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Abstract. Let IK be a complete ultrametric algebraically closed field and
let f be an entire function in IK whose order of growth is finite. We show
that the type of growth is finite if and only if so is the cotype. We give
bounds for the cotype of growth and also for the lower cotype of growth.
We show that the type of growth of f is equal to its lower type if and only
if its cotype is equal to its lower cotype and when these are realised, then
the cotype is the product of the type by the order of growth and the order
of growth (if > 0), is then equal to the lower order of growth.
If an entire function h has an order of growth strictly inferior to the lower
order of an entire function f , then h is a small function with respect to f .
A similar comparison is made with the type of growth. Conversely, if h is
a small function with respect to f , then f+h and f have same order, same
type and same cotype of growth. Links are showed with the Nevanlinna
Theory.
Suppose that IK is of characteristic 0. Given a meromorphic function f =
g
h
, if f admits primitives and if the type or the cotype of h is finite, then

f assumes all values infinitely many times.
A counter-example is constructed where the lower order of growth is equal
to the order of growth but the lower type of growth is not equal to the
type of growth and where the the cotype is not equal to the product of the
type by the order of growth.
In complex analysis, a claim was made for complex meromorphic functions
stating that if the lower order of growth equals the order, then the lower
type equals the type but we contest the proof.

I. Introduction and main results

Notations and definitions: Let IK be a complete ultrametric algebraically
closed field whose absolute value is denoted | . | and let |IK| = { |x|, x ∈ IK}.
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Given r > 0, we denote by d(0, r) the disk {x ∈ IK | |x| ≤ r}, by d(0, r−) the
disk {x ∈ IK | |x| < r} and by C(0, r) the circle {x ∈ IK | |x| = r} .

Let A(IK) be the IK-algebra of entire functions with coefficients in IK and

let M(IK) be the field of meromorphic functions
g

h
, g, h ∈ A(IK).

Let f ∈ M(IK). For each r > 0, |f(x)| is known to have a limit |f |(r) when
|x| tends to r while being different from r and then |f |(r) = sup{|f(x)| | |x| ≤ r}
[6], [8].

We denote by s(r, f) the number of zeros of f in d(0, r), each counted with
its multiplicity and we denote by t(r, f) the number of poles of f in d(0, r),
each counted with its multiplicity.

We denote by Log the Neperian logarithm and by e the number such that
Log(e) = 1. Let f ∈ A(IK). As in complex analysis [11], we define

ρ(f) = lim sup
r→+∞

Log(Log(|f |(r)|))
Log(r)

,

ρ̃(f) = lim inf
r→+∞

Log(Log(|f |(r)|))
Log(r)

and if 0 < ρ(f) < +∞, we put

σ(f, r) =
Log(|f |(r)
rρ(f)

,

σ(f) = lim sup
r→+∞

σ(f, r),

σ̃(f) = lim inf
r→+∞

σ(f, r),

Moreover, assuming again 0 < ρ(f) < +∞, here we put ψ(f, r) =
s(r, f)

rρ(f)
,

ψ(f) = lim sup
r→+∞

s(r, f)

rρ(f)
,

and ψ̃(f) = lim inf
r→+∞

s(r, f)

rρ(f)
.

ρ(f) is called the order of growth, ρ̃(f) is called the lower order of growth, σ(f)
is called the type of growth, σ̃(f) is called the lower type of growth, ψ(f) is

called the cotype of growth, ψ̃(f) is called the lower cotype of growth.

A value b ∈ |IK| is called a quasi-exceptional value of a meromorphic func-
tion f ∈ M(IK) if f − b has finitely many zeros.

Theorem 1 is easy:

Theorem 1: Let f, g ∈ A(IK). Then ρ(fg) = max(ρ(f), ρ(g)) and ρ(fn) =
ρ(f) ∀n ∈ IN. Moreover ρ(f + g) ≤ max(ρ(f), ρ(g)).
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Corollary 1.1: The set of functions f ∈ A(IK) of order ≤ t is a multiplicative
semi-group and (adding 0), an additive group.

We will now state the following Theorem 2:

Theorem 2: Let f ∈ A(IK) be such that 0 < ρ(f) < +∞. Then σ(f) < +∞
if anf only if ψ(f) < +∞. Suppose that these hypotheses are satisfied. Then

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
and

ρ(f)
(
σ̃(f)− σ(f)

e

)
≤ ψ̃(f) ≤ ρ(f)σ̃(f).

Further, the hypotheses σ(f) = σ̃(f) and ψ(f) = ψ̃(f) are equivalent and if
they are satisfied, then ψ(f) = ρ(f)σ(f).

Definition: A function f ∈ A(IK) is said to be regular if ρ(f) = ρ̃(f) [11]
and f is said to be clean if 0 < ρ(f) < +∞ and σ(f) = σ̃(f).

Corollary 2.1: Let f ∈ A(IK) be clean. Then ψ(f) = ρ(f)σ(f).

Remark 1: In [3] as in [6], it was proved that ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)−

σ̃(f)
)
and that each hypothesis

a) σ(f) = σ̃(f) ,

b) ψ(f) = ψ̃(f),

implies ψ(f) = ρ(f)σ(f), but it was not proved that the two hypotheses are
equivalent.

Remark 2: The equality ψ(f) = ρ(f)σ(f) holds because σ(f, r) was defined
with help of the Neperian logarithm.

Let us recall here the following Theorem A from [9] and [3]:

Theorem A: Let f(x) =

∞∑
n=0

bnx
n ∈ A(IK) be such that 0 < ρ(f) < +∞.

Then eσ(f)ρ(f) = lim sup
n→+∞

(
n n

√
|bn|ρ(f)

)
.

Now Corollary 2.2 is an immediate consequence of Theorem 2 and Theorem A:
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Corollary 2.2: Let f(x) =

∞∑
n=0

bnx
n ∈ A(IK) be such that 0 < ρ(f) < +∞.

Then

ρ(f)σ(f) ≤ ψ(f) ≤ lim sup
n→+∞

(
n n

√
|bn|ρ(f)

)
− ρ(f)σ̃(f)

and if f is clean, then

eψ(f) =
lim supn→+∞

(
n n
√
|bn|ρ(f)

)
ρ(f)

.

Theorem 3: Let f, g ∈ A(IK) be such that ρ(g) ≤ ρ(f) < +∞ and
max(σ(f), σ(g)) < +∞. Then, σ(fg) ≤ σ(f) + σ(g). If ρ(f) > ρ(g) then
σ(fg) = σ(f). If f is clean and such that ρ(f) > ρ(g), then fg is clean. If f
and g are clean and if ρ(f) = ρ(g), then fg is clean, and σ(fg) = σ(f) + σ(g)
and ψ(fg) = ψ(f) + ψ(g).

Corollary 3.1: The set of clean functions f ∈ A(IK) is a multiplicative semi-
group. The set C(t, .) of clean functions f ∈ A(IK) of order t is a submulti-
plicative semi-group and σ and ψ are semi-group morphisms from C(t, .) into
(IR+,+).

Corollary 2.1 suggests a question:

Question 1: Let f(x) =

∞∑
n=0

bnx
n ∈ A(IK) be such that 0 < ρ(f) < +∞.

Do we have

ρ(f)σ(f) = ψ(f) =
lim supn→+∞

(
n n
√
|bn|ρ(f)

)
e

when f is not clean? The answer is presented through a counter-example at
the end of the article.

Theorem 4 is easy:

Theorem 4: Let f ∈ A(IK) be such that 0 < ρ(f) < +∞ and σ̃(f) > 0.
Then f is regular.

Corollary 4.1: Let f ∈ A(IK) be clean, such that 0 < ρ(f) < +∞ and
σ(f) > 0. Then f is regular.

Now, from Theorem 2, we will deduce the following Theorem 5:
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Theorem 5: Suppose that IK is of characteristic 0. Let f ∈ M(IK) \ IK(x),

admitting primitives, be of the form
g

h
with g, h ∈ A(IK) and be such that

0 < ρ(h) < +∞ and ψ(h) < +∞. Then f has no quasi-exceptional value.

By Theorem 2 we deduce immediately this corollary:

Corollary 5.1: Suppose that IK is of characteristic 0. Let f ∈ M(IK)\IK(x),

admitting primitives, be of the form
g

h
with g, h ∈ A(IK) and be such that

0 < ρ(h) < +∞ and σ(h) < +∞. Then f has no quasi-exceptional value.

Corollary 5.2: Suppose that IK is of characteristic 0. Let f ∈ M(IK)\IK(x),
be of the form g

h with g, h ∈ A(IK) and be such that 0 < ρ(h) < +∞ and
σ(h) < +∞. If f has a quasi-exceptional value, then it has a non-zero residue.

Corollary 5.3: Suppose that IK is of characteristic 0. Let f ∈ M(IK)\IK(x),

be of the form
g

h
with g, h ∈ A(IK) and be such that 0 < ρ(h) < +∞ and

σ(h) < +∞. Then f ′ has no quasi-exceptional value.

Let us recall the definition of small functions, applied to entire functions.

Definition: Let f, h ∈ A(IK). The function h is said to be a small function

with respect to f if lim
r→+∞

Log(|h|(r))
Log(|f |(r))

= 0. (A more general definition is given

for meromorphic functions that we will not use here.)

Given three functions f, g, h ∈ A(IK), f and g are said to share h, ignoring
multiplicity, if the equalityf(x) = h(x) is equivalent to the equality g(x) = h(x).

Now we can state Theorem 6:

Theorem 6: Let f, h ∈ A(IK) be such that 0 < ρ(f) < +∞ and ρ(h) < ρ̃(f).
Then h is a small function with respect to f .

Corollary 6.1: Let f, h ∈ A(IK), be such that f is regular and 0 < ρ(f) <
+∞ and ρ(h) < ρ(f). Then h is a small function with respect to f .

Theorem 7: Let f, h ∈ A(IK) be such that ρ(h) = ρ(f), 0 < ρ(f) < +∞
and σ(h) = 0 < σ̃(f). Then h is a small function with respect to f .

Corollary 7.1: Let f, h ∈ A(IK) be such that ρ(h) = ρ(f) and such that
0 < ρ(f) < +∞. If f is clean, and if σ(h) = 0 < σ(f), then h is a small
function with respect to f .
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Moreover, we notice that when r is big enough, in each disk d(0, r), the
number of zeros of f + h equals this of f , therefore ψ(f + h) = ψ(f).

In [5] the following Theorem B was given and it will be useful now. It is
also a consequence of results of [10].

Theorem B: Suppose that IK is of characteristic 0. Let f, g ∈ A(IK) share
3 small functions h1, h2, h3 ∈ A(IK), ignoring multiplicity. Then f = g.

Now Corollary 7.2 is an immediate consequence of Theorem 6 and Theorem
B.

Corollary 7.2: Suppose that IK is of characteristic 0. Let f, g ∈ A(IK)
share h1, h2, h3 ∈ A(IK), ignoring multiplicity, such that max1≤j≤3(ρ(hj)) <
min(ρ̃(f), ρ̃(g)). Then f = g.

And by Theorem 7, we have Corollary 7.3:

Corollary 7.3: Suppose that IK is of characteristic 0. Let f, g ∈ A(IK) share
h1, h2, h3 ∈ A(IK), ignoring multiplicity, such that ρ(hj) = ρ(f) = ρ(g), j =
1, 2, 3, σ(hj) = 0, j = 1, 2, 3 and 0 < min(σ̃(f), σ̃(g)). Then f = g.

Corollary 7.4: Suppose that IK is of characteristic 0. Let f, g ∈ A(IK) be
clean and share h1, h2, h3 ∈ A(IK), ignoring multiplicity, such that ρ(hj) =
ρ(f) = ρ(g), j = 1, 2, 3, σ(hj) = 0, j = 1, 2, 3 and 0 < min(σ(f), σ(g)). Then
f = g.

Theorem 8: Suppose that IK is of characteristic 0. Let f ∈ A(IK) and
let h ∈ A(IK) satisfy, for a certain R > 0, |h|(r) < |f |(r) ∀r > R. Then
ρ(f + h) = ρ(f), σ(f + h) = σ(f) and ψ(f + h) = ψ(f).

Corollary 8.1: Suppose that IK is of characteristic 0. Let f ∈ A(IK) and
let h ∈ A(IK) be a small function with respect to f . Then ρ(f + h) = ρ(f),
σ(f + h) = σ(f) and ψ(f + h) = ψ(f).

Theorem 9: Suppose that IK is of characteristic 0. Let f ∈ A(IK) be such
that 0 < ρ(f) < +∞. Then ρ(f ′) = ρ(f), σ(f ′) = σ(f). Moreover, if f is
clean, then ψ(f ′) ≥ ψ(f) and if f ′ is clean, then ψ(f ′) ≤ ψ(f).

Corollary 9.1: Suppose that IK is of characteristic 0. Let f ∈ A(IK) be such
that 0 < ρ(f) < +∞. If f and f ′ are clean, then ψ(f ′) = ψ(f).
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By Theorem 9, we can immediately derive Question 2:

Question 2: Suppose that IK is of characteristic 0. Let f ∈ A(IK) be such
that 0 < ρ(f) < +∞. Do we have ψ(f ′) = ψ(f)?

In [3], the first statement of Theorem C is proved.The second statement is
easy:

Theorem C: Suppose that IK has residue characteristic 0. Then for every
f ∈ A(IK) such that 0 < ρ(f) < +∞, we have ψ(f ′) = ψ(f). Moreover, if f is
clean, so is f ′.

Question 2, in the general case, then seems natural, as suggested in [2] and
[3]. However, by Theorems 2 and 7, we can write Corollary 9.2:

Corollary 9.2: Suppose that IK is of characteristic 0. Let f ∈ A(IK) be such
that 0 < ρ(f) < +∞. Then,

|ψ(f)− ψ(f ′)|∞ ≤ ρ(f)[(e− 1)σ(f)− σ̃(f)].

In order to prove Theorem 10, we need to recall the second Main Nevanlinna
Theorem for p-adic entire functions (for example Theorem C.4.24 in [6]) and
first, we will need the counter functions of zeros for an entire function.

Here we will choose a presentation that avoids assuming that all functions
we consider admit no zero and no pole at the origin.

Question 3: If an entire function f ∈ A(IK) is clean, is f ′ clean too?

Definitions: Let f ∈ A(IK). We denote by Z(r, f) the counting function of
zeros of f in d(0, r) defined in the following way.

Let ω0(f) be the order of multiplicity of 0 if it is a zero of f and let ω0(f) = 0
else.

Let (an), (1 ≤ n ≤ q(r)) be the finite sequence of zeros of f such that
0 < |an| ≤ r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0)Logr+

q(r)∑
n=1

sn(Logr − Log|an|) and so, Z(r, f)

is called the counting function of zeros of f in d(0, r), counting multiplicity.

In order to define the counting function of zeros of f ignoring multiplicity,
we put ω0(f) = 0 if ω0(f) = 0 and ω0(f) = 1 if ω0(f) ≥ 1.
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Now, we denote by Z(r, f) the counting function of zeros of f ignoring
multiplicity:

Z(r, f) = ω0(f)Logr+

q(r)∑
n=1

(Logr − Log|an|) and so, Z(r, f) is called the count-

ing function of zeros of f in d(0, r) ignoring multiplicity.

And we denote by Z0(f ′, r) the counting function of the zeros of f ′ that are
zeros of f − an for any n ≤ q(r).

Theorem N: Suppose that IK is of characteristic 0. Let f ∈ A(IK) and let
a1, ..., aq ∈ IK. Then

(q − 1)Log(|f |(r)) ≤
q∑

i=1

Z(r, f − ai)− Z0(f ′, r)− Log(r) +O(1).

Theorem 10: Suppose that IK is of characteristic 0. Let f ∈ A(IK) be such
that 0 < ρ(f) < +∞ and let a1, ..., aq ∈ IK. Then

(q − 1)σ(f) ≤ lim sup
r→+∞

( 1

rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)
.

Corollary 10.1: Suppose that IK is of characteristic 0 and let f ∈ A(IK) be
clean. Let a1, ..., aq ∈ IK. Then

(q − 1)σ(f) ≤ lim inf
r→+∞

( 1

rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)

and

(q − 1)ψ(f) ≤ lim inf
r→+∞

( ρ(f)
rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)
.

We will now answer the question 1.

Theorem 11: Suppose that IK is of characteristic 0. There exist regular
non-clean functions f ∈ A(IK) such that ψ(f) > ρ(f)σ(f).
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II. Proofs of theorems

Proof. of Theorem 1: All conclusions are easy except that ρ(fg) = max(ρ(f), ρ(g)).
It is clear that ρ(fg) ≥ max(ρ(f), ρ(g)), since |fg|(r) = |f |(r)|g|(r). Now, let
t = max(ρ(f), ρ(g). Then there exists a function ω defined in IR+, of limit 0 at

∞, such that Log(Log(|f |(r)))
Log(r) ≤ t+ ω(r) and Log(Log(|g|(r)))

Log(r) ≤ t+ ω(r). Hence,

we have
Log(|f |(r)) ≤ rt+ω(r), Log(|g|(r)) ≤ rt+ω(r)

hence
Log(|f |(r)) + Log(|g|(r)) ≤ 2rt+ω(r)

therefore

Log
(
Log(|f |(r)) + Log(g|(r))

)
≤ Log(2) + (t+ ω(r))Log(r)

hence,

Log
(
Log(|f |(r)) + Log(g|(r))

)
≤ Log(2) + (t+ ω(r))Log(r)

hence
Log(Log(|f |(r).|g|(r)))

Log(r)
≤ Log(2)

Log(r)
+ t+ ω(r)

and hence

lim sup
r→+∞

Log(Log(|f |(r).|g|(r)))
Log(r)

≤ t.

Consequently, ρ(fg) ≤ max(ρ(f), ρ(g)), which ends the proof.

In the proof of Theorem 2, we will use the following Lemma 1 that is classical
[6]:

Lemma 1: Let f(x) ∈ A(IK)) be such that f(0) ̸= 0, let r ∈]0, R[ and let
aj , 1 ≤ j ≤ q be the zeros of f in d(0, r), of respective multiplicity mj. Then

Log(|(f |(r)) = Log(|f(0)|) +
q∑

j=1

mj(Log(r)− Log|aj |).

Proof. of Theorem 2: Without loss of generality we can assume that
f(0) = 1. Let u = ρ(f). Let (an)n∈IN be the sequence of zeros of f with
|an| ≤ |an+1|, n ∈ IN and for each n ∈ IN, let wn be the multiplicity order of
an. For every r > 0, let k(r) be the integer such that |an| ≤ r ∀n ≤ k(r)
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and |an| > r ∀n > k(r). Then by Lemma 1, Log(|f |(r)) is of the form
k(r)∑
n=0

wn(Log(r)− Log(|an|)) hence, we have σ(f, r) =
∑k(r)

n=0 wn(Log(r)− Log(|an|))
rρ(f)

.

In the same way, for any r > 0 and n ∈ IN, we put cn = |an|, ψ(f, r) =
s(r, f)

rρ(f)
.

We first show the inequality ρ(f)σ(f) ≤ ψ(f). By definition of σ(f, r) we
can derive

σ(f, r) =

k(re−α)∑
n=0

wn

(
Log(r)− Log(re−α)

)
ru

+

k(re−α)∑
n=0

wn

(
Log(re−α)− Log(cn)

)
ru

+
∑

k(re−α)<n≤k(r)

wn(Log(r)− Log(cn)

ru
,

hence

σ(f, r) ≤
k(re−α)∑
n=0

wn

(
Log(r)− Log(re−α)

)
ru

+

k(re−α)∑
n=0

wn

(
Log(re−α)− Log(cn)

)
ru

+ α
∑

k(re−α)<n≤k(r)

wn

ru
,

because Log(r)− Log(cn) ≤ α ∀n ∈ [k(re−α), k(r)] ∩ IN. Consequently,

σ(f, r) ≤ α

k(re−α)∑
n=0

wn

ru
+

k(re−α)∑
n=0

wn

(
Log(re−α)− Log(cn)

)
ru

+α
∑

k(re−α)<n≤k(r)

wn

ru

therefore

σ(f, r) ≤ α

k(r)∑
n=0

wn

ru
+

k(re−α)∑
n=0

wn

(
Log(re−α)− Log(cn)

)
ru

hence

σ(f, r) ≤ e−uα

k(re−α)∑
n=0

wn(Log(re
−α)− Log(cn))

(re−α)u
+ α

∑
0≤n≤k(r)

wn

ru
.
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Thus we have

(1) σ(f, r) ≤ e−uασ(f, re−α) + αψ(f, r).

Suppose first that σ(f) < +∞. We check that we can pass to supe-
rior limits on both sides, so we obtain σ(f) ≤ e−uασ(f) + αψ(f) therefore

σ(f)
(1− e−uα)

α
≤ ψ(f). That holds for every α > 0, hence by de l’Hopital’s

theorem, we can derive

(2) ψ(f) ≥ ρ(f)σ(f).

Now by (1), we have

σ(f, r)(1− e−uα) ≤ αψ((r, f),

hence passing to inferior limits on both sides, we deduce

σ̃(f)− e−uασ(f)

α
≤ ψ̃(f)

hence
u(σ̃(f)− e−uασ(f))

uα
≤ ψ̃(f)

therefore when αu = 1, we obtain

(3) ρ(f)(σ̃(f)− σ(f)

e
) ≤ ψ̃(f).

We will now show the inequality

ψ(f) ≤ ρ(f)(eσ(f)− σ̃(f)).

Let us fix α > 0. We can write

σ(f, r) =

k(re−α)∑
n=0

wn(Log(r)− Log(re−α))

ru

+

k(re−α)∑
j=0

wj(Log(re
−α)− Log(cn))

ru
+

∑
k(re−α)<j≤k(r)

wj(Log(r)− Log(cj))

ru

hence

σ(f, r) ≥ α

k(re−α)∑
n=0

wn

ru
+

k(re−α)∑
j=0

wj(Log(re
−α)− Log(cn))

ru
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hence

(4) σ(f, r) ≥ αe−uα

k(re−α)∑
n=0

wn

(re−α)u
+ e−uα

k(re−α)∑
j=0

wn(Log(re
−α)− Log(cn))

(re−α)u

and hence

(5) σ(f, r) ≥ αe−uαψ(f, re−α) + e−uασ(f, re−α).

Therefore, we can deduce

αe−uαψ(f) ≤ lim sup
r→+∞

(
σ(f, r)− e−uασ(f, re−α))

)
and therefore

(6) αe−uαψ(f) ≤ σ(f)− e−uασ̃(f)).

That holds for every α > 0 and hence, when uα = 1, by (6) we obtain

(7) ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
which is the left hand inequality of the general conclusion.

Particularly, we notice that when σ(f) < +∞, then ψ(f) < +∞. Now, on

(4) we can also take the inferior limit on both sides and we deduce

σ̃(f) ≥ αe−uαψ̃(f) + e−uασ̃(f)

therefore
αe−uαψ̃(f) ≤ σ̃(f)(1− e−uα).

Then when uα tends to 0 we have

(8) ψ̃(f) ≤ ρ(f)σ̃(f).

Now, suppose that σ(f) = +∞. We can find an increasing sequence rn of
limit +∞ such that

σ(f, rn) = sup{σ(f, r) | r ≤ rn}, n ∈ IN. Consider (1) when min(α, uα) > 1.
Then σ(f, rne

−α) < σ(f, r)n, hence of course

(1− e−uα)σ(f, rne
−α) ≤ (1− e−uα)σ(f, rn)

and hence σ(f, rn) − e−uασ(f, rne
−α) ≥ (1 − e−uα)σ(f, rn), therefore (1 −

e−uα)σ(f, rn) ≤ ψ(f, rn), which proves that ψ(f) = +∞.
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Thus, σ(f) < +∞ is equivalent to ψ(f) < +∞. Consequently, Relations
(2), (3), (5), (7), (8) still apply and hence hold as soon as σ(f) < +∞ or
ψ(f) < +∞.

Now suppose that ψ̃(f) = ψ(f). Then we have

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)σ̃(f)

therefore σ(f) = σ̃(f), since ρ(f) > 0.

Conversely, suppose that σ(f) = σ̃(f). Then by (6) we have

ψ(f) ≤ σ(f)
(euα − 1

α

)
.

That holds for every α > 0 and then, ψ(f) ≤ uσ(f), i.e. ψ(f) ≤ ρ(f)σ(f),
hence by (2) we have, ψ(f) = ρ(f)σ(f).

But now, by (1), we see that

αψ(f, r) ≥ σ(f, r)− e−uασ(f, re−α)

hence, passing to the inferior limit,

αψ̃(f) ≥ σ(f)(1− e−uα) ∀α > 0

therefore ψ̃(f) ≥ ρ(f)σ(f). But we just showed that ψ(f) = ρ(f)σ(f), hence

ψ̃(f) = ψ(f).

Proof of Theorem 3 Let s = ρ(f) ≥ t = ρ(g). Then ρ(fg) = s, hence

σ(fg) = lim sup
r→+∞

Log(|fg|(r))
rs

= lim sup
r→+∞

Log(|f |(r).|g|(r))
rs

.

Now, if s > t, then

σ(fg) = lim sup
r→+∞

(Log(|f |(r))
rs

+
Log(|g|(r))

rs

)
≤ lim sup

r→+∞

Log(|f |(r))
rs

+ lim sup
r→+∞

Log(|g|(r))
rt

= σ(f) + σ(g).

Then we notice that when t < s, we have

lim sup
r→+∞

Log(|fg|(r))
rs

= lim sup
r→+∞

Log(|f |(r))
rs

= σ(f)

Particularly, if f is clean we have limits instead of limitsup as long as f is
concerned. Consequently, if t < s, then fg is clean.
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Now, suppose that f and g are clean and that s = t. Then

lim sup
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= lim
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= σ(f) + σ(g).

Thus fg is clean. And by Theorem 1 and Theorem 2, we have ψ(fg) =
ρ(fg)σ(fg) = ρ(f)(σ(f) + σ(g)) = ψ(f) + ψ(g).

Remark: A similar proof applies to complex entire functions.

Proof of Theorem 4. By hypothesis, there exist a > 0 and R > 0 such that
Log(|f |(r))

rρ(f)
≥ a ∀r ≥ R hence Log(Log(|f |(r))) ≥ Log(a)+ρ(f)Log(r) ∀r ≥ R

therefore
Log(Log(|f |(r)))

Log(r)
≥ Log(a)

Log(r)
+ ρ(f) ∀r ≥ R

and hence ρ̃(f) ≥ ρ(f) i.e. ρ̃(f) = ρ(f).

In order to prove Theorem 5, we must recall the following Theorem D which
is Theorem 1 in [1] and Corollary D.1 which is Theorem 4 in [7] and derives
from Theorem D.

Theorem D: Suppose that IK is of characteristic 0. Let f ∈ M(IK) be
transcendental, admitting a primitive F . If there there exists c > 0 and u > 0
such that the number of multiple poles of F , taking multiplicity into account,
ϕ(r, F ), satisfy ϕ(r, F ) ≤ cru, then f has no quasi-exceptional value.

Corollary D.1: Suppose that IK is of characteristic 0. Let f ∈ M(IK) be
transcendental, admitting primtiives. If Log(t(r, f)) ≤ O(Log(r)), then f has
no quasi-exceptional value.

Proof of Theorem 5. Let f =
g

h
admit primitives and be such that ψ(h) <

+∞. Then s(r, h) ≤ (ψ(h) + 1)rρ(h) when r is big enough. Consequently,
t(r, f) = s(r, h) ≤ (ψ(h) + 1)rρ(h). Therefore by Corollary D.1, f has infinitely
many zeros. The same applies to f − b for every b ∈ IK, which ends the proof.

Proof of Corollary 5.2. Indeed, a meromorphic function having no residue
different from zero admits primitives [6].

Proof of Corollary 5.3. Let f =
g

h
with σ(h) < +∞. Then f ′ =

g′h− h′g

h2
and σ(h2) = 2σ(h). Thus one can apply Corollary 3.1 to f ′.
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Proof of Theorem 6. By hypothesis, there exists λ > 0 and R > 0 such that

Log(Log(|h|(r)))
Log(r)

+ 2λ < ρ̃(f) ∀r > R

and hence there exists R′ > R such that

Log(Log(|h|(r))) + λLog(r) < Log(Log(|f |(r))) ∀r > R′

therefore rλLog(|h|(r)) < Log(|f |(r)), which proves that

lim
r→+∞

Log(|h|(r))
Log(|f |(r))

= 0, what ends the proof.

Proof of Theorem 7. By hypothesis, we have

lim
r→+∞

Log(|h|(r)))
Log(|f |(r))

= 0

hence Log(|h|(r)) is of the form (Log(|f |(r))(θ(r)), with lim
r→+∞

θ(r) = 0. There-

fore, |h|(r) < |f |(r)) when r is big enough and hence |f + h|(r) = |f |(r),
therefore ρ(f + h) = ρ(f). Then

lim sup
r→∞

log(f |+ h|(r))
rρ(f+h)

= lim sup
r→∞

log(f |(r))
rρ(f)

= σ(f),

hence σ(f + h) = σ(f).

Now, there exists R > 0 such that |f +h|(r) = |f |(r)∀r > R. Consequently
the number of zeros of f + h in each disk d(0, r) equals the number of zeros
of f in d(0, r), for every r > R. Consequently, since ρ(f + h) = ρ(f), we have
ψ(f + h) = ψ(f).

Proof of Theorem 8. By hypothesis, we have |h|(r) < |f |(r) when r is big
enough and hence

(1) |f + h|(r) = |f |(r)

therefore ρ(f + h) = ρ(f). Consequently, σ(f + h) = σ(f).

Moreover, by (1) we notice that when r is big enough, by classical results
[6], in each disk d(0, r), the number of zeros of f + h equals this of f , therefore
ψ(f + h) = ψ(f).
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Proof of Theorem 9. The statements ρ(f ′) = ρ(f) and σ(f ′) = σ(f) are

given in [2] and [3]. Now, suppose that σ(f) = σ̃(f). Set f(x) =

+∞∑
n=0

anx
n. By

Theorems 2 and C,

eψ(f) = eρ(f)σ(f) = lim sup
n→+∞

n n

√
|an|ρ(f).

But we know that
1

n
≤ |n| ≤ 1 ∀n ∈ IN, hence lim

n→+∞
n
√

|n+ 1| = 1, therefore

eψ(f) = lim sup
n→+∞

n n

√
|(n+ 1)an+1|ρ(f) = eσ(f ′)ρ(f ′) ≤ eψ(f ′).

Similarly, if σ(f ′) = σ̃(f ′), then we can see that ψ(f) ≥ ψ(f ′).

In order to prove Theorem 10, we need to recall. the second main Nevan-
linna Theorem for p-adic entire functions (for example Theorem C.4.24 in [6]).

Theorem N: Suppose that IK is of characteristic 0. Let f ∈ A(IK) and let
a1, ..., aq ∈ IK. Then

(q − 1)Log(|f |(r)) ≤
q∑

i=1

Z(r, f − ai)− Z0(f ′, r)− Log(r) +O(1).

Proof of Theorem 10. We have σ(f, r) =
Log(|f |(r))

rρ(f)
, hence by Theorem N,

rρ(f)(q − 1)σ(f, r) ≤
q∑

i=1

Z(r, f − ai)− Z0(f ′, r)− Log(r) +O(1).

The conclusion is then obvious.

In the proof of Theorem 11, we will use the following basic lemmas:

Lemma 2 Let f1, f2 be two functions from IR+ to IR+ such that

lim
x→+∞

f1(x) = lim
x→+∞

f2(x) = +∞

and

lim sup
x→+∞

f1(x)

f2(x)
= b ∈ IR+, lim inf

x→+∞

f1(x)

f2(x)
= a > 0.
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Then

lim
x→+∞

Log(f1(x))

Log(f2(x))
= 1.

Lemma 3: Let α, β ∈ IR+ and let g(x) = e−x(αx−β). Then g′ has a unique

zero at 1+
β

α
and g(1+

β

α
) = αe

−(1+
β

α
)
. Moreover, g is increasing in [0, 1+

β

α
]

and is decreasing in [1 +
β

α
,+∞[ and tends to 0 when x tends to +∞.

Now let us recall that the definition of a divisor in IK.

Defintion: We call divisor in IK a sequence (an, vn)n∈IN where (an)n∈IN is
a sequence in IK such that lim

n→+∞
|an| = +∞ and each vn belongs to IN∗ [6].

The following Lemma 4 is classical (see for example Corollary B.18.5 of [6]).

Lemma 4: Given a divisor (an, vn)n∈IN in IK, there exist functions admitting
each an as a zero of order vn and no other zero and two such functions are
proportional.

Proof of Theorem 11. We begin the definition of positive increasing se-
quences (rm)m∈IN, (αm)m∈IN in IN∗, (βm)m∈IN, where r0 = 1, r2m ∈ |IK|, 2r2m ≤
αm < 2r2m + 1, We put qm = αm − αm−1, νm = Log(rm), β0 = 0 and
βm = βm−1 + qm(Log(r2m)).

In [0,+∞[, we define gk(ν) = e−ν(αkν−βk) up to the rank m and suppose
that the function gk satisfies 1 ≤ gk(ν2k) ≤ 1 + 1

4k2 and 1 ≤ gk(ν2k+2) ≤
1 + 1

4(k+1)2 ∀k = 1, ...,m− 1 and gk−1(ν2k) = gk(ν2k).

By Lemma 3, gk is increasing in [
βk
αk
, 1 +

βk
αk

] from 0 to a maximum equal

to αke
1+

βk
αk and is decreasing to 0 when ν tends to +∞. Hence gk takes the

value 1 at a unique point λ2k in [
βk
αk
, 1 +

βk
αk

] and at a unique point λ2k+2 ∈

[1 +
βk
αk
,+∞[. We then have gk(λ2k) = e−λ2k(αkλ2k − βk) and gk(λ2k+2) =

e−λ2k+2(αkλ2k+2 − βm) hence

λ2k =
eλ2k + βk

αk
and λ2k+2 =

eλ2k+2 + βk
αk

> ν2k+1 and we can take the value

r2k+2 ∈ |IK| close enough to eλ2k+2 such that, putting r2k+2 = eν2k+2 , we then
have
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1 ≤ gk(ν2k+2) = 1 + xk ≤ 1 +
1

4(k + 1)2

and

(1) 1 ≤ gk(ν2k) = 1 + yk ≤ 1 +
1

4(k)2
.

We notice that r2k+2 > r2k+1 hence ν2k+2 > ν2k+1. Next the function gk+1

is defined in the same way in [ν2k+2, ν2k+4] as gk+1(ν) = e−ν(αk+1ν − βk+1).
And we can check that gk+1(ν2k+2) = gk(ν2k+2).

Then by Lemma 3, gm has a maximum at

(2) ν2m+1 = 1 +
βm
αm

,

and gm+1 has a maximum at ν2m+3 = 1+
βm+1

αm+1
and gm+1(ν2m+3) = αm+1e

βm+1
αm+1 > 1,

hence ν2m+3 > ν2m+2. Consequently, the sequence (rn)n∈IN and is strictly in-
creasing. This way, the sequences are now defined for all m ∈ IN. Recall that

qm = αm−αm−1. We put Θm = ν2m+1−ν2m. Then, ν2m =
βm + eν2m(1 + xm)

αm
and hence by (1) and (2) we obtain

(3) Θm = 1− eν2m(1 + ym)

αm
= 1− r2m(1 + ym)

αm
= 1− r2m(1 + ym)

2r2m + ηm
,

where (ηm)m∈IN is a positive sequences bounded by 1 and the sequence (ym),

by (1), satisfies 0 ≤ ym ≤ 1

4(m)2
. Then

(4) Θm ≥ 1

2
− 1

8(m)2
>

15

32
.

We can now define by induction the sequences (rm), (νm), (gm), (ym), (Θm)
and then lim

n→+∞
rn = +∞. Consequently by (3) and (4),

(5) lim
m→+∞

Θm =
1

2
.
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We now obtain

gm(ν2m+1) = e−ν2m+1(αmν2m+1 − βm) = αme
−(1+ βm

αm
)

and hence, by (2),

(6) gm(ν2m+1) =
(2r2m + ηm)

r2m+1
= 2e−Θm + ζm.

where (ζm)m∈IN is a positive sequence of limit 0, since

lim
m→+∞

r2m+1 = +∞.

We can now define a function g in [0,+∞[ as g(ν) = gm(ν) when ν ∈
[Log(r2m), Log(r2m+2)[.

So, by (5) we have

(7) lim
m→+∞

g(ν2m+1) =
2√
e
.

Thus, we can check that

(8) lim sup
ν→+∞

g(ν) = lim sup
m→+∞

g(ν2m+1) < 2.

Now, by Lemma 4 we can consider the entire function f admitting qm zeros
on each circle C(0, r2m) and no other zero. Let (aj,m)(1≤j≤qm) be the zeros of
f on the circle C(0, r2m).

Then, when 2m ≤ r < r2m+2, the counting functions of zeros of f (counting
multiplicity) is of the form

Z(f, r) =

m∑
k=1

qk∑
j=1

(ak,j(Log(r)− Log(r2k)))

=

m∑
k=1

qk(Log(r)− Log(r2k)))

and hence, putting αm =
∑m

k=1 qk and βm =
∑m

k=1 qkr2k, the function g
appears as the quotient of the counting function of zeros of f (counting mul-

tiplicity) by eν when we put ν = Log(r) . So, we have
Log(|f |(r))

r
= g(ν)

whenever Log(r) = ν ∈ [ν2m, ν2m+2[ and therefore by (1) we can see that

lim inf
r→+∞

Log(|f |(r))
r

= 1
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and

(9) lim sup
r→+∞

Log(|f |(r))
r

= lim
m→+∞

|g(ν2m+1)| =
2√
e
.

Moreover, by (9) and Lemma 2, we have

lim
r→+∞

Log(Log(|f |(r)))
Log(r)

= 1

hence ρ(f) = 1.

Further, since lim sup
r→+∞

Log(|f |(r))
r

=
2√
e
and

lim inf
r→+∞

Log(|f |(r))
r

= 1 we can see that σ(f) = 2√
e
and σ̃(f) = 1. Thus, f is

not clean though it is regular.

More precisely, by construction, for every r ∈ [r2m, r2m+2[, we have ψ(f, r) =
2r2m+ηm

r and hence ψ(f, r2m) is of the form 2 + ym where (ym)m∈IN is a se-
quence of limit 0. Therefore ψ(f) ≥ 2, while ρ(f) = 1. This shows that f
does not satisfy the relation ψ(f) = ρ(f)σ(f) and hence, this is is not always
satisfied when a function f is not clean.

III. Remarks

Remark 1: Of course, by Theorem 2 we know that the function f built in the
proof of Theorem 11 satisfies ψ(f) > ψ̃(f). But we can directly verify this: on

one hand ψ(f) = 2 and on the other hand, we can see that ψ(f, r2m+1) =
αm

r2m+1

and hence by (5), ψ̃(f) ≤ 2√
e
.

Next, f must satisfy Theorem 2: ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)(eσ(f) − σ̃(f)).

Let us check. We have seen that ψ(f) = 2, ρ(f) = 1, σ(f) =
2√
e
, σ̃(f) = 1.

Then, ρ(f)(eσ(f)− σ̃(f)) = 2
√
e− 1 > 2. That is O’kay.

Remark 2: By Corollary 4.1, we see that a clean entire function such that
σ(f) > 0 is regular. The converse is not true, as shows Theorem 11.

In complex analysis, given an entire function f , we put

M(f, r) = sup{|f(z)|∞, |z|∞ = r}
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where | . |∞ is the archimedean modulus on lC. In [4] the authors claimed that
if a complex entire function f satisfies

lim sup
r→+∞

Log(Log(M(f, r)))

Log(r)
= lim inf

r→+∞

Log(Log(M(f, r)))

Log(r)
,

then

lim sup
r→+∞

Log(M(f, r))

rρ
= lim inf

r→+∞

Log(M(f, r))

rρ
,

where ρ = lim
r→+∞

Log(Log(M(f, r)))

Log(r)
. In the field IK, we just checked that such

a theorem does not hold. Actually, the proof of [4] is put in doubt by the
following argument held in Lemma 2 of [4]:

since ∫ +∞

r0

exp(Log(M(r, f))

(exp(rλ))t−ε+1
dr = +∞,

”then”

lim inf
r→+∞

exp(Log(M(r, f))

(exp(rλ))t−ε
= +∞.

Suppose for example that in [r0,+∞[,M(r, f) is equivalent to
exp(rλ(t− ε+ 1))

r
.

Then
exp(rλ(t− ε+ 1))

exp(rλ(t− ε))
is equivalent to

1

r
and hence

∫ +∞

r0

exp(Log(M(r, f))

(exp(rλ))t−ε+1
dr = +∞,

but

lim inf
r→+∞

exp(Log(M(r, f))

(exp(rλ))t−ε
= 0.
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