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Abstract. In this article, with respect to the recently introduced defini-
tion of weighted sharing of sets in the wider sense [8], we have comprehen-
sively extended and improved some well known results in the literature. As
the definition involves the manipulations of two polynomials, we perceive
that the characteristizations of the underlying polynomials become utmost
important. This realization urges us to introduce the definition of the in-
dex of polynomial. Noting that, in case of weighted sharing of sets the
polynomials so far chosen are of lower index, after defining and streamlin-
ing the index concept, we explore the influence of using polynomials with
higher indices in the context of weighted sharing of sets in wider sense to
improve and extend a number of earlier results.

1. Introduction, background

Value distribution theory is a branch of complex analysis that deals with
the distribution of values of analytic functions, especially in the context of
meromorphic functions. It involves studying the distribution of zeros, poles and
essential singularities of these functions. Set sharing, in the context of complex
analysis, usually refers to the phenomenon where two different meromorphic
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functions share the same set of values under certain constraints. The detail
definition is as follows:

Let S be a set of distinct elements of C ∪ {∞}. Let us denote by Ef (S) =⋃
a∈S{z : f(z)−a = 0}, where each zero is counted according to its multiplicity.

If we do not count the multiplicities then the set
⋃

a∈S{z : f(z) − a = 0} is

denoted by Ef (S). If Ef (S) = Eg(S) (Ef (S) = Eg(S)) we say that f and g
share the set S CM (IM).

If the readers need further information or a detailed explanation about
these concepts, we recommend referring to the original sources cited in the
text: [3] and [19]. These sources should provide the required background and
information to understand the concepts being mentioned here.

Let us define λm over the set of natural numbers as follows:

λm =

{
2 if m = 1

1 if m ≥ 2

In 1976, in connection to the famous question of Gross [18], Lin-Yi posed
the question (see Question B, p. 74, [23]) pertains to meromorphic functions
and their relationships when sharing two sets.

Question 1.1. [23] Can one find two finite sets Sj (j = 1, 2) such that any
two non constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj)
for j = 1, 2 must be identical?

In 2001, the concept of weighted sharing of sets was introduced, which
contributed to the uniqueness theory in complex analysis. The specific details
and implications of this notion can be found in the paper by Lahiri [20].

Weighted sharing of sets involve studying the shared properties of sets under
certain weighted criteria. This concept could have applications in various areas
of uniqueness theory vis-a-vis value distribution theory. The definition is as
follows:

Definition 1.1. [20] Let l be a non negative integer or infinity. For a ∈
C∪ {∞} we denote by El(a; f) the set of all a-points of f , where an a-point of
multiplicity t is counted t times if t ≤ l and l+ 1 times if t > l. Let S be a set
of distinct elements of C ∪ {∞}. We denote by Ef (S, l) the set

⋃
a∈S El(a; f).

If Ef (S, l) = Eg(S, l), we say f and g share the set S with weight l and denote
it by (S, l). We say, Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

During last few decades several investigations were done to resolve Question
1.1. The following theorem is the best result as far.
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Theorem A. [3] Let us suppose that the polynomial R(z) is defined by

R(z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2.

Let S = {z : R(z) = 0} and n ≥ 8. Suppose f and g be two non con-
stant meromorphic functions satisfying Ef (S, 2) = Eg(S, 2) and Ef ({∞}, 0) =
Eg({∞}, 0), then f ≡ g.

In 1994, regarding three set sharing problem and the uniqueness of two
meromorphic functions, a second relevant question was asked by Yi [27].

Question 1.2. [27] Can one find three finite sets Sj (j = 1, 2, 3) such that
any two non constant meromorphic functions f and g satisfying Ef (Sj ,∞) =
Eg(Sj ,∞) for j = 1, 2, 3 must be identical ?

Numerous studies were conducted to answer Question 1.2 (see [2], [7], [13],
[9], [14]). Remarkably, the notion of weighted sharing significantly influenced
subsequent research efforts related to Gross’ question (see [3]-[5], [23], [30]).
Among those results we would like to mention the following one which improve
the results of [24], [31].

Theorem B. [11] Let S be defined as in Theorem A with ab(n−2) ̸∈ {0, 1, 2}
and n ≥ 5. Suppose that f and g are two non-constant meromorphic func-
tions satisfying Ef (S, l) = Eg(S, l), Ef ({0}, k) = Eg({0}, k) and Ef ({b},m) =
Eg({b},m) then f ≡ g for (l, k,m) = (3, 2, 0), (2, 3, 1).

2. Definitions

Recently [8] we have introduced a more comprehensive framework than Def-
inition 1.1 termed as ‘weighted sharing of sets in wider sense’ for meromorphic
functions.

Definition 2.1. [8] Let f and g be two non-constant meromorphic functions
and P (z) and Q(z) be two polynomials of degree n without any multiple zero.
Let

SP = {z : P (z) = 0} and SQ = {z : Q(z) = 0}.

We say that f and g share the sets SP and SQ with weight l in the wider sense
if Ef (SP , l) = Eg(SQ, l) and we denote it by f , g share (SP , SQ; l).

We see that the above definition involves two polynomials that play a pivotal
role in characterizing the concept of weighted sharing of sets for meromorphic
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functions in a wider sense. Thus it will be reasonable to pay attention to the
structure of the polynomials used in Definition 2.1. If P = Q, we get the
traditional definition of weighted sharing of sets. Next we recall the following
definition that is necessary in subsequent stages.

Definition 2.2. [12] A polynomial

p(z) = anz
n + an−1z

z−1 + . . .+ a1z + a0

is called an initial term gap polynomial (ITGP) if ai = 0 but aj ̸= 0 for at
least one j such that 1 ≤ j < i < n and an initial term non-gap polynomial
(ITNGP) if there does not exist any such i.

In view of Definition 2.2 we are now at a stage to introduce the definition
of index for polynomial as follows:

Definition 2.3. A polynomial P [s](z) = anz
n + an−1z

n−1 + . . .+ a1z + a0 is
said to be initial term non-gap polynomial of index s, (1 ≤ s ≤ n) (ITNGPs in
short) if the followings are satisfied:
i) When s = 1, . . . , n−1, then an ̸= 0, an−1 ̸= 0, . . . , an−s−1 ̸= 0, but an−s = 0;
ii) When s = n then ai ̸= 0, for i = 1, 2, . . . , n.
Note that any polynomial of degree n is of index s ≥ 1.

Definition 2.4. [10] Let P (z) be a polynomial such that P ′(z) has k mutu-
ally distinct zeros given by d1, d2, ..., dk with multiplicities q1, q2, ..., qk,
respectively. Then P (z) is said to satisfy the critical injection property if
P (di) ̸= P (dj) for i ̸= j, where i, j ∈ {1, 2, ..., k}.

For the standard definitions and notations of the value distribution theory
we refer to [19] and for the definitions of N(r, a; f |≥ s), N(r, a; f |= s) for

s ≥ 1, NL(r, 1; f), NL(r, 1; g), N
(k
E (r, 1; f) and N∗(r, a; f, g) we refer to [2],

[21], [22], [29].

3. Observations, motivations and main results

In 1995, Yi [28] introduced the following polynomial:

P1(z) = zn + azn−m + b,

where n and m are two positive integers such that (n,m) = 1, n > m, a and b
are two non-zero constants such that the algebraic equation zn+azn−m+b = 0
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has no multiple zero. Clearly P1(z) is a polynomial of index λm. Till now a lot
of research works have been performed on the uniqueness of two meromorphic
functions sharing two sets for the case m = 1 (see [4], [5], [9], [13], [25]).
However, the case m ≥ 2 was not being prioritized as that leads to the larger
cardinality of the set.

In 1998, Frank-Reinders [15] introduced a new polynomial as follows:

P2(z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,

where n ≥ 3 is an integer and c ̸= 0, 1 is a complex number. Evidently, the
above mentioned polynomial is of index 3. In 2017, this polynomial was further
generalized by Banerjee-Mallick [12] in the following manner:

P ∗
2 (z) = zn + azn−m + bzn−2m + c,

where n and m(= 1) be two integers such that n > 2m and a, b and c are
three non-zero complex numbers such that P ∗

2 (z) has no multiple zero and the
polynomial is of index 3 as well. Note that the polynomial R(z) use in Theorem
A is a polynomial of index 1. All the polynomials have significant contributions
in case two or three shared set problems.

From the matter discussed so far, we have the following observations:

i) In most of the cases of two shared sets problem, the second set is taken
as {∞} as mentioned in Theorem A. Hence it is interesting to investigate the
case when the second set is taken solely from C. This is our first motivation.

ii) Next we recall the Bi-unique range sets problems (see [1], [26]). In Bi-
unique range sets problems, a ground set is selected from C and the derived set
is formed by considering the zeros of the derivative of the generating polynomial
of the ground set.

The same situation has also been observed in case three set sharing problems
i.e. in the same case one set is taken as 0 like Theorem B. So its natural to ask
the question that whether 0 can be substituted by a non-zero complex number
a in both the cases.

It has been found that 0 is present in the derived set of Bi-unique range sets.
Same situation has also been observed in case of three sets sharing problems
like Theorem B.

So we see that typically, the results of Bi-unique range sets and three set
sharing have required the presence of 0 in the one set. The second motivation
of writing the paper is to investigate whether the complex number 0 can be
substituted by any other non-zero complex number a.

iii) It is clear that, previously the investigations were limited to studying
polynomials of index at most three. However, in view of Definition 2.3, it
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is natural to be interested in broadening their exploration. This realization
motivate us to solely nurture the cases where the index of the polynomials are
≥ 4. We will show that investigations of higher-indices polynomials can lead
to new insights and challenges as they often exhibit more complex behaviors
than that were available in the literature.

Let us take two polynomials,

P6(z) =
z6

6
− (2a+ 3b)z5

5
+

(a2 + 6ab+ 3b2)z4

4
− (3a2b+ 6ab2 + b3)z3

3

+
(3a2b2 + 2ab3)z2

2
− a2b3z − c6

= P̂6(z)− c6, c6 ̸= P̂6(a), P̂6(b)(3.1)

and

Q6(z) =
z6

6a2b3
− (2a+ 3b)z5

5a2b3
+

(a2 + 6ab+ 3b2)z4

4a2b3
− (3a2b+ 6ab2 + b3)z3

3a2b3

+
(3a2b2 + 2ab3)z2

2a2b3
− z − d6

= Q̂6(z)− d6, d6 ̸= Q̂6(a), Q̂6(b),(3.2)

P ′
6(z) = (z − a)2(z − b)3 = P̂ ′

6(z), Q
′
6(z) =

1

a2b3
(z − a)2(z − b)3 = Q̂′

6(z),(3.3)

with the following conditions
(i) Q6(b) = Q6(a)P6(b),
(ii) c6Q6(a) = d6.

The following example shows that the conditions for P6 and Q6 are satisfied.

Example 3.1. Take a = −1, b = 1. From (3.1), (3.2), (3.3), P6(z) and Q6(z)
changes to:

PB6(z) =
z6

6
− z5

5
− z4

2
+

2z3

3
+

z2

2
− z +

3

10
, PB6(z) = QB6(z).

With respect to the above polynomials let us state one of the main results
of this paper as follows:

Theorem 3.1. Let SP6 = {z | P6(z) = 0} and SQ6 = {z | Q6(z) = 0} where
P6(z) is given by (3.1) and (3.2). Suppose that f and g be two non-constant
meromorphic functions satisfying Ef(k)(SP6

, 4) = Eg(k)(SQ6
, 4), Ef(k)({a}, k1) =

Eg(k)({a}, k1) and Ef(k)({b}, k2) = Eg(k)({b}, k2), where k1k2 = 2, k being any

non-negative integer and set f (0) = f, then one of the following two conclusions
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holds.
(i) If P6(z) = Q6(z) then for any two non-constant meromorphic functions f
and g, we get f (k) ≡ g(k).
(ii) If P6(z) ̸= Q6(z) then f (k) and g(k) satisfy the following equation

(g(k))5(h6 − α)

6
− (2a+ 3b)(g(k))4(h5 − α)

5
+

(a2 + 6ab+ 3b2)(g(k))3(h4 − α)

4

− (3a2b+ 6ab2 + b3)(g(k))2(h3 − α)

3
− (3a2b2 + 2ab3)(g(k))(h2 − α)

2

−a2b3(h− α) ≡ 0,

where h = f(k)

g(k) and α = c6
a2b3d6

.

Next let us define another two polynomials as follows:

P8(z) =
z8

8
− 5az7

7
+

5a2z6

3
− 2a3z5 +

5a4z4

4
− a5z3

3
− c8

= P̂8(z)− c8, c8 ̸= 0,

(
− a8

168

)
(3.4)

and

Q8(z) =
z8

8a5
− 5z7

7a4
+

5z6

3a3
− 2z5

a2
+

5z4

4a
− z3

3
− d8

= Q̂8(z)− d8, d8 ̸= 0,

(
− a3

168

)
,(3.5)

P ′
8(z) = z2(z − a)5 = P̂ ′

8(z), Q
′
8(z) =

1

a5
z2(z − a)5 = Q̂′

8(z),(3.6)

with the condition c8Q8(a) = d8P8(a).

The following example shows that the conditions for P8 and Q8 are satisfied.

Example 3.2. Take a = 1 and an arbitrary value of c8 other than
( −1
168

)
such

as c8 = 13
21 . From (3.5), (3.7), (3.6), P8(z) and Q8(z) transform to

PB8(z) =
z8

8
− 5z7

7
+

5z6

3
− 2z5 +

5z4

4
− z3

3
− 13

21
,

PB8(z) = QB8(z).

With respect to the above mentioned polynomials let us state remaining
two main results of this paper.
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Theorem 3.2. Let SP8
= {z | P8(z) = 0} and SQ8

= {z | Q8(z) = 0} where
P8(z) and Q8(z) are given by (3.4) and (3.5). Suppose that f and g are two
non-constant meromorphic functions satisfying Ef(k)(SP8

, 2) = Eg(k)(SQ8
, 2)

and Ef(k)({a}, 0) = Eg(k)({a}, 0), where k is a non-negative integer and set

f (0) = f, then one of the following two conclusions holds.
(i) If P8(z) = Q8(z) then for any two non-constant meromorphic functions f
and g, we get f (k) ≡ g(k).
(ii) If P8(z) ̸= Q8(z) then f (k) and g(k) satisfy the following equation

(g(k))5(h8 − β)

8
− 5a(g(k))4(h7 − β)

7
+

5a2(g(k))3(h6 − β)

3
(3.7)

−2a3(g(k))2(h5 − β) +
5a4(g(k))(h4 − β)

4
− a5(h3 − β)

3
≡ 0,

where h = f(k)

g(k) and β = c8
a5d8

.

4. Lemmas

Let us define two meromorphic functions Fi and Gi as follows:

Fi ≡
P̂i(f

(k))

ci
, Gi ≡

Q̂i(g
(k))

di
, i = 6, 8.(4.1)

On the basis of the two functions in (3.1), we now define the following two
auxliary functions Hi and Φi as follows:

Hi ≡

[
F

′′

i

F
′
i

− 2F
′

i

Fi − 1

]
−

[
G

′′

i

G
′
i

− 2G
′

i

Gi − 1

]
(4.2)

and

Φi ≡
F

′

i

Fi − 1
− G

′

i

Gi − 1
.(4.3)

The following lemmas will play key roles in proving our results.

Lemma 4.1. [29] If F , G be two non-constant meromorphic functions such
that they share (1,1) and H ̸≡ 0 then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).
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Lemma 4.2. [5] Let f and g be two non-constant meromorphic functions shar-
ing (1, l), where 0 ≤ l < ∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
l − 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)].

Lemma 4.3. [6] Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + . . .+ anf

n, where a0, a1, a2, . . . , an are constants and an ̸= 0. Then
T (r, P (f)) = nT (r, f) +O(1).

Lemma 4.4. Let f and g be two non-constant meromorphic functions and
Fi and Gi be defined by (4.1) such that Ef(k)(SP6 , 0) = Eg(k)(SQ6 , 0) and
Ef(k)({a}, p) = Eg(k)({a}, p), Ef(k)({b}, p) = Eg(k)({b}, p), 0 ≤ p < ∞ and
H6 ̸≡ 0. Then

N(r,∞;H6) ≤ N(r, a; f (k) |≥ p+ 1) +N(r, b; f (k) |≥ p+ 1) +N∗(r, 1;F6, G6)

+N(r,∞; f (k)) +N(r,∞; g(k)) +N0(r, 0; f
(k+1))

+N0(r, 0; g
(k+1)),

where N0(r, 0; f
(k+1)) is the reduced counting function of those zeros of f (k)

which are not zeros of (f (k)−a)(f (k)−b)(F6−1) and N0(r, 0; g
(k+1)) is similarly

defined.

Proof. Since Ef(k)(SP6
, 0) = Eg(k)(SQ6

, 0), it follows that F and G share

(1, 0). We can easily verify that possible poles of H occur at (i) a-points of f (k)

of multiplicity ≥ p+1, (ii) b-points of f (k) of multiplicity ≥ p+1, (iii) poles of
f (k) and g(k), (iv) zeros of f (k+1) which are not the zeros of (f (k) − a)(f (k) −
b)(F6−1), (v) zeros of g(k+1) which are not zeros of (g(k)−a)(g(k)−b)(G6−1).
Since H has only simple poles, the lemma follows from above.

Lemma 4.5. Let f (k) and g(k) be two non-constant meromorphic functions and
F8 and G8 be defined by (4.1) satisfying Ef(k)(S8, 0) = Eg(k)(S8, 0), Ef(k)({a}, p) =
Eg(k)({a}, p), 0 ≤ p < ∞ and H8 ̸≡ 0. Then

N(r,∞;H8) ≤ N(r, a; f (k) |≥ p+ 1) +N(r, 0; f (k)) +N(r, 0; g(k))

+N∗(r, 1;F8, G8) +N(r,∞; f (k)) +N(r,∞; g(k))

+N0(r, 0; f
(k+1)) +N0(r, 0; g

(k+1)),

where N0(r, 0; f
(k+1)) is the reduced counting function of those zeros of f (k)

which are not zeros of (f (k)−a)(f (k)−b)(F8−1) and N0(r, 0; g
(k+1)) is similarly

defined.
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Proof. We are omitting the proof of the lemma as it can be carried out in
the line of the proof of the Lemma 4.4.

Lemma 4.6. Let f and g be two non-constant meromorphic functions and F6

and G6 be given by (4.1) satisfying Ef(k)(S6, l) = Eg(k)(S6, l), Ef(k)({a}, p) =
Eg(k)({a}, p), Ef(k)({b}, p) = Eg(k)({b}, p), 0 ≤ p < ∞ and Φ6 ̸≡ 0. Then

(3p+ 2)N(r, a; f (k) |≥ p+ 1)

≤ N∗(r, 1;F6, G6) +N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, f (k)) + S(r, g(k))

and

(4p+ 3)N(r, b; f (k) |≥ p+ 1)

≤ N∗(r, 1;F6, G6) +N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, f (k)) + S(r, g(k)).

Proof. By the given condition clearly F6 and G6 share (1, l). Also we see
that,

Φ6 =
(f (k) − a)2(f (k) − b)3f (k+1)

c6(F6 − 1)
− (g(k) − a)2(g(k) − b)3g(k+1)

d
6
(G6 − 1)

.

Let, z0 be a a-point f (k) with multiplicity r. Since, f (k) and g(k) shares
({a}, p) then z0 is a zero of Φ6 of multiplicity 2r+ r− 1=3r− 1 if r ≤ p and a
zero of Φ6 of multiplicity at least 3(p+ 1)− 1=3p+ 2 if r > p. Hence, by the
definition of Φ6 and by simple calculation we can write that,

(3p+ 2)N(r, a; f (k) |≥ p+ 1)

≤ N (r, 0; Φ6)

≤ T (r,Φ6) ≤ N (r,∞; Φ6) + S (r, F6) + S (r,G6)

≤ N∗ (r, 1;F6, G6) +N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, f (k)) + S(r, g(k)).

The other result can be deduced similarly.

Lemma 4.7. Let f and g be two non-constant meromorphic functions and F8

and G8 be given by (4.1) satisfying Ef(k)(S8, l) = Eg(k)(S8, l), Ef(k)({a}, p) =
Eg(k)({a}, p), 0 ≤ p < ∞ and Φ8 ̸≡ 0. Then

(6p+ 5)N(r, a; f (k) |≥ p+ 1)

≤ N∗(r, 1;F8, G8) +N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, f (k)) + S(r, g(k)).

Proof. The lemma can be proved in the line of the proof of Lemma 4.6. So
we omit the details.
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Lemma 4.8. Let F6 and G6 be given by (4.1). If F6, G6 share (1, l), where
0 ≤ l < ∞ and k is a non-negative integer. Then

(i) NL (r, 1;F6) ≤ 1

l + 1

(
N(r, 0; f (k)) +N(r,∞; f (k))−N⊗(r, 0; f

(k+1))
)

+S(r, f (k))

(ii) NL (r, 1;G6) ≤ 1

l + 1

(
N(r, 0; g(k)) +N(r,∞; g(k))−N⊗(r, 0; g

(k+1))
)

+S(r, g(k)),

where N⊗(r, 0; f
(k+1)) = N(r, 0; f (k+1) | f (k) ̸= 0, w1, w2, . . . , w6) and w1, w2, . . . w6

be the roots of the equation P6(z) = 0, N⊗(r, 0; g
(k+1)) is defined similarly to

N⊗(r, 0; f
(k+1)). Similar results holds for F8 and G8.

Proof. We omit the proof since it can be carried out in the line of the proof
of Lemma 2.10 of [3].

Lemma 4.9. [16] Let P (z) be a polynomial of degree ≥5 without multiple
zeros, whose first derivative have mutually k distinct zeros, given by d1, d2, ..., dk
with multiplicities q1, q2, ..., qk, respectively. Assume that P (z) satisfies the
critical injection property and there are two distinct non-constant meromorphic
functions f and g such that

1

P (f)
=

c0
P (g)

+ c1,

for some constant c0 ̸= 0 and c1. If k ≥ 3, or if k = 2 and min{q1, q2} ≥ 2,
then c1 = 0.

Lemma 4.10. [17] Let P (z) be a monic polynomial without multiple zero whose
first derivative have mutually k-distinct zeros, given by d1, d2, .., dk with multi-
plicities q1, q2, ..., qk, respectively. Suppose that P (z) satisfies the critical injec-
tion property. Then P (z) will be a UPM if and only if

∑
1≤l<m≤k

q
l
qm >

k∑
i=1

q
l
.

In particular, the above inequality is always satisfied whenever k ≥ 4. When
k = 3 and max{q1, q2, q3} ≥ 2 or when k = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5
then also the above inequality holds.
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5. Proofs of the Theorems

Proof. [Proof of Theorem 3.1] Let F6 and G6 be given by (3.1). Since
f (k) and g(k) share Ef(k)(SP6 , 4) = Eg(k)(SQ6 , 4), from (4.1) it follows that F6

and G6 share (1, 4). Suppose H6 ̸≡ 0.

If possible Φ6 ≡ 0. By (4.3) we get,

(F6 − 1) ≡ A (G6 − 1) ,(5.1)

where A is a constant.

Next, using (5.1) and the definition of H6 we get, H6 ≡ 0, which is a
contradiction. Hence Φ6 ̸≡ 0.

Using Lemma 4.2 for l = 4, Lemma 4.4 for p = 0, Lemma 4.6 p = 0, p = k1
and p = k2, Lemma 4.3 we get from the Second Fundamental Theorem,

7{T (r, f (k)) + T (r, g(k))}
≤ N(r, a; f (k)) +N(r, b; f (k)) +N(r,∞; f (k)) +N(r, 1;F6) +N(r, a; g(k))

+N(r, b; g(k)) +N(r,∞; g(k)) +N(r, 1;G6)−N0(r, 0; f
(k+1))

−N0(r, 0; g
(k+1)) + S(r, f (k)) + S(r, g(k))

≤ N(r, 1;F6 |= 1)−
(
4− 1

2

)
N∗(r, 1;F6, G6) + 3{T (r, f (k)) + T (r, g(k))}

+2N(r, a; f (k)) + 2N(r, b; f (k)) +N(r,∞; f (k)) +N(r,∞; g(k))

−N0(r, 0; f
(k+1))−N0(r, 0; g

(k+1)) + S(r, f (k)) + S(r, g(k))

≤ 2N(r, a; f (k)) +N(r, a; f |≥ k1 + 1) + 2N(r, b; f (k)) +N(r, b; f |≥ k2 + 1)

+

(
3 +

2

k + 1

)
{T (r, f (k)) + T (r, g(k))}+−5

2
N∗(r, 1;F6, G6)

+S(r, f (k)) + S(r, g(k))

≤
(
1 +

1

(3k1 + 2)

)
{N∗(r, 1;F6, G6) +N(r,∞; f (k)) +N(r,∞; g(k))}

+

(
2

3
+

1

(4k2 + 3)

)
{N∗(r, 1;F6, G6) +N(r,∞; f (k)) +N(r,∞; g(k))}

+

(
3 +

2

k + 1

)
{T (r, f (k)) + T (r, g(k))} − 5

2
N∗(r, 1;F6, G6)

+S(r, f (k)) + S(r, g(k))

≤
{
3 +

11

3(k + 1)
+

1

(k + 1)(3k1 + 2)
+

1

(k + 1)(4k2 + 3)

}
(T (r, f (k)) + T (r, g(k))) + S(r, f (k)) + S(r, g(k)).



Weighted sharing of sets in wider sense under... 135

i.e.,(
4− 11

3(k + 1)
− 1

(3k1 + 2)(k + 1)
− 1

(4k2 + 3)(k + 1)

)
{T (r, f (k)) + T (r, g(k))}

≤ S(r, f (k)) + S(r, g(k)).

which is a contradiction for k ≥ 0 and k1k2 = 2.

Hence H6 ≡ 0. Then for two constants A(̸= 0), B we get

1

F6 − 1
≡ A

G6 − 1
+B(5.2)

and

T (r, f (k)) = T (r, g(k)) + S(r, g(k)).(5.3)

Case 1: Let us assume that B ̸= 0. Then by (5.2) we can have

F6 − 1 ≡ G6 − 1

B
{
(G6 − 1) + A

B

} .(5.4)

Let us consider

ϕ(z) = Q̂6(z)− d6

(
1− A

B

)
.

Subcase 1.1: Let us assume that A ̸= B.

First we assume that, a is a zero of ϕ(z) then it will be a zero of multiplicity
3 and other zeros are simple zeros namely αi where i = 1, 2, 3. Then by the
Second Fundamental Theorem, (5.3) and (5.4) we have

3T (r, g(k)) ≤ N(r, a; g(k)) +

3∑
i=1

N(r, αi; g
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤ N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, g(k))

≤ 2

k + 1
T (r, g(k)) + S(r, g(k)),

which is contradiction for k ≥ 0.

Again, if b is a zero of ϕ(z) the itnis a zero of multiplicity 4 and other zeros
are simple say, βi for i = 1, 2. Using the Second Fundamental Theorem, (5.3)
and (5.4) we get

2T (r, g(k)) ≤ N(r, b; g(k)) +

2∑
i=1

N(r, βi; g
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤
(

1

k + 1
+

1

3
+

1

6
+

1

6

)
T (r, g(k)) + S(r, g(k)),
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which is contradiction for k ≥ 0. Hence we can conclude that all the zeros
ϕ(z) are simple namely γi for i = 1, 2, . . . , 6. Using the Second Fundamental
Theorem, (5.3) and (5.4) we get

5T (r, g(k)) ≤
6∑

i=1

N(r, γi; g
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤ N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, g(k)) + S(r.g(k)),

which is contradiction for k ≥ 0.
Subcase 1.2: Let us assume that A = B.
Subcase 1.2.1: Let us take A ̸= −1. Then (4.2) gives us

F6 ≡
(1 +A)

(
G6 − 1

A+1

)
AG6

.

Here we get

N

(
r, 0;G6 −

1

A+ 1

)
= N (r, 0;F6) .

Let us take

χ(z) = Q̂6(z)− d6

(
1

A+ 1

)
.

Let us first suppose that a is a zero of χ(z) of multiplicity 3 and another

three simple zeros are δi for i = 1, 2, 3. Evidently Q̂6(z) has 6 simple zeros.
Using the Second Fundamental Theorem and (5.3) we can write

9T (r, g(k)) ≤ N(r, a; g(k)) +

3∑
i=1

N(r, δi; g
(k)) +N(r, 0;G6) +N(r,∞; g(k))

+S(r, g(k))

≤ N(r, 0;F6) +N(r,∞; f (k)) +N(r,∞; g(k)) + S(r, g(k))

≤
(
6 +

2

k + 1

)
T (r, g(k)) + S(r, g(k)),

which is contradiction as k ≥ 0.

Next let us assume that b is zero of χ(z) of multiplicity 4 and another two
simple zeros are ηi for i = 1, 2. As f (k) and g(k) share ({b}, 0) we can say that
b is an e.v.P. of both f (k) and g(k). Using the Second Fundamental Theorem
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and (5.3) we obtain

8T (r, g(k)) ≤ N(r, b; g(k)) +

2∑
i=1

N(r, ηi; g
(k)) +N(r, 0;G6) +N(r,∞; g(k))

+S(r, g(k))

≤
(
2 +

2

k + 1

)
T (r, g(k)) + S(r, g(k)),

which is a contradiction for k ≥ 0.

Hence we can say that all the zeros of χ(z) are simple and by using the
above arguments we can get a contradiction.
Subcase 1.2.2: Let A = −1 and zeros of P̂6(z) are 0 and θi for i = 1, 2, . . . , 5.
Then from (5.2) we have

F6G6 ≡ 1

i.e.

g(k)
5∏

i=1

(g(k) − θi) ≡
c6d6a

2b3

f (k)
∏5

i=1((f
(k))− θi)

.

If z0 is a pole of g(k) of order k1 then z0 is θi point of f (k) for some i ∈
{1, 2, 3, 4, 5} of order k2. Then we can say that 6k1 = k2, this implies that
value of k2 is at least 6. Using the Second Fundamental Theorem and (5.3) we
obtain

4T (r, f (k)) ≤
5∑

i=1

N(r, θi; f
(k)) +N(r,∞; f (k)) + S(r, f (k))

≤
(
5

6
+

1

k + 1

)
T (r, f (k)) + S(r, g(k)),

which is contradiction to the fact k ≥ 0.
Case 2: Let B = 0. Then we possess

(G6 − 1) ≡ A (F6 − 1) .(5.5)

Clearly, (5.5) possess

T (r, f
(k)

) = T (r, g
(k)

) + S(r, g(k)).(5.6)

Let us first consider A ̸= 1.

Case 2.1: Let P6(a) ̸= 1.
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Case 2.1.1: Let us first suppose that A =
(

c6Q6(a)
d6

)
. By some simple

calculation, from (5.5) we can write

Q6(g
(k)

)−Q6(a) =
Ac6
d6

(P6(f
(k))− 1).(5.7)

Let us consider the polynomial Q6(z)−Q6(a). As Q6(z) is a critically injective
polynomial ( see Definition (2.4)), we can say that b is not a zero of (Q6(z)−
Q6(a)) and we can write Q6(z)−Q6(a) = (z − a)3W3(z) where W3(a) ̸= 0. It
is evident that all the zeros of W3(z) are simple namely α̃i, i = 1, 2, 3. Let us
take the polynomial (P6(z)− 1).

As P6(a) ̸= 1, it is clear that a is not a zero of (P6(z)− 1).

Further if b is a zero of this polynomial then it will be a zero of multiplicity
4 and another two simple zeros are β̃i for i = 1, 2. We have

N(r, a; g(k)) +

3∑
i=1

N(r, α̃i; g
(k)) = N(r, b; f (k)) +

2∑
i=1

N(r, β̃i; f
(k)).

Since f (k) and g(k) share ({a}, 0) and ({b}, 0), we can say a and b are e.v.P. of
f (k) and g(k). Then by the Second Fundamental Theorem, (5.6) and the above
equation we get

4T (r, g(k)) ≤ N(r, a; g(k)) +N(r, b; g(k)) +

3∑
i=1

N(r, α̃i; g
(k)) +N(r,∞; g(k))

+S(r, g(k))

≤ N(r, b; f (k)) +

2∑
i=1

N(r, β̃i; f
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤
(
2 +

1

k + 1

)
T (r, g(k)) + S(r, g(k)),

which is a contradiction for k ≥ 0.

Now all the zeros of the polynomial are simple and let us denote them γ̃i
for i = 1, 2, . . . , 6. Then we can write

N(r, a; g(k)) +

3∑
i=1

N(r, α̃i; g
(k)) =

6∑
i=1

N(r, γ̃i; f
(k)).
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By the Second Fundamental Theorem and the above equation we get

5T (r, f (k)) ≤
6∑

i=1

N(r, γ̃i; f
(k)) +N(r,∞; f (k)) + S(r, f (k))

≤ N(r, a; g(k)) +

3∑
i=1

N(r, α̃i; g
(k)) +N(r,∞; f (k)) + S(r, f (k))

≤
(
3 +

1

k + 1

)
T (r, f (k)) + S(r, f (k)),

which is a contradiction for k ≥ 0.

Case 2.1.2: Now let us assume that A ̸=
(

c6Q6(a)
d6

)
. By simple calculation

from (5.5) we can say

Q6(g
(k))− Ad6

c6
P6(b) =

Ad6
c6

(
P6(f

(k))− P6(b)
)
.(5.8)

As P6(z) is a critically injective polynomial, a cannot be a zero of the polyno-
mial (P6(z)−P6(b)). Hence b is always a zero of of (P6(z)−P6(b)) of multiplicity
4 and another simple zeros are
tildeηi for i = 1, 2. Here we can write

(P6(f
(k))− P6(b)) = (f (k) − b)4(f (k) − η1)(f

(k) − η2).(5.9)

Let us consider the polynomial
(
Q6(z)− Ad6

c6
P6(b)

)
.

If a is a zero of the polynomial
(
Q6(z)− Ad6

c6
P6(b)

)
, then it will be of

multiplicity 3 and other zeros are simple, say δ̃i for i = 1, 2, 3. Then we can
write from (5.8) and (5.9)

N(r, a; g(k)) +

3∑
i=1

N(r, δ̃i; g
(k)) = N(r, b; f (k)) +

2∑
i=1

N(r, ηi; f
(k)).

In this case also a and b are e.v.P. of both f (k) and g(k). By the Second
Fundamental Theorem, (5.6) and the above equation,

4T (r, g(k)) ≤ N(r, a; g(k)) +N(r, b; g(k)) +
3∑

i=1

N(r, δ̃i; g
(k)) +N(r,∞; g(k))

+S(r, g(k))

≤ N(r, b; f (k)) +

2∑
i=1

N(r, η̃i; f
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤
(
2 +

1

k + 1

)
T (r, g(k)) + S(r, g(k)),
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which is a contradiction for k ≥ 0.

Next, if b is a zero of the polynomial
(
Q6(z)− Ad6

c6
P6(b)

)
the we get

A =
c6Q6(b)

d6P6(b)
.

As we have from the hypothesis of the Theorem 3.1 that Q6(b) = Q6(a)P6(b)

then we have A = c6Q6(a)
d6

which is contradiction.

Now, if we assume that all the zeros of the polynomial
(
Q6(z)− Ad6

c6
P6(b)

)
are simple, we using the same methodology that is used to solve the situation
in Case 2.1.2, we will arrive at a contradiction.

Case 2.2: let P6(a) = 1. Then from (5.5) calculating we have

P6(f
(k))− 1 =

c6
Ad6

(
Q6(g

(k))− Ad6
c6

)
.

As P6(a) = 1, we can say that a is zero of the polynomial (P6(z)) − 1 of
multiplicity 3 and other two simple zeros are denoted by θ̃i for i = 1, 2. Hence
we can write

(f (k) − a)3(f (k) − θ̃1)(f
(k) − θ̃2) =

c6
Ad6

(
Q6(g

(k))− Ad6
c6

)
.

If a is a zero of the polynomial
(
Q6(g

(k))− Ad6

c6

)
then we get c6Q6(a) = d6

which is contradiction to hypothesis of Theorem (3.1). Hence the polynomial(
Q6(g

(k))− Ad6

c6

)
can have multiple zero b of multiplicity 4 or all simple zeros.

In both the cases using the same calculations that has been done in Case 2.1
we will get contradictions. Hence A = 1 and We have

F6 = G6

which implies that

(g(k))5(h6 − α)

6
− (2a+ 3b)(g(k))4(h5 − α)

5
+

(a2 + 6ab+ 3b2)(g(k))3(h4 − α)

4

− (3a2b+ 6ab2 + b3)(g(k))2(h3 − α)

3
− (3a2b2 + 2ab3)(g(k))(h2 − α)

2

−a2b3(h− α) ≡ 0,

where h = f(k)

g(k) and α = c6
a2b3d6

.

Next if P6(z) = Q6(z) we have from (5.2), Lemma 4.9 and Lemma 4.10,
f (k) ≡ g(k).
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Proof. [Proof of Theorem 3.2] Let F8 and G8 be given by (4.1). Since
f (k) and g(k) share Ef(k)(SP8

, 2) = Eg(k)(SQ8
, 2), from (4.1) it follows that F8

and G8 share (1, 2). Suppose H8 ̸≡ 0. Hence Φ8 ̸= 0.

Using Lemma 4.2 for l = 2, Lemma 4.5 for p = 0, Lemma 4.7 p = 0, Lemma
4.3 and Lemma 4.8 for l = 2 we get from the Second Fundamental Theorem,

9{T (r, f (k)) + T (r, g(k))}
≤ N(r, 0; f (k)) +N(r, a; f (k)) +N(r,∞; f (k)) +N(r, 1;F8) +N(r, 0; g(k))

+N(r, a; g(k)) +N(r,∞; g(k)) +N(r, 1;G8)−N0(r, 0; f
(k+1))−N0(r, 0; g

(k+1))

+S(r, f (k)) + S(r, g(k))

≤ N(r, 1;F8 |= 1) + 2N(r, a; f (k)) + 6{T (r, f (k)) + T (r, g(k))}

−
(
2− 1

2

)
N∗(r, 1;F8, G8)−N0(r, 0; f

(k+1))−N0(r, 0; g
(k+1))

+S(r, f (k)) + S(r, g(k))

≤ 3N(r, a; f (k)) + 8{T (r, f (k)) + T (r, g(k))} − 1

2
N∗(r, 1;F8, G8)

+S(r, f (k)) + S(r, g(k))

≤ 8{T (r, f (k)) + T (r, g(k))}

+
3

5

{
N∗(r, 1;F8, G8) +N(r,∞; f (k)) +N(r,∞; g(k))

}
−1

2
N∗(r, 1;F8, G8) + S(r, f (k)) + S(r, g(k))

≤ 43

5
{T (r, f (k)) + T (r, g(k))}+ 1

10
N∗(r, 1;F8, G8) + S(r, f (k)) + S(r, g(k))

≤
(
43

5
+

1

15

)
{T (r, f (k)) + T (r, g(k))}+ S(r, f (k)) + S(r, g(k)),

which is a clear contradiction. Hence H8 ≡ 0. Then for two constants A(̸= 0),
B we get

1

F8 − 1
≡ A

G8 − 1
+B(5.10)

and

T (r, f (k)) = T (r, g(k)) + S(r, g(k)).(5.11)

Using the same arguments that were used to prove B = 0 in Theorem 3.1 we
get

(G8 − 1) = A(F8 − 1).(5.12)

Let us first suppose that A ̸= 1.
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Case 1: Let us take A ̸= −
(

c8
P8(a)

)
. Then from (5.12) we can write that

Q8(g
(k))− Ad8

c8
P8(a) =

Ad8
c8

(P8(f
(k))− P8(a)).(5.13)

For the polynomial (P8(z)−P8(a)), a is zero of this polynomial of multiplicity
6 and another two simple zeros are denoted by α̂i for i = 1, 2. As P8(z) is a
critically injective polynomial, b can not be a zero of the polynomial (P8(z)−
P8(a)). Hence we have

(P8(f
(k))− P8(a)) = (f (k) − a)6(f (k) − α̂1)(f

(k) − α̂2).

Next we consider the polynomial
(
Q8(z)− Ad8

c8
P8(a)

)
.

Now it is clear that 0 is not a zero of the
(
Q8(z)− Ad8

c8
P8(a)

)
as

Q8(0)−
Ad8
c8

P8(a) = −d8

(
1 +

AP8(a)

c8

)
̸= 0.

Again we can see that if a is zero of the polynomial
(
Q8(z)− Ad8

c8
P8(a)

)
, from

the hypothesis of the Theorem 3.2 we have

Q8(a)−
Ad8
c8

P8(a) = 0 i.e. A =
c8Q8(a)

d8P8(a)
= 1,

which is a contradiction.

Hence all the zeros of the polynomial
(
Q8(z)− Ad8

c8
P8(a)

)
are simple namely

β̂i for i = 1, 2, . . . 8. Using the Second Fundamental Theorem, (5.11) and (5.13)
we obtain

7T (r, g(k)) ≤
8∑

i=1

N(r, β̂i; g
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤ N(r, a; f (k)) +

2∑
i=1

N(r, α̂i; f
(k)) +N(r,∞; g(k)) + S(r, f (k))

≤
(
2 +

1

k + 1

)
T (r, g(k)) + S(r, g(k)),

which is a contradiction.

Case 2: Let us suppose that A = −
(

c8
P8(a)

)
. Clearly, 0 is zero of(

Q8(z)− Ad8

c8
P8(a)

)
of multiplicity 3 and other zeros are simple say γ̂i for
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i = 1, 2, . . . 5. Using the Second Fundamental Theorem, (5.11) and (5.13) we
possess

5T (r, g(k)) ≤ N(r, 0; g(k)) +

5∑
i=1

N(r, γ̂i; g
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤ N(r, a; f (k)) +

2∑
i=1

N(r, α̂i; f
(k)) +N(r,∞; g(k)) + S(r, g(k))

≤
(
2 +

1

k + 1

)
T (r, g(k)) + S(r, g(k)),

which is a contradiction.

As

Q8(a)−
Ad8
c8

P8(a) = Q8(a) + d8 = Q̂8(a) ̸= 0,

in this case a is not a zero of the polynomial
(
Q8(z)− Ad8

c8
P8(a)

)
.

Hence all the zeros of the polynomial
(
Q8(z)− Ad8

c8
P8(a)

)
are simple and

using the same arguments that were used to handle the situation in Case 1 we
will again arrive a contradiction.

So A = 1 and We have

F8 = G8

which implies

(g(k))5(h8 − β)

8
− 5a(g(k))4(h7 − β)

7
+

5a2(g(k))3(h6 − β)

3
− 2a3(g(k))2(h5 − β)

+
5a4(g(k))(h4 − β)

4
− a5(h3 − β)

3
≡ 0,

where h = f(k)

g(k) and β = c8
a5d8

.

Next if P8(z) = Q8(z) we have from (5.10), Lemma 4.9 and Lemma 4.10,
f (k) ≡ g(k).
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