

(pj)
2 =

1

l − 1

(see [17, p.162]) and
∑l−1

j=1 p̄j = 1 that

l−1∑
j=1

p̄j(
1

l
− p̄j) =

1

l
−

l−1∑
j=1

(p̄j)
2 ≤ 1

l
− 1

l − 1
= − 1

l(l − 1)
< 0.

Since
∑l−1

j=1 p
k
j (

1
l − pkj ) converges to

∑l−1
j=1 p̄j(

1
l − p̄j), we may assume without

lost of generality that for this sufficiently large N it holds

(4.4)

l−1∑
j=1

pNj (
1

l
− pNj ) < 0.

Since qN ∈ Q, we have pNl > 0. Note that the second inequality in (4.1) in the
case h = l has the form ηl(p

N ) > 0. Therefore,

(4.5) pNl ηl(p
N ) > 0.

Now, we get a contradiction because if tN = 0, then (4.3) and (4.5) imply
0 = −pNl ηl(p

N ) < 0 and if tN ̸= 0, then (4.3) - (4.5) imply 0 = −(1 −
tN )pNl ηl(p

N ) + tN
∑l−1

j=1 p
N
j ( 1l − pNj ) < 0.
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Since S is a compact subset of Q, we can find an open bounded set U ⊂ Q
such that Ū ⊂ Q, S ⊂ U and 0 /∈ H−1

t (∂U) for all t ∈ [0, 1]. By the homotopy
invariance, we get d(ϕ,U , 0) = d(g,U , 0). Since det g′(q) = (−1)l−1 for all
q ∈ Q, we get d(g,U , 0) = (−1)l−1. Therefore, d(ϕ,U , 0) = (−1)l−1. On the
other hand, since the set of zeros of ϕ in Q is contained in S and 0 is a Clarke’s
regular value of ϕ, Theorem 3.2 implies that this set consists of k vectors uj

with uj ∈ U for j = 1, ..., k. Applying (2.1), we get

d(ϕ,U , 0) =
k∑

j=1

sign det∂ϕ(uj).

As d(ϕ,U , 0) = (−1)l−1, it follows that k is an odd number. Since p is an
equilibrium price of E iff q is a zero of ϕ, the economy E has an odd number of
equilibrium prices.

Remark 4.1. (a) Recall that there are values which are regular in the
sense of Clarke but not in the sense of Rader (see Example 2.1). Hence,
Theorems 4.1 and 4.2 can be applied to some economies that may not be
not considered in [17] and [1].

(b) In this note, we consider a locally Lipschitz economy, which is a case much
simpler than the ones with definable or semi-algebraic economy studied
in [2] and [11]. This allows us to have simple proofs with direct use of
generalization of classical results such as inverse function theorem, Sard’s
theorem and Brower’s degree.
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