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Abstract. In this work we revisit the existence, uniqueness and expo-
nential decay of some classes of mild solutions which are almost periodic
(AP-), asymptotically almost periodic (AAP-) and pseudo almost peri-
odic (PAP-) of the scalar Linéard equation by employing the notion of
Green function and Massera-type principle. First, by changing variable
we convert this equation to a system of first order differential equations.
Then, we transform the problem into a framework of an abstract parabolic
evolution equation which associates with an evolution family equipped an
exponential dichtonomy and the corresponding Green function is exponen-
tially almost periodic. After that, we prove a Massera-type principle that
the corresponding linear equation has a unique AP-, AAP- and PAP- mild
solution if the right hand side and the coefficient functions are AP-, AAP-
and PAP- functions, respectively. The well-posedness of semilinear equa-
tion is proved by using fixed point arguments and the exponential decay of
mild solutions is established by using Gronwall’s inequality. Although our
works revisits some previous works on well-posedness of these types of mild
solutions for the Linéard equation but provide a difference view by using
Green function and go further on the aspects of asymptotic behaviour of
solutions and the construction of abstract theory. Our abstract results can
be also applied to other parabolic evolution equations.
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1. Introduction

Over the last century, various models of the Liénard type systems have been
widely studied due to important applications in engineering, physics, mechanics
and biology [28, 48, 49, 44, 37, 27]. Historically, in the late 1920s, Liénard
investigated the equation

(1.1) x′′ + ϵf(x)x′ + ω2x = 0,

in related to electrical circuits [36], where f(x) is even, ϵ is a positive scaling
parameter, and ω is a constant. In the case, when f(x) = x2 − 1 and ω = 1,
the equation (1.1) becomes the van der Pol oscillator, which is a popular model
for simulating the dynamics of nonlinear physical phenomena. The Liénard
systems have been motivated from mathematicians in the generation form

(1.2) x′′ + ϵf(x)x′ + g(x) = e(t).

It is very significant to have information about the qualitative behavior of
solutions of these type systems. Many studies on qualitative behaviors of so-
lutions such as periodicity, oscillation, almost periodicity and pseudo almost
periodicity are quite common in [28, 37, 44, 48, 49, 51]. One should also recall
that the concept of almost periodicity was introduced in the first time by Bohr
in the mid- twenties (see [10, 11, 12]). Then, the theory of almost periodic
functions was continuously getting development by some mathematicians like
Amerio and Prouse [2], Levitan [35], Besicovitch [8], Bochner [9], von Neumann,
Fréchet, Pontryagin, Lusternik, Stepanov, Weyl, etc. (see [13, 21]). The con-
cept of asymptotically almost periodicity was introduced later by the French
mathematician Fréchet. There is a serie of works of known authors dedicated
to asymptotically almost periodicity of solutions of differential equations, see
[21] for details. Besides, Zhang [53] gave the concept pseudo almost periodic
function to prove the existence of these solutions for a nonlinear parabolic equa-
tion. When we review the literature, we can discover some works on qualitative
behaviors of solutions. Fink [26] used the L1− norm as a Lyapunov function to
prove the existence of almost periodic solutions for the above equation in con-
dition 0 < 2 inf g′(x) ⩽ 2 sup g′(x) ⩽ inf f2(x) ⩽ sup f2(x) < ∞. Langenhop
and Seifert [34] have investigated the existence of almost periodic solutions for
the forced Liénard equation contained in the bounded region Ω ⊂ R2 and the
solution is asymptotically stable with respect to all solutions whose trajectories
enter Ω for all time. Moreover, Caraballo and D. Cheban ([14]) studied the ex-
istence and uniqueness of almost periodic and asymptotically almost periodic
mild solutions for the Liénard equation (1.2). In a series of works [16, 17, 18],
Cieutat et al. established the structure of the set of bounded solutions and
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existence of certain types of solutions (such as almost periodic, pseudo almost
periodic, etc...) both for the scalar and vectorial Liénard equations. In addi-
tion, Gao and Liu [28] studied the following almost periodic solutions of the
following multiple-delay Liénard equation

(1.3) x′′ + f(x(t))x(t)′ + g(x(t)) +

n∑
i=1

hi(x(t− σi(t)) = e(t),

where f and hi (where i = 0, 1, 2, ..., n) are continuous functions on R, and
the functions σi(t) ⩽ 0 (where i = 1, 2, ..., n) and e(t) are almost periodic on
R. Yazgan continued to show the existence of solutions for the Liénard -type
system with multiple-delay in the case the solutions are pseudo almost periodic
(see [52]) and more general, weighted pseudo almost automorphic by utilizing
some differential inequalities, the main features of the weighted pseudo almost
periodic and Banach fixed point theorem.

Since the previous works (see for examples [28, 48, 45]), by changing vari-
ables method the scalar Liénard-type equations can be transformed into an
abstract framework of nonautonomous parabolic evolution equations on a Ba-
nach space X and on the whole-line time axis as (see Subsection 2.2):

(1.4) u′(t) = A(t)u(t) + h(t, u(t)) for t ∈ R

and on the half-line time axis as

(1.5)

{
u′(t) = A(t)u(t) + h(t, u(t)) for t ∈ R+,
u(0) = u(0) ∈ X.

There is a rich literature which studies qualitative theory of parabolic evolution
equations such as well-posedness of mild solutions (and certain types of mild
solutions) and their stability under certain suitable conditions of operator A(t)
(see [7, 38, 40, 41, 43, 42] and many reference therein). Therefore, in the present
paper we shall use and develop the abstract results to revisit the original scalar
Liénard equation (and its-type equations). This approach provides a general
view in the study. We want to express in this paper the thought process in
the mind (which reflects the philosophy process of perception): we start from
the study of existence and stability of mild solutions for the scalar Liénard
equation. These problems lead us to come to study on an abstract parabolic
evolution equation. Then, we comeback to apply abstract results to the origin
equation. In addition, we find also that the abstract results can be applied to
some nonautonomous parabolic equations and other second-order equations.
This process is clearly demonstrated through the structure of this article.

The existence, uniqueness and stability for almost periodic mild solutions
and its generalizations for parabolic evolution equations (and the other equa-
tions which can be converted to parabolic evolution equations) have been ex-
tensively studied for a long time. We refer the readers to some useful books
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[2, 21, 25, 30, 35] which provide the theory on almost periodic functions and
its applications in PDE. In our knowledge, most of the works in this topic for
nonautonomous parabolic evolution equations the authors need the exponential
dichotomy of evolution family {U(t, s)}t⩾s and some suitable conditions on the
operator A(t) (which is associated with the equations) to prove the existence
of certain types of mild solutions. In particular, Schnaubelt et al. [38] provided
an important result about the equivalence between the existence an evolution
family (which satisfies exponential bounded condition and exponential dichton-
omy) and the existence of bounded mild solutions for nonautonomous parabolic
evolution equations. Then, Maniar and Schnaubelt [40] studied the existence of
almost periodic (defined on the whole-line time axis) and asymptotically almost
periodic (defined on the half-line time axis) mild solutions for non homogeneous
parabolic evolution equations. To do this, the authors in [40] considered that
there was an exponential bounded evolution family {U(t, s)}t⩾s which satisfies
exponential dichtonomy and they assume further that the resolvent of operator
A(t) (associated with the corresponding linear equations) is an almost periodic
function with respect to the time. In the same time, Batty et al. [7] showed
the existence results about asymptotically almost periodic mild solutions for
nonautonomous parabolic equations with asymptotically almost periodic ex-
ternal forces under the assumptions on the periodic condition of operator A(·)
and the spectrum of the monodromy operator V = U(q, 0) containing only
countably many points of the unit circle. In fact, the results in [7] generalized
from the early ones obtained in [4, 43, 42]. In this direction, we refer other
related to Naito and Minh [41]. The periodic assumption of operator A(·) or
U(·, ·) was also used in other works concerning the existence of periodic mild
solutions for parabolic evolution equations and more specific for the partial
neutral functional differential equations (see for examples [31, 32]).

On the other hand, there are many works which introduce the notions of
certain generalized types of mild solutions (such as pseudo almost periodic,
weighted pseudo almost periodic, almost automorphic, pseudo almost auto-
morphic, etc... mild solutions) and then study the existence and uniqueness
of such solutions for autonomous and nonautonomous parabolic equations (see
[3, 5, 6, 15, 22, 23, 24, 53, 54] and many reference therein). We refer the readers
to useful books [21, 29, 39] which provide fully the notions of generalized func-
tions and their applications to parabolic evolution equations and dynamical
systems.

Now, we describe our method and results as follows: for a given function
v ∈ Cb(R, X), the corresponding nonhomogenous linear equations (1.4) and
(1.5) are

(1.6) u′(t) = A(t)u(t) + h(t, v(t)) for t ∈ R
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and on the half-line time axis

(1.7)

{
u′(t) = A(t)u(t) + h(t, v(t)) for t ∈ R+,
u(0) = u(0) ∈ X,

respectively.

In order to establish the existence and exponential stability, we make some
necessary assumptions that: there is an evolution family {U(t, s)}t⩾s associ-
ated with the homogeneous equation u′(t) = A(t)u(t) and U(t, s) satisfying
exponential dichtonomy and exponential boundedness in Assumption 2.2 be-
low. Under the exponential almost periodic assumption of the Green function
G(t, s) (see Assumption 2.3 below), we prove the well-posedness of almost peri-
odic (AP-), asymptotically almost periodic (AAP-) and pseudo almost periodic
(PAP-) mild solutions for the corresponding linear equations of (1.6) and (1.7)
by proving Massera-type principle that: if h is AP- or AAP- or PAP-function,
then the mild solution is also AP- or AAP- or PAP-function, respectively (in
details see Theorem 3.1). Note that, we will use the formula of mild solutions
via the Green function G(t, s) in the proofs, meanwhile most of the previous
works used the direct formula of mild solutions via U(t, s). In comparing with
the previous works on the Liénard equations, our novelty is the exponential
almost periodic assumption of G(t, s) (see Assumption 2.3) which covers all
of conditions used in previous works to guarantee the validity of Massera-type
principle for the scalar Liénard-type equations (see for examples [28, 48] and
reference therein). Since we do not consider directly the periodic or almost pe-
riodic conditions on the operator A(t) or U(t, s), this is also a difference from
the previous works on the existence of certain types of mild solutions (such
as AP-,AAP-, PAP- and other types of mild solutions (for a monograph for
introduction, see e.g., [21]).

Using the well-posedness results of linear equations and fixed point argu-
ments we establish the existence of AP-, AAP- and PAP- mild solutions for
semilinear equations (1.4) and (1.5) (see Theorem 4.2). The exponential sta-
bility will be proven by utilizing the exponential stability of the Green function
and a Gronwall-type inequality. Finally, we construct some examples for ap-
plying the abstract results to the scalar Liénard equation (see Subsection 5.1)
and we provide also another example for non-autonomous parabolic equation
(see Subsection 5.2).

Our paper is organized as follows: Section 2 relies on the certain concepts of
generalized functions such as almost periodic, asymptotically almost periodic
and pseudo almost periodic solutions (see Subsection 2.1) and on the formulas
of the scalar Liénard equation (see Subsection 2.2). In Section 3 we prove the
well-posedness results for the linear parabolic evolution equations. In Section 4,
we study the existence and exponential stability of AP-, AAP- and PAP- mild
solutions for semilinear equations. Finally, we apply the abstract results ob-
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tained in previous sections to the scalar Liénard equation and a nonautonomous
parabolic equation in Section 5.

2. Preliminaries

2.1. The concepts of functions

Let X be a Banach space, we denote

Cb(R, X) := {f : R → X | f is continuous on R and sup
t∈R

∥f(t)∥X < ∞}

which is a Banach space endowed with the norm ∥f∥∞,X = ∥f∥Cb(R,X) :=
sup
t∈R

∥f(t)∥X . Similarly, we denote

Cb(R+, X) := {f : R+ → X | f is continuous on R and sup
t∈R+

∥f(t)∥X < ∞}

which is also a Banach space endowed with the norm ∥f∥∞,X = ∥f∥Cb(R+,X) :=
sup
t∈R+

∥f(t)∥X .

Definition 2.1. (Bohr [10, 11, 12]) A function h ∈ Cb(R, X) is called almost
periodic function if for each ϵ > 0, there exists lϵ > 0 such that every interval
of length lϵ contains at least a number T with the following property

sup
t∈R

∥h(t+ T )− h(t)∥ < ϵ.

The collection of all almost periodic functions h : R → X will be denoted
by AP (R, X) which is a Banach space endowed with the norm ∥h∥AP (R,X) =
sup
t∈R

∥h(t)∥X .

To introduce the asymptotically almost periodic functions, we need the
space C0(R+, X), that is, the collection of all continuous functions φ : R+ → X
such that

lim
t→∞

∥φ(t)∥ = 0.

Clearly, C0(R+, X) is a Banach space endowed with the norm ∥φ∥C0(R+,X) =
sup
t∈R+

∥φ(t)∥X .
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Definition 2.2. A function f ∈ Cb(R+, X) is said to be (forward-) asymp-
totically almost periodic if there exist h ∈ AP (R, X) and φ ∈ C0(R+, X) such
that

f(t) = h(t) + φ(t).

We denote

AAP (R+, X) := {f : R+ → X | f is asymptotically almost periodic on R+}.

Under the norm ∥f∥AAP (R+,X) = ∥h∥AP (R,X)+∥φ∥C0(R+,X), then AAP (R+, X)
is a Banach space.

The decomposition of asymptotically almost periodic functions is unique
(see [21, Proposition 3.44, page 97]), that is,

AAP (R+, X) = AP (R, X)⊕ C0(R+, X).

Definition 2.3. (PAP-function) A function f ∈ Cb(R, X) is called pseudo
almost periodic if it can be decomposed as f = g + ϕ where g ∈ AP (R, X) and
ϕ is a bounded continuous function with vanishing mean value i.e.

lim
L→∞

1

2L

∫ L

−L

∥ϕ(t)∥Xdt = 0.

We denote the set of all functions with vanishing mean value by PAP0(R, X)
and the set of all the pseudo almost periodic (PAP-) functions by PAP (R, X).

We have that (PAP (R, X), ∥.∥∞,X) is a Banach space, where ∥.∥∞,X is the
supremum norm (see [21, Theorem 5.9]). As well as AAP- functional space, we
have the following decomposition (see also [21]):

PAP (R, X) = AP (R, X)⊕ PAP0(R, X).

The notion of pseudo almost periodic function is a generalisation of the
almost periodic and asymptotically almost periodic (AAP-) and almost periodic
(AP-) functions. Precisely, we have the following inclusions

P (R, X) ↪→ AP (R, X) ↪→ AAP (R+, X) ↪→ PAP (R, X) ↪→ Cb(R, X).

where P (R, X) is the space of all continuous and periodic functions from R to
X.

Example 2.1. (i) The function h(t) = sin t + sin(
√
2t) is almost periodic

but not periodic, h̃(t) = sin t + sin(
√
2t) +

1

|t|
is asymptotically almost

periodic but not almost periodic.
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(ii) The function ĥ(t) = sin t+ sin(
√
2t) +

t√
1 + t2

is pseudo almost periodic

but not asymptotically almost periodic.

(iii) Let X be a Banach space and g ∈ X − {0}, we have that f = hg ∈
AP (R, X), f̃ = h̃g ∈ AAP (R+, X) and f̂ = ĥg ∈ PAP (R, X).

2.2. From the scalar Liénard equation to an abstract framework

We consider the following original scalar Liénard-type equation

(2.1) x′′ + f(x)x′ + g(t, x) = e(t),

where f : R → R (depending on x), g : R2 → R (depending on (t, x)) and
e : R → R (depending on the time t) are given functions and x : R → R
(depending on the time t) is unknown.

The scalar Liénard equation (2.1) is a differential equation with second
order. There are several ways to transform this equation to a first order dif-
ferential system. Below, we follows the changing variables used in [34, 26, 45].
Another way to do this can be found in the end of Subsection 5.1 below or more

details in [48]. Setting F (x) =
x∫
0

f(s)ds, then the system (2.1) is equivalent to

the following system x′ = y −
x∫
0

f(s)ds = y − F (x),

y′ = −g(t, x) + e(t).

Under the matrix term, this system can be rewritten as

(2.2)
d

dt

[
x
y

]
= A(t)

[
x
y

]
+

[
0

−g(t, 0) + e(t)

]
,

where

A(t) := A(x(t)) =


−

x(t)∫
0

f(s)ds 1

−
x(t)∫
0

gx(t, s)ds 0

 .

We notice that the matrix A(t) = A(x(t)) is given by a particular solution
being studied.

For convenience to state and prove the main results of this paper, we con-
sider the well-posedness and asymptotic behaviour of the following abstract
parabolic evolution equation

(2.3) u′(t) = A(t)u(t) + h(t, u).
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It is clearly that equation (2.2) is a specific case of (2.3), in fact a linear equation

with u =

[
x
y

]
and h(t, 0) =

[
0

−g(t, 0) + e(t)

]
.

For a given scalar vector function v, the corresponding (inhomogeneous)
linear equation of (2.2) is

(2.4) u′(t) = A(t)u(t) + h(t, v).

Definition 2.4. Let X be a Banach space. A set U = {U(t, s) : t ⩾ s; t, s ∈ R}
of bounded linear operators on X is called a exponential boundedness evolution
family if

(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = Id for t ⩾ r ⩾ s,

(ii) (t, s) 7→ U(t, s) is strongly continuous for t ⩾ s,

(iii) ∥U(t, s)∥ ⩽ Meω(t−s) for t ⩾ s.

Definition 2.5. An evolution family {U(t, s)}t⩾s is said to solve the Cauchy
problem of equation (2.4) with the initial data u(s) = us ∈ D(A(s)) if u(·) =
U(·, s)us is differentiable, u(t) ∈ D(A(t)) for t ⩾ 0 and (2.4) holds.

Remark 2.1. We notice that Acquistapace and Terreni [1] introduced the
assumptions on the operator A(t) and its resolvent which guarantee that there
exists a unique evolution family U(t, s) (satisfying conditions (i) and (ii) in Def-
inition 2.4) on X and U(t, s) satisfies also exponential boundedness (condition
(iii) in Definition 2.4) with ω = 0. Moreover, this family solves homogeneous
equation u′(t) = A(t)u(t).

In order to study the existence and uniqueness of mild solutions for semi-
linear equation (2.3), we need the following assumptions on evolution family
{U(t, s)}t⩾s which is called exponential dichtonomy (see for example [38]).

Assumption 2.2. The evolution family {U(t, s)}t⩾s on Banach space X sat-
isfies exponential dichtonomy on the whole-line time axis R (with a constant
β > 0) if there exists a projection valued function P : R → B(X) (where B(X)
is the set of bounded linear operators on X) such that the function t 7→ P (t)z
is uniformly bounded and strong continuous in t for each z ∈ X and for some
constant M = M(β) > 0 and for all t ⩾ s the following properties hold

(i) P (t)U(t, s) = U(t, s)P (s),

(ii) The restriction UQ(t, s) = Q(t)U(t, s)Q(s) : Q(s)X → Q(t)X of U(t, s)
(where Q(t) = Id−P (t)) is invertible and we set UQ(s, t) = (UQ(t, s))

−1,

(iii) ∥UP (t, s)∥ ⩽ Ne−β(t−s), where UP (t, s) = P (t)U(t, s)P (s),
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(iv) ∥UQ(s, t)∥ ⩽ Ne−β(t−s).

Remark 2.2. (i) The projections P (t), t ∈ R, are called the dichtonomy
projections (see [40] for the detailed formula of these projections), and
the constants M,β are called the dichtonomy constants.

(ii) Clearly, we have H = sup
t∈R

∥P (t)∥ < ∞.

For U(t, s) satisfied Assumption 2.2, one can define the Green function as
follows

(2.5) G(t, s) =

{
P (t)U(t, s) for t > s, t, s ∈ R
−U(t, s)Q(s) for t ⩽ s, t, s ∈ R.

Clearly, using (iii) and (iv) in Assumption 2.2 we have

(2.6) ∥G(t, s)∥ ⩽ (1 +H)Ne−β|t−s|

for t ̸= s.

To establish the well-posedness of the almost periodic (AP-), asymptotically
almost periodic (AAP-) and pseudo almost periodic (PAP-) mild solutions for
linear and semilinear equations (2.3) and (2.4), we need the following assump-
tion on the Green function.

Assumption 2.3. The Green function G(t, s) is said to exponentially almost
periodic if it satisfies: for given constants η > 0 and ε > 0, there exist constants
γ > 0 and lε > 0 such that every interval of length lε contains at least a number
T such that

(2.7) ∥G(T + t, T + s)−G(t, s)∥ ⩽ εe−γ(t−s)

for |t− s| ⩾ η > 0.

Remark 2.3. (i) Clearly, this assumption is valid if A(t) is periodic, i.e.,
there exists a constant T > 0 such that A(t+T ) = A(t). This leads to the
periodicity of R(δ, A(·)), then G(t, s) is periodic with the same periodicity
T , i.e., G(T + t, T + s) = G(t, s) (see [40]). Therefore, G(t, s) satisfies
inequality (2.7) for ε = 0.

(ii) Moreover, this assumption is valid if we assume that the operator A(·) (or
more general the resolvent R(δ, A(·))) is almost periodic (see the proof in
[40, 50]).
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3. Well-posedness of AP-, AAP- and PAP- mild solutions for linear
equations

The mild solution of linear evolution equation (2.4) on the whole-line time
axis Rt is defined by

u(t) = U(t, s)u(s) +

∫ t

s

U(t, s)h(s, v(s))ds for t ⩾ s.

On the other hand, if we consider Cauchy problem of equation (2.4) with the
initial data u(0) = u0, then the mild solution (on the half-line time axis) is
defined by

(3.1) u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)h(s, v(s))ds.

There are many previous works which used these direct formulas to estab-
lish the existence of AP-, AAP- an PAP- mild solutions (and other types of
mild-solutions) for linear equation (2.4) (see for examples [28, 45, 48, 51] and
reference therein). However, below we will provide another approach by em-
ploying the formula of mild solutions representing via Green function. This
approach helps us to give the proofs more shorter than the ones in previous
works.

We state and prove the main result of this section in the following theorem.

Theorem 3.1. The following assertions hold

(i) If h ∈ Cb(R, X) (resp. h ∈ Cb(R+, X)), then linear equation (2.4) has a
unique bounded mild solution û ∈ Cb(R, X) (resp. û ∈ Cb(R+, X)).

(ii) Assume that the Green function satisfies Assumptiton 2.3. Then, the
Massera-type principle is valid for AP-, AAP- and PAP- mild solutions.
Precisely, the following assertions hold

• If v(·) ∈ AP (R, X) and h(·, v(·)) ∈ AP (R, X), then equation (2.4)
has a unique mild solution û ∈ AP (R, X).

• If v(·) ∈ AAP (R+, X) and h(·, v(·)) ∈ AAP (R+, X), then equation
(2.4) has a unique mild solution û ∈ AAP (R+, X).

• If v(·) ∈ PAP (R, X) and h(·, v(·)) ∈ PAP (R, X), then equation
(2.4) has a unique mild solution û ∈ PAP (R, X).

Proof. (i) The well-posedness of bounded mild solutions of linear equation
(2.4) was proven by Schnaubelt et al. in [38, Theorem 1.1]. Note that, this
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result provides also the reason which the necessity of the exponential bounded
evolution family U(t, s) in Assumption 2.2. The formula of bounded mild
solution via Green function on the whole line is (see [38, pages 496-498]):

u(t) =

∫
R
G(t, s)h(s, v(s))ds.

Due to the exponential stability (2.6) of Green function, we can estimate easily
that

∥u∥Cb(R,X) ⩽
∫
R
∥G(t, s)h(s, v(s))∥Xds

⩽
∫ +∞

−∞
(1 +H)Ne−β|t−s|∥h(s, v(s))∥Xds

⩽
2(1 +H)N

β
∥h(·, v(·))∥Cb(R,X).(3.2)

Now we consider the Cauchy problem of linear equation (2.4) with the initial
data u(0) = u0. Assume that h ∈ Cb(R+, X). Let u ∈ Cb(R+, X) be a solution
of this Cauchy problem, then we can rewritten u as (see [31, Lemma 4.2 (a)]):

(3.3) u(t) = U(t, 0)ζ0 +

∫ ∞

0

G(t, s)h(s.v(s))ds

for ζ0 = u0−
∫∞
0

G(0, s)h(s, v(s))ds ∈ P (0)X. The converses is also true, i.e., if
a function u satisfies integral equation (3.3), then it is a bounded mild solution
of Cauchy problem of linear equation (2.4) and satisfies integral equation (3.1).
Therefore, the existence is clearly. Now, we consider u and v are two bounded
mild solutions of (2.4) with u(0) = v(0), then z = u1 − u2 is a bounded mild
solution of the following equation

z′(t) = A(t)z(t), z(0) = 0.

Therefore,

z(t) = U(t, 0)z(0) = 0 for all t > 0.
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The uniqueness holds. By the same way as (3.2) we can estimate

∥u(t)∥X ⩽ N∥ζ0∥X +
2(1 +H)N

β
∥h(·, v(·))∥Cb(R+,X)

⩽ N∥u0 −
∫ ∞

0

G(0, s)h(s, v(s))ds∥X

+
2(1 +H)N

β
∥h(·, v(·))∥Cb(R+,X)

⩽ N∥u0∥X + (1 +H)N

∫ ∞

0

e−βs∥h(s, v(s))∥Xds

+
2(1 +H)N

β
∥h(·, v(·))∥Cb(R+,X)

⩽ N∥u0∥X +
3(1 +H)N

β
∥h(·, v(·))∥Cb(R+,X).(3.4)

(ii) In fact, this assertion verifies the so-called Massera-type principle for
parabolic evolution equations (see for example [21]). The Massera-type princi-
ple was also used to study the well-posedness of various mild solutions in fluid
dynamics (see [46, 47] and many reference therein). In particular, the principle
states that: if the function f satisfies AP or AAP or PAP property, then this
is valid for the corresponding mild solution. To prove this assertion we will
extend the previous proofs in [46, 47] to our framework of abstract evolution
equation (2.4).

Issue 1. First, we prove the assertion for almost periodic case.
From the existence and uniqueness of mild solution on the whole-line time
axis obtained in Assertion (i), the solution operator S : Cb(R, X) → Cb(R, X)
associating with the linear equation (2.4) can be defined as follows: for a given
v ∈ Cb(R, X), we define

S(v)(t) = u(t) =

∫
R
G(t, s)h(s, v(s))ds.

Since v is almost periodic and h(·, v(·)) ∈ AP (R, X), we have that: for each
ε > 0, there exists lε > 0 such that every interval of length lε contains at least
a number T with the following property

sup
t∈R

∥h(t+ T, v(t+ T ))− h(t, v(t))∥X < ε.

Therefore, combining with the fact that G(t, s) satisfied Assumption 2.3, we
can estimate
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∥S(v)(t+ T )− S(v)(t)∥X
=

∥∥∥∥∫
R
G(T + t, s)h(s, v(s))ds−

∫
R
G(t, s)h(s, v(s))ds

∥∥∥∥
X

=

∥∥∥∥∫
R
G(T + t, T + s)h(T + s, v(T + s))ds−

∫
R
G(t, s)h(s, v(s))ds

∥∥∥∥
X

(we used the changing variable s 7→ T + s in the first term)

⩽
∫
R
∥G(T + t, T + s)[h(T + s, v(T + s))− h(s, v(s))]∥X ds

+

∫
|t−s|⩾η

∥[G(T + t, T + s)−G(t, s)]h(s, v(s))∥X ds

+

∫
|t−s|<η

∥[G(T + t, T + s)−G(t, s)]h(s, v(s))∥X ds

⩽ ∥h(·+ T, v(·+ T ))− h(·, v(·))∥Cb(R,X)

∫
R
(1 +H)Me−β|t−s|ds

+ ∥h∥Cb(R,X)

(∫
|t−s|⩾η

εe−γ|t−s|ds+

∫ t+η

t−η

2(1 +H)Mds

)
⩽

2(1 +H)Mε

β
+ ∥h∥Cb(R,X)

(
2ε

γ
+ 4(1 +H)Mη

)
.(3.5)

Therefore, for a given ϵ > 0, we can choose a small η > 0, then a small ε > 0
and there exists lϵ > 0 such that every interval of length lϵ contains at least a
number T and the following inequality holds

∥S(v)(t+ T )− S(v)(t)∥X ⩽ ϵ

for t ∈ R. This shows that the solution operator maps an almost periodic
function to an almost periodic function, i.e., S : AP (R, X) → AP (R, X).
Hence, the existence of almost periodic mild solution is proven. The uniqueness
holds clearly.

Issue 2. Now we prove the assertion of asymptotically almost
periodic case. From the existence and uniqueness of mild solution on the half
line time-axis obtained in Assertion (i), we can define the solution operator S :
Cb(R+, X) → Cb(R+, X) associating with the linear equation (2.4) as follows

S(v)(t) = u(t) = U(t, 0)ζ0 +

∫ +∞

0

G(t, s)h(s, v(s))ds where ζ0 ∈ X0 = P (0)X.

Since v ∈ AAP (R+, X) and h(·, v(·)) ∈ AAP (R+, X), we assume that h(·, v(·)) =
h1(·, v(·)) + h2(·, v(·)) ∈ AAP (R+, X), where h1(·, v(·)) ∈ AP (R, X) and h2 ∈
C0(R+, X). We will show that S(v) ∈ AAP (R+, X). Indeed, we can rewrite

S(v)(t) = U(t, 0)ζ0 +

∫ +∞

0

G(t, s)h(s, v(s))ds
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= U(t, 0)ζ0 +

∫ +∞

0

G(t, s)[h1(s, v(s)) + h2(s, v(s))]ds

=

∫ +∞

−∞
G(t, s)h1(s, v(s))ds

+

(
U(t, 0)ζ0 −

∫ 0

−∞
G(t, s)h1(s, v(s))ds+

∫ ∞

0

G(t, s)h2(s, v(s))ds

)
= S1(v)(t) + S2(v)(t),(3.6)

where

(3.7) S1(v)(t) =
∫
R
G(t, s)h1(s, v(s))ds

and
(3.8)

S2(v)(t) = U(t, 0)ζ0 −
∫ 0

−∞
G(t, s)h1(s, v(s))ds+

∫ ∞

0

G(t, s)h2(s, v(s))ds.

By the same way as (3.5) we can estimate
(3.9)

∥S1(v)(t+ T )− S1(v)(t)∥X ⩽
2(1 +H)Mε

β
+∥h1∥Cb(R,X)

(
2ε

γ
+ 4(1 +H)Mη

)
for the funtion h1(·, v(·)) ∈ AP (R, X) satisfies

(3.10) ∥h1(t+ T, v(t+ T ))− h1(t, v(t))∥X ⩽ ϵ.

This shows that S1(v) ∈ AP (R, X).

Now, we prove that lim
t→+∞

∥S2(v)(t)∥X = 0. Clearly, the first term of S2(v)
can be estimated as

(3.11) ∥U(t, 0)ζ0∥X ⩽ Ne−βt∥ζ0∥X −→ 0 as t → +∞.

Moreover, we can also estimate the second term of S2(v) as∥∥∥∥∫ 0

−∞
G(t, s)h1(s, v(s))ds

∥∥∥∥ ⩽
∫ 0

−∞
∥G(t, s)h1(s, v(s))∥X ds

⩽ (1 +H)N

∫ 0

−∞
e−|t−s|∥h1(s, v(s))∥Xds

⩽ (1 +H)N∥h1∥Cb(R,X)

∫ +∞

0

e−(t+s)ds

⩽ (1 +H)N∥h1∥Cb(R,X)e
−t

−→ 0(3.12)



82 T.M.Nguyet, N.T.Loan, N.T.Van, P.X.Truong

as t tends to infinity. Therefore, we remain to prove

(3.13) lim
t→+∞

∫ ∞

0

∥G(t, s)h2(s, v(s))∥Xds = 0.

Indeed, from lim
t→+∞

∥h2(t, v(t))∥X = 0, for each ε > 0, there exists a constant

large enough t0 > 0 such that for all t > t0, we have

∥h2(t, v(t))∥X < ε.

This leads to the following estimates∫ ∞

0

∥G(t, s)h2(s, v(s))∥Xds

⩽
∫ t0

0

∥G(t, s)h2(s, v(s))∥Xds+

∫ ∞

t0

∥G(t, s)h2(s, v(s))∥Xds

⩽
∫ t0

0

∥G(t, s)h2(s, v(s))∥Xds+

∫ ∞

t0

Ne−β|t−s|∥h2(s, v(s))∥Xds

⩽
∫ t0

0

∥G(t, s)h2(s, v(s))∥Xds+ ε

∫ ∞

t0

Ne−β|t−s|ds

⩽
∫ t0

0

(1 +H)Ne−β|t−s|∥h2(s, v(s))∥Xds+ ε

∫ ∞

t0

(1 +H)Ne−β|t−s|ds

⩽ (1 +H)N

((
−e−β|t| + e−β|t−t0|

)
∥h2∥Cb(R+,X)

β
+

2(1− e−β|t−t0|)ε

β

)
⩽ ϵ

which holds for each ϵ > 0, provided that t ≫ t0 large enough. This shows
the limit (3.13). Our proof is complete for the case of asymptotically almost
periodic functions.

Issue 3. Finally, we prove the assertion for pseudo almost periodic
case. Since a pseudo almost periodic function is determined on the whole line
time-axis, we consider the solution operator S : Cb(R, X) → Cb(R, X) similarly
as in Issue 1, i.e., formulated by (3). We will prove that this solution operator
maps PAP (R, X) into itself, then the linear equation (2.4) has a unique PAP-
mild solution.

Since h(·, v(·)) ∈ PAP (R, X), we have the following decomposition

h(s, v(s)) = g(s) + φ(s), where g ∈ AP (R, X) and φ ∈ PAP0(R, X).

Then, we can rewrite S(h)(t) as follows

S(h)(t) =

∫
R
G(t, s)g(s)ds+

∫
R
G(t, s)φ(s)ds
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= S(g)(t) + S(φ)(t).(3.14)

From Issue 1, we get that the first function S(g) in (3.14) is an almost periodic
function with respect to the time variable. In order to show that S(h) ∈
PAP (R, X), we remains to verify that the second function (in (3.14)) S(φ)
belongs to PAP0(X). Setting

I(r) =
1

2r

∫ r

−r

∥S(φ)(t)∥dt.

We need to prove that lim
r→∞

I(r) = 0. Indeed, we estimate that

I(r) =
1

2r

∫ r

−r

∥∥∥∥∫ ∞

−∞
G(t, s)φ(s)ds

∥∥∥∥
X

dt

⩽
1

2r

∫ r

−r

dt

∫ +∞

−∞
∥G(t, s)φ(s)∥Xds

⩽
1

2r

∫ r

−r

dt

∫ +∞

−∞
(1 +H)Ne−β|t−s|∥φ(s)∥Xds (we used (2.6)).

By Fubini’s theorem with noting that the functions s 7→ e−β|t−s|∥φ(s)∥X and
t 7→ e−β|t−s|∥φ(s)∥X are integrable and by changing variable yields

I(r) ⩽
(1 +H)N

2r

∫ r

−r

dt

∫ +∞

−∞
e−β|s|∥φ(t− s)∥Xds

= (1 +H)N

∫ +∞

−∞
e−β|s|

(
1

2r

∫ r

−r

∥φ(t− s)∥Xdt

)
ds

= (1 +H)N

∫ +∞

−∞
e−β|s|

(
1

2r

∫ r−s

−r−s

∥φ(t)∥Xdt

)
ds.(3.15)

We have clearly that

e−β|s| 1

2r

∫ r−s

−r−s

∥φ(t)∥Xdt ⩽ e−β|s|∥φ∥Cb(R,X) = γ(s).

Since γ(s) is integrable on (−∞,+∞), we use the Lebesgue dominated conver-
gence to obtain from (3.15) that

0 ⩽ lim
r→∞

I(r) ⩽ (1 +H)N lim
r→∞

∫ +∞

−∞
e−β|s|

(
1

2r

∫ r−s

−r−s

∥φ(t)∥Xdt

)
ds

= (1 +H)N

∫ +∞

−∞
e−β|s| lim

r→∞

(
1

2r

∫ r−s

−r−s

∥φ(t)∥Xdt

)
ds

= (1 +H)N

∫ +∞

−∞
e−β|s| × 0 ds (we used φ ∈ PAA0(R+, X))

= 0.

This shows that lim
r→∞

I(r) = 0 and the proof is complete. ■
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4. The semi-linear equation: well-posedness and exponential sta-
bility

4.1. Well-posedness of AP-, AAP- and PAP-mild solutions

In this section, based on the results of Theorem 3.1, we establish the well-
posedness of AP-, AAP-, PAP-mild solutions and exponential stability for the
following semi-linear evolution equation

(4.1)


du

dt
= A(t)u(t) + h(t, u(t))

u(s) = ϕ ∈ X.

For ρ > 0 we denote by BZ
ρ the ball centered at zero and radius ρ in Z,

where Z can be AP (R, X), AAP (R+, X) or PAP (R, X), i.e.,

BZ
ρ := {x ∈ Z : ∥x∥Cb(R,X) ⩽ ρ}.

Note that, for the case of AAP (R+, X) we need the condition ∥x∥Cb(R+,X) ⩽ ρ

in BZ
ρ . However, by the similarity of proofs we denote the ball in the same

way.

Moreover, we add the following conditions on the nonlinear term.

Assumption 4.1. The function h : R×X → X satisfies

(i) For u ∈ Z, h(·, u(·)) ∈ Z,

(ii) ∥h(·, 0)∥Cb(R,X) ⩽ γ, where γ is a non-negative constant,

(iii) There exist positive constants ρ and L such that

∥h(t, v1(t))− h(t, v2(t))∥X ⩽ L∥v1(t)− v2(t)∥X

for each t ∈ R and all v1, v2 ∈ Cb(R, X) with ∥v1∥Cb(R,X) ⩽ ρ and
∥v2∥Cb(R,X) ⩽ ρ.

From the proof of Theorem 3.1, we define the mild solution to semi-linear
equation (4.1) on the whole-line time axis by the function u satisfying the
following integral equation

(4.2) u(t) = U(t, s)u(s) +

t∫
s

G(t, τ)h(τ, u(τ))dτ =

∫
R
G(t, τ)h(τ, u(τ))dτ.
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If we consider the Cauchy problem with initial data u(0) = u0 ∈ X of equation
(4.1), then we can define

u(t) = U(t, 0)ζ0 +

+∞∫
0

G(t, τ)h(τ, u(τ))dτ,

where ζ0 = u0 −
∫∞
0

G(0, s)h(s, u(s))ds ∈ P (0)X.

We state and prove the existence and uniqueness of the AP-, AAP- and
PAP- mild solution to equation (4.1) in the following theorem.

Theorem 4.2. Assume that the function h satisfies Assumption 4.1. Then,
the following assertions hold

(i) If L and γ are small enough, semi-linear equation (4.1) has one and only
one AP- (resp. PAP-) mild solution û on a small ball of Z.

(ii) If ∥u0∥X , L and γ are small enough, semi-linear equation (4.1) has one
and only one AAP- mild solution û on a small ball of Z.

Proof. (i) We provide the detailed proof for AP- and PAP- mild solutions
which are defined on the whole-line time axis. The case of AAP- mild solution
defined on the half-line time axis is done in the same way with noting the initial
data. Let v be a function in BZ

ρ . Consider the integral equation

(4.3) u(t) =

∫
R
G(t, τ)h(τ, v(τ)dτ.

Applying Theorem 3.1, there exists a unique mild solution u ∈ Z to equation
(4.3). Therefore, we can set a map Φ : Z → Z by Φ(v)(t) = u(t) which is
solution of equation (4.3).

In order to establish the well-posedness of equation (4.2), we prove that if
L and ρ are small enough, then the map Φ acts from BZ

ρ into itself and is a
contraction.

We have

∥h(t, v(t))∥X ⩽ ∥h(t, v(t))− h(t, 0)∥X + ∥h(t, 0)∥X
⩽ L∥v∥Cb(R,X) + γ

⩽ Lρ+ γ

for all t ∈ R.
Applying the boundedness of mild solution in the proof of Theorem 3.1, we

obtain that for v ∈ Bρ there exists a unique AP- (resp. PAP-) mild solution u
to (4.3) satisfying

∥u∥Cb(R,X) ⩽
2(1 +H)N

β
∥h(·, v(·))∥Cb(R,X)
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⩽
2(1 +H)N

β
(Lρ+ γ)

⩽ ρ(4.4)

provided that L and γ small enough. Therefore, with these values of L and γ
the map Φ acts from Bρ into itself.

Furthermore, for v1, v2 ∈ Bρ and u1 = Φ(v1), u2 = Φ(v2) by the represen-
tation (4.3) we obtain that u = Φ(v1)− Φ(v2) is the unique AP- (resp. PAP-)
mild solution to the integral equation

u(t) =

∫
R
G(t, τ)(h(τ, v1(τ)− h(τ, v2(τ))dτ for all t.

Similar as above, we can estimate

∥Φ(v1)− Φ(v2)∥Cb(R,X) ⩽
2(1 +H)N

β
∥h(·, v1(·))− h(·, v2(·))∥Cb(R,X)

⩽
2L(1 +H)N

β
∥v1 − v2∥Cb(R,X).

We thus obtain that if L is small enough, then Φ is a contraction.

By fixed point arguments, for the above values of L and γ there exists a
unique fixed point û of BZ

ρ , and by definition of Φ, this function û is the unique
AP- (resp. PAP-) mild solution to integral equation (4.3), then semi-linear
equation (4.1). The proof of assertion (i) is complete.

(ii) The well-posedness of AAP- mild solution for semi-linear equation (2.3)
is done as the similar above argument with inequality (4.4) replaced by

∥u∥Cb(R+,X) ⩽ N∥u0∥X +
3(1 +H)N

β
∥h(·, v(·))∥Cb(R+,X)

⩽ N∥u0∥X +
3(1 +H)N

β
(Lρ+ γ).

Therefore, we need the small enough conditions of ∥u0∥X , L and γ to guarantee
the well-posedness. The details are left to the readers. The proof of Assertion
(ii) is complete. ■

4.2. Exponential stability

In this subsection we state and prove the exponential stability of AP-, AAP-
and PAP-mild solutions of equation (2.3) obtained in Theorem 4.2.

Theorem 4.3. Let the assumption of Theorem 4.2 be satisfied with positive
constants L, γ, ρ. Denote by û the unique mild solution in BZ

ρ (0) defined by



Some classes of mild solutions of Lienard equations 87

Theorem 4.2. Assume further that for all functions x1, x2 ∈ B2ρ(0) (where
B2ρ(0) denotes the ball centered at zero and radius 2ρ in Cb(R+, X)), there is
a positive constant L1 for which

∥h(t, x1(t))− h(t, x2(t))∥X ⩽ L1∥x1(t)− x2(t)∥X

for each t ∈ R+.

If L1 is small enough, then for each v0 ∈ BX
ρ

2N
(P (0)û(0)) ∩ P (0)X (where

BX
ρ

2N
(P (0)û(0)) denotes the ball centered at P (0)û(0) and radius ρ

2N in X),

there exists a unique mild solution u(t) of equation (4.1) in BZ
ρ (û) such that

P (0)u(0) = v0. Moreover, the following estimate holds for u(t) and û(t)

∥u(t)− û(t)∥X ⩽ Ce−µt∥P (0)u(0)− P (0)û(0)∥X

for all t > 0. Here, the positive constants C and µ are independent of u and û.

Proof. In the theorem we consider t > 0, then the proof for AP- and PAP-
mild solutions (which are defined on the whole-line time axis) and the one for
AAP- mild solution (defining on the half-line time axis) are similar since we
can rewrite the mild solution u(t) for each t > 0 as follows

u(t) =

∫
R
G(t, s)h(s, u(s))ds

=

∫ 0

−∞
G(t, s)h(s, u(s))ds+

∫ +∞

0

G(t, s)h(s, u(s))ds

= U(t, 0)

∫ 0

−∞
G(0, s)h(s, u(s))ds+

∫ +∞

0

G(t, s)h(s, u(s))ds

= U(t, 0)

(
u(0)−

∫ +∞

0

G(0, s)h(s, u(s))ds

)
+

∫ +∞

0

G(t, s)h(s, u(s))ds

= U(t, 0)ζ0 +

∫ +∞

0

G(t, s)h(s, u(s))ds,(4.5)

where ζ0 = u(0)−
∫ +∞
0

G(0, s)h(s, u(s))ds ∈ P (0)X.

First, we prove the existence of solution u. For given v0 ∈ BX
ρ

2N
(P (0)û(0))∩

P (0)X and ω ∈ Z, we define the transformation F : Z → Z by

(Fw)(t) = U(t, 0)v0 +

∫ +∞

0

G(t, s)h(s, w(s))ds.

Note that, this definition is well-defined because of the well-posedness of linear
integral equation obtained in Theorem 2.3. We will prove that F acts from
BZ

ρ (û) into itself and is a contraction. Combining with fixed point arguments
we have the existence of solution u.
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Let w ∈ BZ
ρ (û). We have

∥w∥Cb(R,X) ⩽ ∥w − û∥Cb(R,X) + ∥û∥Cb(R,X) ⩽ 2ρ.

It is easy to see that

û(0)−
∫ +∞

0

G(0, s)h(s, û(s))ds = P (0)û(0).

Thus, we get from (4.5) that

û(t) = U(t, 0)P (0)û(0) +

∫ +∞

0

G(t, s)h(s, û(s))ds.

Hence, by setting

y(t) = (Fw)(t) = U(t, 0)v0 +

∫ +∞

0

G(t, s)h(s, w(s))ds,

we obtain from Assumption 2.2 and inequality (2.6) that

∥y(t)− û(t)∥X ⩽ Ne−βt ∥v0 − P (0)û(0)∥X

+ (1 +H)N

∫ +∞

0

e−β|t−s|∥h(s, w(s))− h(s, û(s))∥Xds

⩽ N ∥v0 − P (0)û(0)∥X +
2(1 +H)NL1ρ

β

for all t ⩾ 0. This together with the fact that ∥v0 − P (0)û(0)∥X ⩽
ρ

2N
yield

∥Fw − û∥Cb(R,X) ⩽ N ∥v0 − P (0)û(0)∥X +
2(1 +H)NL1ρ

β

⩽
ρ

2
+

2(1 +H)NL1ρ

β
.

Therefore, if L1 is small enough satisfying
2(1 +H)NL1

β
<

1

2
, then the trans-

formation F acts from BZ
ρ (û) into itself.

Let x, z ∈ BZ
ρ (û), we have x, z ∈ BZ

2ρ(0). Then, assumption (4.3) implies
that

∥(Fx)(t)− (Fz)(t)∥X ⩽
∫ +∞

0

∥G(t, s)∥∥h(s, x(s))− h(s, z(s))∥Xds

⩽ (1 +H)NL1

∫ +∞

0

e−β|t−s|∥x(s)− z(s)∥Xds.
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Therefore,

∥Fx− Fz∥Cb(R,X) ⩽
2(1 +H)NL1

β
∥x− z∥Cb(R,X).

Since
2(1 +H)NL1

β
<

1

2
, we obtain that F : BZ

ρ (û) → BZ
ρ (û) is a contraction.

This guarantees the existence of a unique u ∈ BZ
ρ (û) such that Fu = u. By the

definition of F , we imply that u is the unique solution in BZ
ρ (û) of equations

(4.1).

Finally, we prove the stable inequality (4.3). By formula (4.5), we can write

u(t)−û(t) = U(t, 0)(P (0)u(0)−P (0)û(0))+

∫ +∞

0

G(t, s)(h(s, u(s))−h(s, û(s)))ds.

Since u, û ∈ BZ
ρ (0), it follows from Assumption 4.1 and (2.2) that

∥u(t)− û(t)∥X ⩽ Ne−βt∥P (0)u(0)− P (0)û(0)∥X

+(1 +H)N

∫ +∞

0

e−β|t−s|∥h(s, u(s))− h(s, û(s))∥Xds

⩽ Ne−βt∥P (0)u(0)− P (0)û(0)∥X

+(1 +H)NL1

∫ +∞

0

e−β|t−s|∥u(s)− û(s)∥Xds.

Applying now a Gronwall-type inequality [19, Corollary III.2.3], we obtain for

γ = (1 +H)NL1 <
β

2
that

∥u(t)− û(t)∥X ⩽ Ce−µt∥P (0)u(0)− P (0)û(0)∥X

for µ :=
√
β2 − 2γβ, C := 2Nβ

β+
√

β2−2γβ
. The proof is complete. ■

5. Constructions of Examples and Applications

5.1. The scalar Liénard equation

In this subsection we comeback to establish the well-posedness of AP-, AAP
and PAP- mild solutions and their stability of the scalar Liénard equation by
applying abstract results obtained in Section 3 and Subsection 4.1. Note that,
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the original scalar Liénard equation (2.2) is in fact linear evolution equation un-
der form (2.4). Therefore, we can use Theorem 3.1 to obtain the well-posedness
of equation (2.2). However, in the wide of application of abstract results we
consider the following scalar Liénard equation (which is in fact semilinear equa-
tion):

(5.1)
d

dt

[
x
y

]
= A(t)

[
x
y

]
+

[
0

−g(t, 0) + e(t, x)

]
,

for e(t) replaced by e(t, x(t)) and

A(t) =

[
−
∫ x(t)

0
f(t, s)ds 1

−
∫ x(t)

0
gx(t, s)ds 0

]
.

Assume that f(t, s) = q(t) and g(t, s) = cs + r(t)s, where q and r are almost
periodic functions depending on the time and c is a suitable constant. Then,
we have

A(t) =

[
−q(t)x(t) 1

−(c+ r(t))x(t) 0

]
.

The acting of A(t) on a vector

[
x
y

]
is in fact

A(t)

[
x
y

]
=

[
−q(t)x(t) 1

−(c+ r(t))x(t) 0

] [
x
y

]
=

[
−q(t) 1

−(c+ r(t)) 0

] [
x
y

]
.

Therefore, we denote also that A(t) =

[
−q(t) 1

−(c+ r(t)) 0

]
. Since the functions q

and r are almost periodic, we have A(t) is almost periodic depending on the
time.

The following lemma (see [45, Lemma 1]) provides the condition of functions
f and g which guarantees that there is a evolution family {U(t, s)}t⩾s satisfied
Assumption 2.2 that is associated with the linear equation

(5.2)
d

dt

[
x
y

]
= A(t)

[
x
y

]
.

Lemma 5.1. Assume that there exist positive constants M, δ, such that for
any x ∈ R satisfying

(i) |f(t, x)|+ |gx(t, x)| ⩽ M ,

(ii) 4gx(t, x) + f2(x) < −δ,

then there is a evolution family {U(t, s)}t⩾s satisfied Assumption 2.2 that is
associated with the linear equation (5.2).
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Proof. The proof was given in [45]. ■

To guarantee the conditions in above lemma we can choose

(5.3) f(t, x) = q(t) = sin t+ sin(
√
2t) for sup

t∈R
|q(t)| < 2.

and

(5.4) g(t, x) = −2x(t) + r(t)x(t),

where r(t) = cos t+cos
√
2t for sup

t∈R
|r(t)| < 2. We can verify easily the condition

in Lemma 5.1 as

|f(x)|+ |gx(t, x)| = |q(t)|+ |−2 + r(t)| < 6,
4gx(t, x) + f2(x) = −8 + r(t) + |q(t)|2 < −2.

From the above construction, we have the existence of evolution family {U(t, s)}t⩾s

satisfying exponential dichtonomy in Assumption 2.2. Moreover, since the oper-
ator A(t) is almost periodic, the Green function G(t, s) associating with U(t, s)
satisfies almost periodic property in Assumption 2.3.

In view of definition of mild solutions in Subection 4.1, The mild solution
of equation (5.1) on the whole line time-axis is defined by[

x
y

]
(t) = U(t, s)u(s) +

∫ t

s

U(t, s)

[
0

x(s) + e(s)

]
ds

=

∫
R
G(t, s)

[
0

g(s, 0) + e(s, x(s))

]
ds

=

∫
R
G(t, s)

[
0

e(s, x(s))

]
ds (because g(s, 0) = 0),(5.5)

where G(t, s) is Green function associating with U(t, s).

On the other hand, if we consider Cauchy problem of equation (5.1) with the

initial data

[
x(0)
y(0)

]
=

[
x0

y0

]
, then the mild solution (on the half line time-axis)

is defined by[
x
y

]
(t) = U(t, 0)

[
x0

y0

]
+

∫ t

0

U(t, s)

[
0

g(s, 0) + e(s, x(s))

]
ds

= ζ0 +

∫ ∞

0

G(t, s)

[
0

e(s, x(s))

]
ds,(5.6)

where ζ0 =

[
x0

y0

]
−
∫∞
0
G(0, s)

[
0

e(s, x(s))

]
ds.
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To guarantee that the conditions in Assumption 4.1 are valid for the function

h(s) =

[
0

e(s, x(s))

]
, we assume that e(s, x(s)) satisfies Assumption 4.1. It is

easily to choose such functions, for example: e(s, x(s)) = |x(s)|m−1x(s) + k(s)
for m ⩾ 2 and k ∈ Cb(R,R).

With the above functions f , g and e on hand, we apply abstract results
obtained in Theorem 4.2 and Theorem 4.3 to obtain the results for scalar
Liénard equation (5.1) in the following theorem.

Theorem 5.1. The following assertions hold

(i) Let f and g be functions as (5.3) and (5.4), respectively. If the Lipschitz
constants and |k(0)| are small enough and k ∈ Cb(R,R) be a given AP-
(resp. PAP-) function satisfying Assumption 4.1, semilinear equation
(5.1) has one and only one AP- (resp. PAP-) mild solution û satisfying
(5.5) on a small ball of AP (R,R) (resp. PAP (R,R)). Moreover, these
mild solutions are exponential stable in the sense of Theorem 4.3.

(ii) Let f and g be functions as (5.3) and (5.4), respectively and k ∈ Cb(R+,R)
be a given AAP- function satisfying Assumption 4.1. If the Lipschitz con-
stants, |u0| and |k(0)|, are small enough, semilinear equation (5.1) has
one and only one AAP- mild solution û satisfying (5.6) on a small ball
of AAP (R+,R). Moreover, the mild solution is exponential stable in the
sense of Theorem 4.3.

Another way to apply the abstract results and give an example for abstract
results as follows (see [48]) by setting

y(t) = x′(t) + a(t)x(t)− θ1(t),
θ2(t) = a(t)θ1(t)− θ′1(t) + e(t, x(t)).

Then, the scalar Liénard equation

x′′ + f(x)x′ + g(x) = e(t, x)

is equivalent to the following system
(5.7){
x′(t) = −a(t)x(t) + y(t) + θ1(t),

y′(t) = −a2(t)x(t) + a(t)y(t)− f(x(t))[y(t)− a(t)x(t) + θ1(t)] + g(t, x(t)) + θ2(t).

In matrix form, we can rewrite (5.7) as

d

dt

[
x
y

]
(t) = A(t)

[
x
y

]
(t) +H

(
t,

[
x
y

])
,
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where

A(t) =
[
−a(t) 0
0 a(t)

]
,

H
([

x
y

])
=

[
y + θ1

−a2x− f(x)[y − ax+ θ1] + g(x) + θ2

]
.

If we consider that a(t) ∈ AP (R,R) and a(t) > δ > 0 for a fixed δ and for all
t ∈ R, then there is an evolution family {U(t, s)}t⩾s associating with the linear
evolution equation

d

dt

[
x
y

]
(t) = A(t)

[
x
y

]
(t).

and U(t, s) satisfies exponential dichtonomy in Assumption 2.2 (see [48, Lemma
2.4] and more details in [30]). Since A(·) is almost periodic, the Green function
G(t, s) satisfies Assumption 2.3. To verify the conditions in Assumption 4.1,
we need to assume that f ∈ Cb(R,R) is bounded from above by a positive
constant C and the functions g, e ∈ Cb(R,R) satisfy Assumption 4.1. Finally,
we need that the functions g, θ1 and e(t, x(t)) (hence θ2) are AP- or AAP- or
PAP- to guarantee Theorem 5.1. The detailed choices of these functions are
left to the readers.

Remark 5.1. Our abstract results (Theorem 3.1, Theorem 4.2 and Theo-
rem 4.3) can be applied to other Liénard-type equations such as equations with
delays (see for example [28, 48]) or for other second-order differential equations
such as wave-type equations (see for example [20]).

5.2. A nonautonomous parabolic evolution equation

To end this paper, we provide an example of nonautonomous parabolic
equations in which we can apply the abstract results obtained in Theorem 4.2
and Theorem 4.3. In particular, we consider the following problem

(5.8)


∂w(t, x)

∂t
= a(t)

[
∂2w(t, x)

∂x2
+ δw(t, x)

]
+ |w|k−1w(t, x) + g(t, x),

for 0 < x < π,

w(t, 0) = w(t, π) = 0.

Here, δ ∈ R and δ ̸= n2 for all n ∈ N; the function a(t) ∈ L1
loc(R) is almost

periodic (respect to t) and satisfies the condition 0 < γ0 ⩽ a(t) ⩽ γ1 for fixed
γ0, γ1; the exponent k ∈ N, k ⩾ 2; the function g : R× [0, π] → R is continuous
on R× [0, π] and almost periodic with respect to t.
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Setting X := L2[0, π], and let A : X ⊃ D(A) → X be defined by Ay =
y′′ + δy, with the domain

D(A) = {y ∈ X : y and y′ are absolutely continuous, y′ ∈ X, y(0) = y(π) = 0}.

Observe that A is the generator of an analytic semigroup {T(t)}t∈R.
By using the spectral mapping theorem for analytic semigroups and the

fact that σ(A) = {−n2 + δ : n = 1, 2, 3, ...}, we have

(5.9) σ(T(t)) = etσ(A) = {et(−n2+δ) : n = 1, 2, 3, ...}

and hence

(5.10) σ(T(t)) ∩ Γ = ∅ ∀ t,

where Γ := {λ ∈ C : |λ| = 1}.
Setting A(t) := a(t)A, we obtain that A(t) is the almost periodic (since a(t)

is almost periodic). Moreover, the family {A(t)}t∈R generates an evolution fam-

ily {U(t, s)}t≥s which is defined by the formula U(t, s) = T(
∫ t

s
a(τ)dτ). Since

A(t) is almost periodic, we have that the Green function G(t, s) associating
with U(t, s) satisfies Assumption 2.3 (see Remark 2.3).

By (5.9) and (5.10) we have that the analytic semigroup (T(t))t∈R is hyper-
bolic (or has an exponential dichotomy) with the projection P satisfying

(i) ∥T(t)x∥ ⩽ Ne−βt∥x∥ for x ∈ PX;

(ii) ∥T(−t)|KerrPx∥ = ∥(T(t)|KerrP )
−1x∥ ⩽ Ne−βt∥x∥ for x ∈ KerP ; where

the invertible operator T(t)|KerrP is the restriction of T (t) to KerP , and
N , β are positive constants.

The above estimates of {T(t)}t∈R imply clearly that the evolution family {U(t, s)}t⩾s

has an exponential dichotomy with the projection P (t) = P for all t and the
dichotomy constants N > and ν := ν(β) > 0 as follows

(5.11)
∥U(t, s)x∥ ⩽ Ne−ν(t−s)∥x∥ for x ∈ PX, t ⩾ s;

∥U(s, t)|KerrPx∥ ⩽ Ne−ν(t−s)∥x∥ for x ∈ KerP, t ⩾ s.

We define the function h : R × X → X by h(t, u(t)) := |u(t)|k−1u(t) +
g(t, u(t)). The equation (5.8) can now be rewritten as

(5.12)
du

dt
= A(t)u(t) + h(t, u(t)) for u(t)(·) = w(t, ·),

where ∥h(·, 0)∥Cb(R,X) ⩽ γ + g(·, 0) for γ := sup
t∈[0,π]

(
∫ π

0
|h(t, x)|2dx)1/2. It is

clearly to see that the function h satisfying Assumption 4.1 if g satisfies also
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this assumption. Therefore, we apply Theorem 4.2 and Theorem 4.3 to get the
well-posedness and exponential stability of AP-, AAP- and PAP- mild solutions
for equation (5.12) (hence for origin equation (5.8)) as follows

Theorem 5.2. Let X = L2([0, π]) and a(·) be an almost periodic function, the
following assertions hold

(i) If g ∈ Cb(R × [0, π], X) be a given AP- (resp. PAP-) function satisfying
Assumption 4.1, γ and the Lipschitz constants are small enough, equation
(5.12) (hence (5.8)) has one and only one AP- (resp. PAP-) mild solution
û on a small ball of AP (R× [0, π], X) (resp. PAP (R× [0, π], X)). More-
over, these mild solutions are exponential stable in the sense of Theorem
4.3.

(ii) If g ∈ Cb(R+ × [0, π], X) be a given AAP- function satisfying Assump-
tion 4.1. If ∥u0∥X , γ and the Lipschitz constants of functions are small
enough, equation (5.12) (hence (5.8)) has one and only one AAP- mild
solution û on a small ball of AAP (R+ × [0, π], X). Moreover, the mild
solution is exponential stable in the sense of Theorem 4.3.

References

[1] P. Acquistapace and B. Terreni, A unified approach to abstract linear
nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78
(1987), 47–107.

[2] Amerio,L, Prouse,G Almost Periodic Functions and Functional Equa-
tions, Springer, NewYork (1971)

[3] B. Amir and L. Maniar, Composition of pseudo-almost periodic func-
tions and Cauchy problems with operator of nondense domain, Ann. Math.
Blaise Pascal 6 (1) (1999), pages 1–11.

[4] W. Arendt and Ch.J.K. Batty, Asymptotically Almost Periodic Solu-
tions of Inhomogeneous Cauchy Problems on The Half-Line, Bulletin of the
London Mathematical Society, Vol. 31, Iss. 3 (1999), pages 291–304

[5] M. Baroun, S. Boulite, T. Diagana and L. Maniar, Almost periodic
solutions to some semilinear nonautonomous thermoelastic plate equations,
J. Math. Anal. Appl. 349 (1) (2009), pages 74–84.



96 T.M.Nguyet, N.T.Loan, N.T.Van, P.X.Truong

[6] M. Baroun, S. Boulite, G.M. N’Guerekata ad L. Maniar, Almost
automorphy of semilinear parabolic evolution equations, Electron. J. Dif-
ferential Equation (60) (2008), pages 1–9.

[7] C.J.K. Batty, W. Hutter and F. Räbiger, Almost Periodicity of Mild
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