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Multi-dimensional Poisson transform and applications
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Abstract. In this paper, we consider several new types of multi-
dimensional Poisson transforms for the functions with values in complex
Banach spaces. We also prove some new properties of multidimensional
vector-valued Laplace transform and analyze certain connections between
the solutions of the abstract fractional partial differential equations and
the abstract fractional partial difference equations.

1. Introduction and preliminaries

Fractional calculus, discrete fractional calculus, fractional differential equa-
tions and fractional difference equations are rapidly growing fields of research
of many authors; cf. the monographs [3, 9, 10, 13, 14, 22], the doctoral disser-
tation of E. Bazhlekova [4] and the references quoted therein for more details in
this direction. Fractional differential-difference equations have received consid-
erable attention in the last three decades due to their tremendous application
potential. The theories of fractional equations on continuous and discrete time
domains are well established now and the literature on fractional differential-
difference equations rapidly grows. We will only mention here that the frac-
tional differential-difference equations are incredibly important in modeling of
various phenomena appearing in mathematical physics, viscoelasticity, optics,
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acoustics, rheology, bioengineering, control theory, electrical and mechanical
engineering and so on.

On the other hand, the twodimensional scalar-valued Laplace transform was
first considered by D. L. Bernstein [5]-[6] and J. C. Jaeger [12] (1939–1941). The
multidimensional scalar-valued Laplace transform has been considered by many
authors so far and has numerous delightful applications to the partial differen-
tial equations; for more details about the multidimensional Laplace transform
and its applications, we refer the reader to the list of references quoted in the
recent research article [18].

The vector-valued Poisson transform has been first considered in the pio-
neering paper [21] by C. Lizama, where the author has also presented some
applications of Poisson transform to the abstract fractional difference equa-
tions. The main aim of this research article is to extend some structural results
from [21] to the higher-dimensional setting. We also further analyze here the
multidimensional vector-valued Laplace transform and clarify certain relations
between the solutions of the abstract (fractional) partial differential equations
and the solutions of the abstract (fractional) difference equations of several
variables. Our main results are Theorem 2.3, Theorem 2.7 and Theorem 2.8.

The organization and main ideas of this research article can be simply ex-
plained as follows. After fixing the notation and preliminaries used in the
paper, we recall the basic definitions about the multidimensional vector-valued
Laplace transform and prove some new results in this direction; cf. Proposi-
tion 1.1 in Subsection 1.1. Subsection 1.2 recalls the basic definitions about the
multi-dimensional fractional calculus; see [18] for more details in this direction.
Our main structural results are given in Section 2, where we analyze the multi-
dimensional vector-valued Poisson transforms; the applications to the abstract
partial differential-difference equations are given in Subsection 2.1 and the ap-
plications to the abstract fractional partial differential-difference equations are
given in Subsection 2.2.

Notation and preliminaries. In the sequel, we will always assume that
n ∈ N, (X, ∥ · ∥) is a complex Banach space; Nn := {1, ..., n} and ⌈s⌉ :=
inf{k ∈ Z : s ≤ k} (s ∈ R). The finite convolution product ∗0 of the Lebesgue
measurable functions a(·) and b(·) defined on [0,∞) is given by (a ∗0 b)(t) :=∫ t

0
a(t− s)b(s) ds, t ≥ 0. By Γ(·) we denote the Euler Gamma function; we set

gα(t) := tα−1/Γ(α), t > 0 and g0(t) := δ(t), the Dirac δ-distribution.

If u ∈ L1
loc([0,∞)n : X), j ∈ Nn, αj > 0 and a ∈ L1

loc([0,∞)n), then we
define

J
αj

tj u
(
x1, ..., xj−1, xj , xj+1, ...xn

)
:=

∫ xj

0

gαj

(
xj − s

)
u
(
x1, ..., xj−1, s, xj+1, ...xn

)
ds,
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and(
a ∗0 u

)
(x) :=

∫ x1

0

·.... ·
∫ xn

0

a
(
x1 − s1, ..., xn − sn

)
u
(
s1, ..., sn

)
ds1 · ... · dsn,

for any x =
(
x1, ..., xn

)
∈ [0,∞)n.

Further on, if α > 0, then the Cesàro sequence (kα(v))v∈N0 is defined by

kα(v) :=
Γ(v + α)

Γ(α)v!
, v ∈ N0.

It is well-known that, for every α > 0 and β > 0, we have kα ∗0 kβ ≡ kα+β .
Define k0(0) := 1 and k0(v) := 0, v ∈ N; then we have kα ∗0 kβ ≡ kα+β for all
α, β ≥ 0.

If (uk) is a sequence in X, then the Euler forward difference operator ∆ is
defined by ∆uk := uk+1 − uk. The operator ∆m is defined inductively; then,
for every integer m ≥ 1, we have:

∆muk =

m∑
j=0

(−1)m−j

(
m

j

)
uk+j .

If j = (j1, ..., jn) ∈ Nn
0 and k = (k1, ..., kn) ∈ Nn

0 , then we write j ≤ k if and
only if jm ≤ km for all 1 ≤ m ≤ n. If the sequences (ak)k∈Nn

0
and (bk)k∈Nn

0
are

given, then we define (a ∗0 b)(·) by

(a ∗0 b)(k) :=
∑

j∈Nn
0 ;j≤k

ak−jbj, k ∈ Nn
0 .

It can be simply proved that the convolution product ∗0 is commutative and
associative. Further on, if a(·) is a given sequence in X which depends on the
variables v1, ..., vn, then we define

∆via
(
v1, ..., vi, ..., vn

)
:= a

(
v1, ..., vi + 1, ..., vn

)
− a
(
v1, ..., vi, ..., vn

)
.

After that, we set ∆2
vivja := ∆vi∆vja and ∆2

vivia := ∆vi
∆via; the terms

∆m
vi1 ...vim

a and ∆
|α|
v
α1
1 ·...·vαn

n
a

are defined recursively, as for the partial derivatives of functions (αi ∈ N0;
|α| = α1+...+αn). It is worth noting that, for every permutation σ : Nn → Nn,
we have

∆
|α|
v
α1
1 ·...·vαn

n
a = ∆

|α|
v
ασ(1)

σ(1)
·...·v

ασ(n)

σ(n)

a,

as easily approved. Many other important results of mathematical analysis, like
Green’s formula in the plane and Grönwall inequality, have analogues for the
difference operators; see [7, pp. 23–25, 43–44] for more details in this direction.
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1.1. Multidimensional vector-valued Laplace transform

Suppose that f : [0,+∞)n → X is a locally integrable function. Then the
multidimensional vector-valued Laplace transform of f(·), denoted by F (·) =
f̃ = Lf , is defined through

F
(
λ1, ..., λn

)
:= lim

T→+∞

∫
[0,T ]n

e−λ1t1−...−λntnf
(
t1, ..., tn

)
dt1 ... dtn

:=

∫
[0,+∞)n

e−λ1t1−...−λntnf
(
t1, ..., tn

)
dt1 ... dtn,

if it is well-defined. Our basic assumption henceforth will be:

(GR) f(·) is Lebesgue measurable and there exist real constants ω1 ∈ R, ..., ωn ∈
R, η1 ∈ (−1,+∞), ..., ηn ∈ (−1,+∞) and ζ1 ∈ (−1,+∞), ..., ζn ∈
(−1,+∞) such that∥∥∥f(t1, ..., tn)∥∥∥ ≤ M

(
tη1

1 + tζ11

)
· ... ·

(
tηn
n + tζnn

)
exp
(
ω1t1 + ...+ ωntn

)
,

for a.e. t1 ≥ 0, ..., tn ≥ 0.(1.1)

In this case, the Fubini’s theorem implies that the function F (λ1, ..., λn) is well-
defined for ℜλ1 > ω1, ..., ℜλn > ωn and the Lebesgue dominated convergence
theorem implies that F (·) is analytic in this region of Cn (see [11] for more
details about analytic functions of several complex variables).

The collection of all Lebesgue measurable functions f(·) which satisfies con-
dition (GR) forms a vector space with the usual operations. Furthermore, if
f(·) satisfies (GR) with X = C, g : [0,+∞)n → X is Lebesgue measurable and
there exist real constants ω1,g ∈ R, ..., ωn,g ∈ R, η1,g ∈ (−1,+∞), ..., ηn,g ∈
(−1,+∞) and ζ1,g ∈ (−1,+∞), ..., ζn,g ∈ (−1,+∞) such that∥∥∥g(t1, ..., tn)∥∥∥ ≤ M

(
t
η1,g

1 + t
ζ1,g
1

)
· ... ·

(
tηn,g
n + tζn,gn

)
exp
(
ω1,gt1 + ...+ ωn,gtn

)
,

for a.e. t1 ≥ 0, ..., tn ≥ 0,

then the pointwise product [fg](·) also satisfies (GR), provided that

min
{
ηj,g + ηj , ηj,g + ζj , ζj,g + ηj , ζj,g + ζj : 1 ≤ j ≤ n

}
> −1.(1.2)

In our recent research article [18], we have proved the complex inversion
theorem for the multidimensional vector-valued Laplace transform. Now we
will state and prove the following statements concerning the multi-dimensional
Laplace transform, which will be sufficiently enough for our later purposes (cf.
also the statements of [2, Theorem 1.5.1, Proposition 1.6.4], which will not be
fully generalized to the multi-dimensional setting here):
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Proposition 1.1. (i) Suppose that f : [0,+∞)n → X satisfies (GR). Then
we have

F (v1,...,vn)(λ1, ..., λn) = (−1)v1+...+vn

(
L

[
·v11
v1!

· ... · ·
vn
n

vn!
f
(
·1, ..., ·n

)])
(λ1, ..., λn),

(1.3)

for ℜλ1 > ω1, ..., ℜλn > ωn and (v1, ..., vn) ∈ Nn
0 .

(ii) Suppose that a ∈ L1
loc([0,+∞)n) satisfies (GR) with X = C, the constants

ω1 ∈ R, ..., ωn ∈ R and the constants η1 ∈ (−1,+∞), ..., ηn ∈ (−1,+∞)
and ζ1 ∈ (−1,+∞), ..., ζn ∈ (−1,+∞) replaced therein with the con-
stants η1,a ∈ (−1,+∞), ..., ηn,a ∈ (−1,+∞) and ζ1,a ∈ (−1,+∞), ...,
ζn,a ∈ (−1,+∞). Suppose, further, that f ∈ L1

loc([0,+∞)n : X) satisfies
(GR) with the same constants ω1 ∈ R, ..., ωn ∈ R; then (a ∗0 f)(·) ∈
L1
loc([0,+∞)n) satisfies (GR) and we have:

L
(
a ∗0 f

)
(λ1, ..., λn) = La(λ1, ..., λn) · Lf(λ1, ..., λn),(1.4)

for ℜλ1 > ω1, ..., ℜλn > ωn.

Proof. Keeping in mind the estimate (1.1), the part (i) follows from a
simple application of the Lebesgue dominated convergence theorem. It can be
simply shown that (a ∗0 f)(·) is Lebesgue measurable; furthermore, a simple
computation involving the Fubini’s theorem and the identity gc ∗0 gd = gc+d for
c, d > 0 shows that there exist positive real constants M, M1 > 0 such that:∥∥(a ∗0 f)(x1, ..., xn)

∥∥ ≤ Mn exp
(
ω1x1 + ...+ ωnxn

)
·
∫ x1

0

·... ·
∫ xn

0

(
(x1 − t1)

η1 + (x1 − t1)
ζ1
)
· ... ·

(
(xn − tn)

ηn + (xn − tn)
ζn
)

×
(
tη1

1 + tζ11

)
· ... ·

(
tηn
n + tζnn

)
dt1 · ... · dtn

≤ Mn
1

(
x
η1;1

1 + x
ζ1;1
1

)
· ... ·

(
xηn;1
n + xζn;1

n

)
exp
(
ω1x1 + ...+ ωnxn

)
,

where ηj;1 = min(ηj,a + ηj + 1, ηj,a + ζj + 1, ζj,a + ηj + 1, ζj,a + ζj + 1) and
ζj;1 = max(ηj,a+ηj+1, ηj,a+ζj+1, ζj,a+ηj+1, ζj,a+ζj+1) for 1 ≤ j ≤ n. The
formula (1.4) can be deduced following the lines of the proofs of [8, Theorem 3.1,
Theorem 4.1], where the author has considered the double Laplace transform
in the scalar-valued setting.

1.2. Multi-dimensional fractional calculus

In this subsection, we recall the basic definitions about the multi-dimensional
generalized Hilfer fractional derivatives and differences ([18]).
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If δ(t) denotes the Dirac delta distribution, then we set
∫ t

0
δ(t− s)f(s) ds ≡

f(t). Suppose first that u : [0,∞) → X is locally integrable, α > 0, m = ⌈α⌉,
a ∈ L1

loc([0,∞)) or a(t) = δ(t), and b ∈ L1
loc([0,∞)) or b(t) = δ(t). Set va(t) :=∫ t

0
a(t− s)u(s) ds, t ≥ 0. The following extension of the usual Hilfer fractional

derivative Dα,β
t u(t), when a(t) = g(1−β)(m−α)(t) and b(t) = gβ(m−α)(t) for

some β ∈ [0, 1], has recently been introduced in [20] (for β = 0, resp. β = 1,
we get the usual Riemann-Liouville fractional derivative Dα

Ru of order α, resp.,
the Caputo fractional derivative Dα

Cu of order α):

Definition 1.2. The generalized Hilfer (a, b, α)-fractional derivative of func-
tion u(·), denoted shortly byDα

a,bu, is defined for any locally integrable function

u(·) such that the function v
(m−1)
a (t) is locally absolutely continuous for t ≥ 0,

by

Dα
a,bu(t) :=

(
b ∗0 v(m)

a

)
(t), a.e. t ≥ 0.(1.5)

We similarly define the above notion for locally integrable functions defined
on the finite intervals [0, T ] and [0, T ), where T > 0.

Assume now that u : N0 → X, α > 0, m = ⌈α⌉, a : N0 → C and b : N0 → C.
The following notion is a discrete version of the notion considered above:

Definition 1.3. The generalized Hilfer (a, b, α)-fractional derivative of se-
quence u(·), denoted shortly by ∆α

a,bu, is defined by

∆α
a,bu(v) :=

(
b ∗0 ∆m

(
a ∗0 u

))
(v), v ∈ N0.

If 0 ≤ β ≤ 1, then the usual Hilfer fractional derivative ∆α,βu of order α
and type β is defined as the generalized Hilfer (a, b, α)-fractional derivative of
u(·), with a(v) = k(1−β)(m−α)(v) and b(v) = kβ(1−α)(v); for β = 0, resp. β = 1,
we get the usual Riemann-Liouville fractional derivative ∆αu of order α, resp.,
the Caputo fractional derivative ∆α

Cu of order α. Set

D0
a,bu := a ∗0 b ∗0 u and ∆0

a,bu := a ∗0 b ∗0 u.

Assume now that 0 < Tj < +∞ and Ij = [0, Tj), Ij = [0, Tj ] or Ij = [0,+∞)
for 1 ≤ j ≤ n. Set I := I1 × I2 × ...× In. Suppose that u : I → X is a locally
integrable function and, for every j ∈ Nn, aj ∈ L1

loc(Ij) or aj(t) = δ(t), and
bj ∈ L1

loc(Ij) or bj(t) = δ(t). Suppose further that αj ≥ 0 for all j ∈ Nn. Define
α := (α1, ..., αn) and

Dα
a,bu

(
x1, ..., xn

)
:=

[
Dα1

a1,b1

(
Dα2

a2,b2

(
...

(
Dαn

an,bn
u
(
·, ..., ·

))
...

))](
x1, ..., xn

)
,

(1.6)
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for a.e. (x1, ..., xn) ∈ I, provided that the right hand side of (1.6) is well-
defined. Here, we suppose that the variables x1, x2, ..., xn−1 are fixed in the
computation of the term Dαn

an,bn
u(x1, ..., xn), ..., as well as that that the vari-

ables x2, x3, ..., xn are fixed in the computation of the final term on the right
hand side of (1.6). We call Dα

a,bu the multi-dimensional generalized Hilfer
(a,b, α)-fractional derivative of the function u(·). If for each j ∈ Nn we have
D

αj

aj ,bj
= D

αj

R , resp., for each j ∈ Nn we have D
αj

aj ,bj
= D

αj

C , then the cor-
responding partial fractional derivative Dα

a,b is called the multi-dimensional
Riemann-Liouville fractional operator (cf. also [22, pp. 340–342]), resp., the
multi-dimensional Caputo fractional operator.

In the discrete setting, we suppose that u : Nn
0 → X, aj : N0 → C and

bj : N0 → C are given sequences (1 ≤ j ≤ n). We define

∆α
a,bu

(
v1, ..., vn

)
:=

[
∆α1

a1,b1

(
∆α2

a2,b2

(
...

(
∆αn

an,bn
u
(
·, ..., ·

))
...

))](
v1, ..., vn

)
,

(1.7)

for any (v1, ..., vn) ∈ Nn
0 ; note that the right-hand side of (1.7) is always

well-defined. We call ∆α
a,bu the multi-dimensional generalized Hilfer (a,b, α)-

fractional derivative of the sequence u(·); the multi-dimensional Riemann-Liouville
fractional difference operator ∆α

R and the multi-dimensional Caputo fractional
difference operator ∆α

C are defined similarly as above.

In the sequel, we shall primarily use the fractional partial derivatives of the
Riemann-Liouville or Caputo type.

2. Multi-dimensional Poisson transforms

In this section, we will continue our recent investigation of Poisson like trans-
forms and explain how the already established results and ideas can be simply
transferred to the multi-dimensional setting. Suppose that u : [0,∞)n → X is
a given locally integrable function and the value of

[P (u)](v) := [P (u)]
(
v1, ..., vn

)
:=

∫
[0,∞)n

e−x1−...−xn
xv1
1

v1!
· ... · x

vn
n

vn!
u
(
x1, ..., xn

)
dx1 dx2 ... dxn

is well-defined for all v1 ∈ N0, ..., vn ∈ N0. We call the mapping u 7→ P (u) the
multi-dimensional Poisson transform; in terms of the multidimensional vector-
valued Laplace transform, we have



8 Marko Kostić

[P (u)]
(
v1, ..., vn

)
=

(
L

[
·v11
v1!

· ... · ·vnn
vn!

u
(
·1, ..., ·n

)])
(1, ..., 1),

(
v1, ..., vn

)
∈ Nn

0 .

We can simply prove that∫
[0,∞)n

∥∥u(x1, ..., xn

)∥∥ dx1 dx2 ... dxn < +∞ implies
∑

v∈Nn
0

∥∥[P (u)](v)
∥∥ < +∞.

We will analyze the multidimensional vector-valued Z-transform of sequences
and its applications in our forthcoming paper [19], where we will also extend
the statement of [21, Theorem 3.1] to the multi-dimensional setting. Now we
will reconsider [21, Theorem 3.4] in the multi-dimensional setting:

Theorem 2.1. Suppose that a ∈ L1
loc([0,+∞)n) satisfies (GR) with X =

C, the constants ω1 ∈ (−∞, 1), ..., ωn ∈ (−∞, 1) and the constants η1 ∈
(−1,+∞), ..., ηn ∈ (−1,+∞) and ζ1 ∈ (−1,+∞), ..., ζn ∈ (−1,+∞) replaced
therein with the constants η1,a ∈ (−1,+∞), ..., ηn,a ∈ (−1,+∞) and ζ1,a ∈
(−1,+∞), ..., ζn,a ∈ (−1,+∞). Suppose, further, that f ∈ L1

loc([0,+∞)n :
X) satisfies (GR) with the same constants ω1 ∈ (−∞, 1), ..., ωn ∈ (−∞, 1).
Then [P (a∗0f)](v1, ..., vn), [P (a)](v1, ..., vn) and [P (f)](v1, ..., vn) exist for any
(v1, ..., vn) ∈ Nn

0 ; furthermore, we have
(2.1)[
P (a ∗0 f)

]
(v1, ..., vn) = [P (a)](v1, ..., vn) · [P (f)](v1, ..., vn), (v1, ..., vn) ∈ Nn

0 .

Proof. By Proposition 1.1(ii), we have that (a∗0 f)(·) ∈ L1
loc([0,+∞)n) satis-

fies (GR) and (1.4) holds. It is clear that [P (a∗0f)](v1, ..., vn), [P (a)](v1, ..., vn)
and [P (f)](v1, ..., vn) exist for any (v1, ..., vn) ∈ Nn

0 . Set now G := L(a ∗0 f).
Then we have:

[
P (a ∗0 f)

]
(v1, ..., vn) = (−1)v1+....+vn

1

v1!
· ... · 1

vn!
G(v1,...,vn)(1, ..., 1)

=
(−1)v1+....+vn

v1! · ... · vn!

[
[La](v1,...,vn)(λ1, ..., λn) · [Lf ](v1,...,vn)(λ1, ..., λn)

]
(λ1,...,λn)=(1,...,1)

=
(−1)v1+...+vn

v1! · ... · vn!
∑

j∈Nn
0 ;j≤v

(
v1
j1

)
· ... ·

(
vn
jn

)
× [La](v1−j1,...,vn−jn)(1, ..., 1) · [Lf ](j1,...,jn)(1, ..., 1)

=
1

v1! · ... · vn!
∑

j∈Nn
0 ;j≤v

(
v1
j1

)
· ... ·

(
vn
jn

)
[P (a)](v − j) · [P (f)](j)

× (v1 − j1)! · ... · (vn − jn)! · j1! · .... · jn![P (a)](v − j) · [P (f)](j)

=
∑

j∈Nn
0 ;j≤v

[P (a)](v − j) · [P (f)](j), (v1, ..., vn) ∈ Nn
0 ,
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where we have used Proposition 1.1(i)-(ii) and the Leibniz rule. This proves
(2.1) and completes the proof.

Remark 2.1. In the formulation of [21, Theorem 3.4], we must additionally
assume that the Laplace transform of function |a|(·) exists at the point 1. Only
in this way, we can apply [2, Proposition 1.6.4] as an essential ingredient in the
proof of [21, Theorem 3.4], which does not work if abs(a) < 1 < abs(|a|); here,
we use the same notion and notation as in [2].

2.1. Applications to the abstract partial differential equations

In this subsection, we will present some applications of multidimensional
vector-valued Poisson transform to the abstract partial differential equations.

Let us formally set (xv/v!) := 0, if −v ∈ N. We start with the following
illustrative example:

Example 2.2. Let us consider the partial differential operator ux1x1x2
(·, ·), in

the dimension n = 2, and let us assume that the partial derivatives ux1x1x2(·, ·),
ux1x1(·, ·), ux1(·, ·) and the function u(·, ·) are continuous on [0,∞)2, as well as
that

ux1x1x2

(
x1, x2

)
= g
(
x1, x2

)
,
(
x1, x2

)
∈ [0,∞)2.

Let v1 ∈ N0 and v2 ∈ N0 be fixed. Applying the Fubini’s theorem and the
partial integration with respect to the variable x2, we get:∫

[0,∞)2
e−x1−x2

xv1+2
1

(v1 + 2)!

xv2+1
2

(v2 + 1)!
ux1x1x2

(
x1, x2

)
dx1 dx2

=

∫
[0,∞)2

e−x1−x2
xv1+2
1

(v1 + 2)!

[
xv2+1
2

(v2 + 1)!
− xv2

2

v2!

]
ux1x1

(
x1, x2

)
dx1 dx2,(2.2)

provided that

lim
x2→+∞

e−x2
xv2+1
2

(v2 + 1)!
ux1x1

(
x1, x2

)
= 0, x1 ≥ 0(2.3)

and the both double integrals in (2.2) converges absolutely. Applying the Fu-
bini’s theorem and the partial integration two times more, with respect to the
variable x1, we get:∫

[0,∞)2
e−x1−x2

xv1+2
1

(v1 + 2)!

xv2+1
2

(v2 + 1)!
ux1x1x2

(
x1, x2

)
dx1 dx2

=

∫
[0,∞)2

e−x1−x2

[
xv1+2
1

(v1 + 2)!
− 2

xv1+1
1

(v1 + 1)!
+

xv1
1

v1!

][
xv2+1
2

(v2 + 1)!
− xv2

2

v2!

]
u
(
x1, x2

)
dx1 dx2,

(2.4)
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i.e.,[
∆3

x2
1x2

P (u)

](
v1, v2) =

∫
[0,∞)2

e−x1−x2
xv1+2
1

(v1 + 2)!

xv2+1
2

(v2 + 1)!
g
(
x1, x2

)
dx1 dx2,

provided that (2.3) holds, as well as

lim
x1→+∞

e−x1
xv1+2
1

(v1 + 2)!
ux1

(
x1, x2

)
= 0, x2 ≥ 0,

lim
x1→+∞

e−x1

[
xv1+2
1

(v1 + 2)!
− xv1+1

1

(v1 + 1)!

]
u
(
x1, x2

)
= 0, x2 ≥ 0,

the second integral in (2.4) converges absolutely and the integral∫
[0,∞)2

e−x1−x2

[
xv1+2
1

(v1 + 2)!
− xv1+1

1

(v1 + 1)!

][
xv2+1
2

(v2 + 1)!
− xv2

2

v2!

]
ux1

(
x1, x2

)
dx1 dx2

converges absolutely.

In general case, one can use the Fubini’s theorem and the partial integration
in order to see that the following result holds true:

Theorem 2.3. If D is a non-empty subset of Nn
0 , Aα is a closed linear operator

on X for all α ∈ D, and

∑
α∈D

Aα
∂αu

∂xα1
1 · ... · ∂xαn

n

(
x1, ..., xn

)
=
∑
α∈D

Aαu
(α)(x1, ..., xn

)
= g
(
x1, ..., xn

)
,

(2.5)

for any (x1, ..., xn) ∈ [0,∞)n, then we have∑
α∈D

Aα

[
∆

|α|
v
α1
1 ·...·vαn

n
P (u)

](
v1, ..., vn

)
=

∫
[0,∞)n

e−x1−...−xn
xv1+α1
1

(v1 + α1)!
· ... · xvn+αn

n

(vn + αn)!
g
(
x1, ..., xn

)
dx1 dx2 ... dxn,

for any (v1, ..., vn) ∈ Nn
0 , provided that u : [0,∞)n → X is continuous, the

integral on the right hand side of the above equality absolutely converges and, for
every v ∈ N, (v1, ..., vn) ∈ Nn

0 and for every multi-index α = (α1, ..., αn) ∈ D,
we have:
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0. The integral∫
[0,∞)n

e−x1−...−xn
xv1
1

v1!
· ... · x

vn
n

vn!
Aαu

(α)
(
x1, ..., xn

)
dx1 dx2 ... dxn

is covergent and the integral∫
[0,∞)n

e−x1−...−xn
xv1
1

v1!
· ... · x

vn
n

vn!
u(α)

(
x1, ..., xn

)
dx1 dx2 ... dxn

is convergent;

1. For every multi-index (α1, ..., αn−1, γn), where 0 ≤ γn ≤ αn, the mapping
∂α1+...+αn−1+γnu

∂x
α1
1 ·...·∂x

αn−1
n−1 ∂xγn

n
is continuous on [0,∞)n,∫

[0,∞)n
e−x1−...−xn

xv1
1

v1!
·...·x

vn
n

vn!

∥∥∥u(α1,...,αn−1,γn)
(
x1, ..., xn

)∥∥∥ dx1 dx2 ... dxn < +∞

and, for every multi-index (α1, ..., αn−1, βn), where 0 ≤ βn < αn, we have

lim
xn→+∞

e−xn xv
n

v!

∂α1+...+αn−1+βnu

∂xα1
1 · ... · ∂xαn−1

n−1 ∂xβn
n

(
x1, ..., xn

)
= 0, x1 ≥ 0, x2 ≥ 0, ..., xn−1 ≥ 0;

2. For every multi-index (α1, ..., γn−1), where 0 ≤ γn−1 ≤ αn−1, the map-

ping ∂α1+...+γn−1u

∂x
α1
1 ·...·∂x

γn−1
n−1

is continuous on [0,∞)n,∫
[0,∞)n

e−x1−...−xn
xv1
1

v1!
·...·x

vn
n

vn!

∥∥∥u(α1,...,γn−1)
(
x1, ..., xn

)∥∥∥ dx1 dx2 ... dxn < +∞

and, for every multi-index (α1, ..., βn−1), where 0 ≤ βn−1 < αn−1, we
have

lim
xn−1→+∞

e−xn−1
xv
n−1

v!

∂α1+...+βn−1u

∂xα1
1 · ... · ∂xβn−1

n−1

(
x1, ..., xn

)
= 0,

x1 ≥ 0, x2 ≥ 0, ..., xn−2 ≥ 0, xn ≥ 0;

...;

n. For every integer γ1 ∈ [0, α1], the mapping (∂γ1u/∂xγ1

1 ) is continuous on
[0,∞)n,∫

[0,∞)n
e−x1−...−xn

xv1
1

v1!
· ... · x

vn
n

vn!

∥∥∥∥∥∂γ1u

∂xγ1

1

(
x1, ..., xn

)∥∥∥∥∥ dx1 dx2 ... dxn < +∞

and, for every integer β1 ∈ [0, α1), we have

lim
x1→+∞

e−x1
xv
1

v!

∂β1u

∂xβ1

1

(
x1, ..., xn

)
= 0, x2 ≥ 0, x3 ≥ 0, ..., xn ≥ 0.
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Observe only that the prescribed assumptions imply, due to the assumption
[0.], the closedness of the operators Aα and [14, Theorem 1.2.3], that∑
α∈D

Aα

∫
[0,∞)n

e−x1−...−xn
xv1+α1
1

(v1 + α1)!
· ... · xvn+αn

n

(vn + αn)!
u(α)

(
x1, ..., xn

)
dx1 dx2 ... dxn

=

∫
[0,∞)n

e−x1−...−xn
xv1+α1
1

(v1 + α1)!
· ... · xvn+αn

n

(vn + αn)!
g
(
x1, ..., xn

)
dx1 dx2 ... dxn

for any (x1, ..., xn) ∈ [0,∞)n, so that the required conclusion follows similarly
as in Example 2.2, by means of the assumptions [1.]-[n.].

Remark 2.2. It is worth noting that we consider the equation (2.5) without
initial conditions. If, for every multi-index α = (α1, ..., αn) ∈ D, we impose the
initial values

un

(
x1, ...xn−1

)
=

∂α1+...+αn−1+βnu

∂xα1
1 · ... · ∂xαn−1

n−1 ∂xβn
n

(
x1, ..., xn−1, 0

)
, x1 ≥ 0, x2 ≥ 0, ..., xn−1 ≥ 0,

in [1.], ...,

u1

(
x2, ..., xn

)
=

∂β1u

∂xβ1

1

(
0, x2, ..., xn

)
, x2 ≥ 0, x3 ≥ 0, ..., xn ≥ 0,

in [n.], then the value of∫
[0,∞)n

e−x1−...−xn
xv1
1

v1!
· ... · x

vn
n

vn!
g
(
x1, ..., xn

)
dx1 dx2 ... dxn,

(
v1, ..., vn) ∈ Nn

0 ,

can be computed in a similar manner. Details can be left to the interested
readers.

We will illustrate Theorem 2.3 with two well-known examples:

Example 2.4. If t = x1, x = x2, v1 = i, v2 = j, ai,j = [Pu](i, j) and

ut = uxx, resp., utt = uxx,

then

ai,j+2 = 2ai+1,j+1 − ai+1,j , resp., − 2ai+1,j+2 + ai,j+2 = −2ai+2,j+1 + ai+2,j ,
(2.6)

for any i, j ∈ N0, provided that the requirements of Theorem 2.3 hold. Con-
cerning the uniqueness of solutions of differences equations in (2.6), we will only
note here that the first of these equations is uniquely solvable for (i, j) ∈ N2

0,
provided that the initial values ai,0 and a0,j are given for all i, j ∈ N0, as well as
that the second of these equations is uniquely solvable for (i, j) ∈ N2

0, provided
that the initial values ai,0, ai,1, a0,j and a1,j are given for all i, j ∈ N0.
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Example 2.5. In many published research articles by now, the authors have
analyzed the well-posedness and qualitative properties of solutions to the fol-
lowing abstract (degenerate) higher-order differential equation

Anu
(n)(t) +An−1u

(n−1)(t) + ...+A0u(t) = f(t), t ≥ 0,

where Aj are differential operators with constant coefficients on the space X =
Lp(Rn), where 1 ≤ p ≤ +∞; cf. [14], [23] and references cited therein for more
details in this direction. If we set t = x1 and denote the variables in Lp(Rn) by
x2, ..., xn+1, we can provide a great number of applications of Theorem 2.3 to
the abstract partial differential equations with constant coefficients, by applying
also certain changes of variables with respect to the variables x2, ..., xn+1.

In order to avoid any form of repeating and plagiarism, we will only empha-
size here the following important issues about the multi-dimensional Poisson
like transforms:

(i) It is worth noting that Theorem 2.3, Example 2.2 and Example 2.4 can
be simply reformulated for the Poisson like transform[

Pa1,...,an(u)
]
(v) :=

[
Pa1,...,an(u)

](
v1, ..., vn

)
:=

∫
[0,∞)n

e−a1x1−...−anxn
xv1
1

v1!
· ... · x

vn
n

vn!
u
(
x1, ..., xn

)
dx1 dx2 ... dxn,

where aj > 0 and vj ∈ N0 for 1 ≤ j ≤ n. In such a way, we can extend
[16, Theorem 4] to the higher-dimensional setting. The statement of
[16, Theorem 5] can be also simply transferred to the higher-dimensional
setting by the use of the Weyl convolution product (a ◦ b)(·); cf. [16] for
the notion.

(ii) Following our consideration from [16], where we have considered the Pois-
son like transforms for not exponentially bounded functions, we can also
put forward to consideration the following multi-dimensional transform:[

Pa,b,ω,j(u)
]
(v) :=

[
Pa,b,ω,j(u)

](
v1, ..., vn

)
:=

∫
[0,∞)n

e−b1(a1x1)
j1−...−bn(anxn)

jn

× (ω1x1)
v1

v1!
· ... · (ωnxn)

vn

vn!
u
(
x1, ..., xn

)
dx1 dx2 ... dxn,

where as ∈ R, bs ∈ R \ {0}, ωs ∈ R \ {0}, js ∈ N and vs ∈ N0 for
1 ≤ s ≤ n. Applying the partial integration, we can simply show that for
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each multi-index (α1, ..., αn) ∈ Nn we have[
Pa,b,ω,j

(
u(α1,...,αn−1,αn)

)](
v1 + α1, ..., vn−1 + αn−1, vn + αn

)
= −ωn

[
Pa,b,ω,j

(
u(α1,...,,αn−1,αn−1)

)](
v1 + α1, ..., vn−1 + αn−1, vn + αn − 1

)
+ jna

jn
n bn

(vn + αn + jn − 1)!

(vn + αn)!

[
Pa,b,ω,j

(
u(α1,...,,αn−1,αn−1)

)]
(
v1 + α1, ..., vn−1 + αn−1, vn + αn + jn − 1

)
, (v1, ..., vn) ∈ Nn

0 ,

under certain logical assumptions. Proceeding in this way, we can find
a form of the abstract nonautonomous difference equations of several
variables which corresponds to the abstract partial differential equation
(2.5).

(iii) In [16], we have also examined the following Poisson like transform:

v 7→ ya,b,c,j,ω(v) :=

∫ +∞

0

e−b(ct−1+at)j (ωt)v−
1
2

Γ(v + 1
2 )

u(t) dt, v ∈ Z,

where a ∈ R, b, c, ω ∈ R \ {0} and j ∈ N. The interested readers may
try to introduce some multi-dimensional analogues of this transform as
well as to reconsider Theorem 2.3 in this framework.

(iv) It is well known that a class of boundary value problems for the partial
differential equations depending of variables x1 and x2, where 0 ≤ x1 ≤ T
and x2 ≥ 0, can be solved using the Fourier series and the method of
separation of variables. The Poisson transforms can be also defined and
analyzed for the functions defined on the closed rectangles; we can also
prove an analogue of Theorem 2.3 in this framework.

2.2. Applications to the abstract fractional partial differential equa-
tions

In this subsection, we will present some applications of the multidimensional
vector-valued Poisson transform to the abstract fractional partial differential
equations.

We start with the following illustrative example:

Example 2.6. Suppose that n ≥ 2, uj : [0,+∞) → C is a locally integrable
function (1 ≤ j ≤ n− 1) and un : [0,+∞) → X is a locally integrable function.
Set u(x1, ..., xn) := u1(x1) · ... · un(xn), x1 ≥ 0, ..., xn ≥ 0. Then an elementary
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application of the Fubini’s theorem shows that

[
P (u)

](
v1, ...., vn

)
=
[
P (u1)

](
v1
)
· ... ·

[
P (un)

](
vn
)
,
(
v1, ...., vn

)
∈ Nn

0 ,

(2.7)

provided that the integrals which define all terms in (2.7) converge abso-
lutely; here, we do not make any terminological difference between the multi-
dimensional Poisson transform with respect to the variables v1, ..., vn and the
one-dimensional Poisson transform with respect to the variable vj (1 ≤ j ≤ n).

Suppose that f : [0,+∞) → X is a locally integrable function, α > 0 and
m = ⌈α⌉. Then a careful inspection of the proof of [1, Theorem 5.5] shows that
the following equality holds true:[

P
(
Dα

t f
)]
(v +m) = ∆α

[
P (f)

]
(v), v ∈ N0,

provided that h = gm−α ∗0 f ∈ Cm−1([0,+∞) : X), h(m−1)(·) is locally abso-
lutely continuous on [0,+∞) and there exist real numbersM > 0 and ω ∈ (0, 1)
such that ∥h(m)(t)∥ ≤ Meωt for a.e. t ≥ 0. In [16], we have proved the following
formula:[

P
(
Dα

Cf
)]
(v +m) = ∆α

[
P (f)

]
(v)

+
(−1)v+m+1

(v +m)!

m−1∑
k=0

(α− 1− k) · ... · (α− k − v −m)f (k)(0), v ∈ N0,

under certain reasonable assumptions. Using the last two formulae and (2.7),
we can simply compute the multi-dimensional Poisson transform of the frac-
tional partial derivatives Dαu forms from the compositions of the Riemann-
Liouville fractional derivatives of functions uj(·) for j ∈ J1 and the Caputo
fractional derivatives of functions uj(·) for j ∈ J2, where Nn = J1 ∪ J2. For
example, if J2 = ∅, α1 ≥ 0, ..., αn ≥ 0, α = (α1, ..., αn) and mj = ⌈αj⌉ for
1 ≤ j ≤ n, then we have:[

P
(
Dα1

R,x1
· ... ·Dαn

R,xn
u
)](

v1 +m1, ..., vn +mn

)
=

[
P
(
Dα1

R u1

)](
v1 +m1

)
· ... ·

[
P
(
Dαn

R un

)](
vn +mn

)
= ∆α1

[
P
(
u1

)](
v1
)
· ... ·∆αn

[
P
(
un

)](
vn
)

=
[
∆αP (u)

](
v1, ..., vn

)
,
(
v1, ..., vn

)
∈ Nn

0 ,

under the following conditions:
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(i) The integrals which define the terms P (Dα1

R,x1
· ... ·Dαn

R,xn
u), P (Dα1

R u1), ...,
P (Dαn

R un), P (u), P (u1), ... and P (un) converge absolutely;

(ii) The functions h1 = gm1−α1 ∗0 u1(·), ..., hn = gmn−αn ∗0 un(·) are (m− 1)-

times continuously differentiable on [0,+∞), the functions h
(m1−1)
1 (·), ...,

h
(mn−1)
n (·) are locally absolutely continuous on [0,+∞) and there exist

real numbers M > 0 and ω ∈ (0, 1) such that ∥h(mj)
j (t)∥ ≤ Meωt for a.e.

t > 0 (1 ≤ j ≤ n).

We continue by stating the following general result (for simplicity, we denote
henceforth Dα1

R,x1
· ... ·Dαn

R,xn
u = u(α)):

Theorem 2.7. Suppose that u : [0,∞)n → X is a locally integrable function,
the term u(α) is well-defined and the following conditions hold true:

(i) The integral which defines the term [P (u(α))](v1 +m1, ..., vn +mn) con-
verges absolutely for all (v1, ...vn) ∈ Nn

0 .

(ii) The function h1 = Jm1−α1
t1 Dα2

R,x2
·...·Dαn

R,xn
u
(
x1, x2, ..., xn

)
∈ Cm1−1([0,+∞) :

X), h
(m1−1)
1 (·) is locally absolutely continuous on [0,+∞) and there exist

real numbers M > 0 and ω ∈ (0, 1) such that ∥h(m1)
1 (t)∥ ≤ Meωt for a.e.

t ≥ 0.

(iii) The integral∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!

xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn

converges absolutely for all (v1, ...vn) ∈ Nn
0 .

(iv) For every j ∈ {2, ..., n− 1}, the integral∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!
· ... ·

x
vj

j

vj !

x
vj+1+mj+1

j+1

(vj+1 +mj+1)!
· ... · xvn+mn

n

(vn +mn)!

×D
αj

R,xj
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn

converges absolutely for all (v1, ...vn) ∈ Nn
0 and the term which defines

the term [P (u)](v1, ..., vn) converges absolutely for all (v1, ...vn) ∈ Nn
0 .

(v) For every j ∈ {3, ..., n}, we have

hj = J
mj−1−αj−1

tj−1
D

αj

R,xj
·...·Dαn

R,xn
u
(
x1, x2, ..., xn

)
∈ Cmj−1−1([0,+∞) : X),
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h
(mj−1−1)
j (·) is locally absolutely continuous on [0,+∞) and there exist

real numbers M > 0 and ω ∈ (0, 1) such that ∥h(mj−1)
j (t)∥ ≤ Meωt for

a.e. t ≥ 0.

Then we have

[
P
(
u(α)

)](
v1 +m1, ..., vn +mn

)
=
[
∆αP (u)

](
v1, ..., vn

)
,
(
v1, ..., vn

)
∈ Nn

0 .

(2.8)

Proof. Keeping in mind condition (i), we can apply the Fubini’s theorem in
order to see that

[
P
(
u(α)

)](
v1 +m1, ..., vn +mn

)
=

∫
[0,+∞)n−1

e−x2−...−xn
xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×

[∫ +∞

0

e−x1
xv1+m1
1

(v1 +m1)!
Dα1

R,x1
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1

]
dx2 ... dxn.

Due to (ii)-(iii), we can apply [1, Theorem 5.5] and the Fubini’s theorem to
obtain that[

P
(
u(α)

)](
v1 +m1, ..., vn +mn

)
=

∫
[0,+∞)n−1

e−x2−...−xn
xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×

[
∆α1

x1

∫ +∞

0

e−x1
xv1
1

v1!
Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1

]
dx2 ... dxn

= ∆α1
x1

∫
[0,+∞)n−1

e−x2−...−xn
xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×

[∫ +∞

0

e−x1
xv1
1

v1!
Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1

]
dx2 ... dxn

= ∆α1
x1

∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!

xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn.

Keeping in mind the remaining assumptions and repeating the above procedure,
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we get:

[
P
(
u(α)

)](
v1 +m1, ..., vn +mn

)
= ∆α1

x1

∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!

xv2+m2
2

(v2 +m2)!
· ... · xvn+mn

n

(vn +mn)!

×Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn

= ∆α1
x1
∆α2

x2

∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!

xv2
2

v2!

xv3+m3
3

(v3 +m3)!
· ... · xvn+mn

n

(vn +mn)!

×Dα2

R,x2
· ... ·Dαn

R,xn
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn

= ∆α1
x1
∆α2

x2
· ... ·∆αn

xn

×
∫
[0,+∞)n

e−x1−x2−...−xn
xv1
1

v1!
· ... · x

vn
n

vn!
u
(
x1, x2, ..., xn

)
dx1 dx2 ... dxn,

which completes the proof.

Now we will state and prove the following analogue of Theorem 2.3 for the
fractional partial derivatives of the Riemann-Liouville type:

Theorem 2.8. Suppose that D is a non-empty subset of [0,+∞)n and Aα is
a closed linear operator on X for all α ∈ D; if α = (α1, ..., αn) ∈ D, then
we set mj = ⌈αj⌉ for 1 ≤ j ≤ n. Suppose further that (2.5) holds for a.e.
(x1, ..., xn) ∈ [0,∞)n. Then we have

∑
α∈D

Aα

[
∆αP (u)

](
v1, ..., vn

)
=

∫
[0,∞)n

e−x1−...−xn
xv1+m1
1

(v1 +m1)!
· ... · xvn+mn

n

(vn +mn)!
g
(
x1, ..., xn

)
dx1 dx2 ... dxn,

for any (v1, ..., vn) ∈ Nn
0 , provided that the following conditions hold true:

(i) Condition [0.] from the formulation of Theorem 2.3 holds;

(ii) For every multi-index α = (α1, ..., αn) ∈ D, (2.8) holds true.

Proof. Using conditions (i)-(ii) and [14, Theorem 1.2.3], the required state-
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ment simply follows from the next computation:

=

∫
[0,∞)n

e−x1−...−xn
xv1+m1
1

(v1 +m1)!
· ... · xvn+mn

n

(vn +mn)!
g
(
x1, ..., xn

)
dx1 dx2 ... dxn

=

∫
[0,∞)n

e−x1−...−xn
xv1+m1
1

(v1 +m1)!
· ... · xvn+mn

n

(vn +mn)!

∑
α∈D

Aαu
(α)(x1, ..., xn

)
dx1 dx2 ... dxn

=
∑
α∈D

Aα

∫
[0,∞)n

e−x1−...−xn
xv1+m1
1

(v1 +m1)!
· ... · xvn+mn

n

(vn +mn)!
u(α)(x1, ..., xn

)
dx1 dx2 ... dxn

=
∑
α∈D

Aα

[
P
(
u(α)

)](
v1 +m1, ..., vn +mn

)
=

∑
α∈D

Aα

[
∆αP (u)

](
v1, ..., vn

)
,
(
v1, ..., vn

)
∈ Nn

0 .

It is worth noting that Theorem 2.8 can be successfully applied to the
fractional partial equations considered in [18, Subsection 5.1, Subsection 5.2];
cf. also [22, Chapter 5].

3. Conclusions and final remarks

In this paper, we have examined the multi-dimensional Poisson transforms
and some connections between the solutions of the abstract (fractional) differ-
ential equations and the abstract (fractional) difference equations depending
on several variables. For the proofs of some structural results, we have used
the basic properties of the multidimensional vector-valued Laplace transform.

We close the paper with the observation that the existence and uniqueness
of almost periodic type solutions for various classes of the abstract integro-
differential-difference equations depending on several variables will be analyzed
in the forthcoming research monograph [15].
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