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Abstract. In this paper we investigate the uniqueness of L-functions
sharing finite sets with meromorphic functions having deficient poles. As
a consequence, we have exhibited an extended version of a recent result of
A. Banerjee and A. Kundu [1]. The results obtained in this paper improve
and extend a recent result due to Khoai-An-Phuong [9] and a result in [17].

1. Introduction. Main results

L-functions in the Selberg class, with the Riemann zeta function as a pro-
totype, are important objects in number theory. In this paper, an L-function
always means a non-constant L-function in the Selberg class S, with the nor-
malized condition a(1) = 1, which is defined to be a Dirichlet series

L(s) =

∞∑
i=0

a(n)

ns

satisfying the following hypotheses:

(i) Ramanujan hypothesis: for all positive ϵ, a(n) ≪ nϵ;
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(ii) Analytic continuation: there exists a non-negative integer m such that
(s− 1)mL(s) is an entire function of finite order;

(iii) Functional equation: there are positive real numbers Q, λi, and there
exists a positive integer K, and there are complex numbers µi,ω with ℜµi ≥ 0
and |ω| = 1 such that ΛL(s) = ωΛL(1− s), where ΛL(s) := L(s)Qs

∏K
i=1 Γ(λis+

µi);

(iv) Euler product hypothesis: L(s) satisfies L(s) =
∏

p Lp(s), where Lp(s) =

exp
(∑∞

k=1
b(pk)
pks

)
with coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1

2 ,
where the product is taken over all prime numbers p.

On the other hand, an L-function can be analytically continued as a mero-
morphic function in the complex plane C. Therefore, for the problem of value
distribution of L-functions sharing finite sets with meromorphic functions, one of
the main tools is the Nevanlinna theory on the value distribution of meromorphic
functions.

Let f be a non-constant meromorphic function in C, a ∈ C ∪ {∞}, and k
be a nonnegative integer or infinity. We assume that the reader is familiar with
the notations of Nevanlinna theory (see, for example [2], [5]): T (r, f), N(r, f),
m(r, f), ....

We define

Θ(a, f) = 1− lim
r→+∞

N(r,
1

f − a
)

T (r, f)
,

where r outside possibly a set of finite Lebesgue measure. Clearly

0 ≤ Θ(a, f) ≤ 1.

Denote by Ef (a) the set of all a− points of f where an a− point is counted
with its multiplicity, and by Ef (a) where an a− point is counted only one time,
and by Ef (a, k) the set of all a− points of f where an a− point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k.

For a non-empty subset S ⊂ C ∪ {∞}, define Ef (S) = ∪a∈SEf (a), and
similarly for Ef (S), Ef (S, k). Let F be a non-empty subset of M(C). Two non-
constant meromorphic functions f, g of F are said to share S, counting multiplic-
ity, (share S CM), if Ef (S) = Eg(S), and to share S, ignoring multiplicity, (share
S IM), if Ef (S) = Eg(S), and to share S with weight k if Ef (S, k) = Eg(S, k).

If the condition Ef (S) = Eg(S) (resp. Ef (S) = Eg(S)) implies f = g for
any two non-constant meromorphic (entire) functions f, g of F , then S is called
a unique range set for meromorphic (entire) functions of F counting multiplicity
(resp. ignoring multiplicity), and similarly for unique range set for meromorphic
(entire) functions of F with weight k. Clearly Ef (S) = Ef (S,∞), and Ef (S) =
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Ef (S, 0). Denote by

Ff

(
Θ(a, f) ≥ t

)
=

{
f ∈ M(C), t ∈ R : Θ(a, f) ≥ t and 1 ≥ t

}
,

Ff

(
Θ(a, f) ≤ t

)
=

{
f ∈ M(C), t ∈ R : Θ(a, f) ≤ t and t ≥ 0

}
,

and similarly for
Ff

(
Θ(a, f) > t

)
, Ff

(
Θ(a, f) < t

)
.

In the last few years, the value distribution and uniqueness of L-functions
has been studied extensively. In 2017 Q.-Q. Yuan, X.-M. Li, and H.-X. Yi [17]
obtained the following result.

Theorem A. [17] Let f be a non-constant meromorphic function having
finitely many poles, and let L be an L-function. Let P (z) = zn+ azm+ b, where
m,n are positive integers, satisfying n > 2m + 4, and (m,n)=1, a, b ∈ C are
non-zero constants. Denote by S the zero set of P. If f and L share S CM, then
f = L.

From Theorem A it follows the existence of a class of subsets S with 7
elements, which are zero sets of Yi’s polynomials, such that if Ef (S) = EL(S),
then f = L, where f is a non-constant meromorphic function having finitely
many poles, L is an L-function.

In 2023 H. H. Khoai, V. H. An, and N. D. Phuong [9] by using a class of
polynomials, which are not Yi’s polynomials, presented a class of subsets S ⊂ C
with 9 elements such that if Ef (S) = EL(S), then f = L, where L is an L-
function and f is a non-constant meromorphic function. They obtained the
following result.

Let n,m ∈ N∗, a ∈ C, a ̸= 0.

Consider polynomials PK(z) of the following form:

PK(z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
+ 1 = QK(z) + 1,

where

(1.1) QK(z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
.

Suppose that

(1.2) QK(a) = (n+m+ 1)(

m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
)an+m+1 ̸= −1,−2.

Then P
′

K(z) = (n+m+ 1)zn(z − a)m, and P
′

K(z) has a zero at 0 of order n, a
zero at a of order m. Note that, from the condition (1.2) it follows that PK(z)
has only simple zeros.
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Theorem B. Let f be non-constant meromorphic function, L be a non-constant
L-function, PK(z) be defined as in (1.1) with conditions (1.2), SK = {z | PK(z) =
0}. If n ≥ 2,m ≥ 2, n +m ≥ 8, then the condition Ef (SK) = EL(SK) implies
f = L.

A polynomial P (z) is called a uniqueness polynomial for meromorphic (en-
tire) functions if for arbitrary two non-constant meromorphic (entire) functions
f and g, the condition P (f) = P (g) implies f = g.

A polynomial P (z) is called a strong uniqueness polynomial for meromorphic
(entire) functions if for arbitrary two non-constant meromorphic (entire) func-
tions f and g, and a non-zero constant c, the condition P (f) = cP (g) implies
f = g.

Note that PK(z) be a strong uniqueness polynomial for meromorphic func-
tions if n ≥ 2,m ≥ 2, n+m ≥ 8.

Consider polynomials P (z) ∈ C[z] of degree q of the form

P (z) = a(z − a1)(z − a2) · · · (z − aq),

where the derivative of P (z) has k zeros mutually distinct d1, d2, ..., dk with
multiplicities q1, q2, ..., qk, respectively, and then

(1.3) P
′
(z) = aq(z − d1)

q1(z − d2)
q2 ...(z − dk)

qk , a ̸= 0.

The number k is called the derivative index of P (z).

Suppose that:

(1.4) P (di) ̸= 0 for 1 ≤ i ≤ k.

Note that, from the condition (1.4) it follows that P (z)has only simple zeros.

We recall the following condition introduced by Fujimoto (see [6]):

(F ) P (di) ̸= P (dj) for 1 ≤ i < j ≤ k, k ≥ 2.

In 2023 A. Banerjee and A. Kundu [1] improved Theorem B. They obtained
the following result.

Theorem C. Let f be a non-constant meromorphic function, L be a L-function,
P (z) be defined as in (1.3) with conditions (1.4) and (F), and S = {z : P (z) =
0}. If min{q1, q2} ≥ 2 when k = 2 and q ≥ 2k+4 and Ef (S, 2) = EL(S, 2), then
we have f = L.

Note that, if Ef (S) = EL(S), then Ef (S, 2) = EL(S, 2). Then, applying
Theorem C with k = 2 and q ≥ 8, we obtain Theorem B.
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Regarding Theorem B and Theorem C it is natural to ask the following
question which motivates us to write this paper.

Question 1. What is the smallest cardinality for such a finite set S such
that any meromorphic function f and a L-function L satisfying Ef (S) = EL(S)
must be identical?

In this paper, we apply the arguments used in [9] and [1] to answer to Ques-
tion 1.

We shall prove the following main theorem.

Theorem 1. Let f be a non-constant meromorphic function, L be a non-
constant L-function. Let P (z) be a strong uniqueness polynomial of the form
(1.3) satisfying conditions (1.4) and (F), and S = {z : P (z) = 0}, and Ef (S) =
EL(S). Assume that min{q1, q2} ≥ 2 when k = 2, and one of the following
conditions is satisfied:

1)

q ≥ 2k + 3, and f ∈Ff

(
Θ(∞, f) ≥ t

)
, 1 ≥ t ≥ 1

2
;

2)

q ≥ 2k + 4, and f ∈Ff

(
Θ(∞, f) ≥ t

)
}, t <

1

2
.

Then f = L.

Applications. We discuss some applications of Theorem 1.

Giving specific values for t in Theorem 1, we can get the following interesting
cases for k = 2 and Θ(∞, f):

i) There exist sets S of 7 elements such that any meromorphic function f and
a L-function L satisfying Ef (S) = EL(S) and Θ(∞, f) = 1 must be identical.

Indeed, take k = 2 and t = 1 in Theorem 1. Then Θ(∞, f) = 1 and applying
Theorem 1, Part 1, we obtain q ≥ 7.

ii) There exist sets S of 8 elements such that any meromorphic function f
and a L-function L satisfying Ef (S) = EL(S) must be identical.

Indeed, take k = 2 and t ≤ 0 in Theorem 1. Then Θ(∞, f) ≥ 0 and applying
Theorem 1, Part 2, we obtain q ≥ 8.

Remark. i) From Theorem 1, Part 2 we obtain Theorem C.

ii) Theorem 1 improves and generalizes some previous results of Khoai-An-
Phuong [9] and a result in [17].
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2. Preliminary results

We assume that the reader is familiar with the notations of Nevanlinna the-
ory (see, for example, [5], [2], [15]). We have other forms of two Fundamental
Theorems of the Nevanlinna theory:

Another form of the First Fundamental Theorem (see [15], Theorem
1.2, p.8). Let f(z) be a non-constant meromorphic function in C and let a ∈ C.
Then

T (r,
1

f − a
) = T (r, f) +O(1),

where O(1) is a bounded quantity when r → +∞.

Another form of the Second Fundamental Theorem (see[15], Theo-
rem 1.6’, p.22). Let f be a non-constant meromorphic function on C and let
a1, a2, ..., aq be distinct points of C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not zeros

of the function (f − a1)...(f − aq), and S(r, f) = o(T (r, f)) for all r, except for
a set of finite Lebesgue measure.

Lemma 2.1. 1/ [2] For any non-constant meromorphic function f, we have

i) T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f);

ii) S(r, f (k)) = S(r, f).

2/ [18] For any nonconstant meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).

Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N (k(r, f) the counting function of the poles of order
≥ k of f , where each pole is counted only once. If z is a zero of f , denote

by νf (z) its multiplicity. We denote by N(r,
1

f ′ ; f ̸= 0) the counting function

of the zeros z of f
′
satisfying f(z) ̸= 0, where each zero is counted only once.

We denote by Nk)(r,
1

f
) the counting function of the zeros z of f satisfying

νf (z) ≤ k, where each zero is counted only once. Let be given two non-constant
meromorphic functions f and g. For simplicity, denote by ν1(z) = νf (z) (resp.
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ν2(z) = νg(z)), if z is a zero of f (resp. g). Let f−1(0) = g−1(0). We denote
by N(r, 1

f ; ν1 = ν2 = 1) the counting function of the common zeros z, satisfying

ν1(z) = ν2(z) = 1. Similarly, we define the counting functions: N(r, 1
f ; ν1 ≥ 2),

N(r, 1
g ; ν2 > ν1 ≥ 1) and N(r, 1

g ; ν2 ≥ 2).

Lemma 2.2. Let f, g be two non-constant meromorphic functions such that
Ef (0) = Eg(0). Set

F =
1

f
, G =

1

g
, H =

F
′′

F ′ − G
′′

G′ .

Suppose that H ̸≡ 0. Then

N(r,H) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).

Moreover, if a is a common simple zero of f and g, then H(a) = 0.

H. Fujimoto ([3], Proposition 7.1) proved the following:

Lemma 2.3. Let P (z) be a strong uniqueness polynomial of the form (1.3)
satisfying conditions (1.4) and (F). Suppose that q ≥ 5 and there are two non-
constant meromorphic function f and g such that

1

P (f)
=

c0
P (g)

+ c1

for two constants c0 ̸= 0 and c1. If k ≥ 3 or if k = 2,min{q1, q2} ≥ 2, then
c1 = 0.

Lemma 2.4. [4] Let P (z) be a polynomial of the form (1.3) satisfying conditions
(1.4) and (F). Then P (z) is a uniqueness polynomial if and only if

∑
1≤i<j≤k

qiqj >

k∑
i=1

qi.

In particular, the above inequality is always satisfied whenever k ≥ 4. When
k = 3 and max{q1, q2, q3} ≥ 2, or when k = 2, min{q1, q2} ≥ 2, and q1 + q2 ≥ 5.

Lemma 2.5. [2]. Let f be an entire function of finite order ρ. If f has no
zeros, then f(z) = eh(z), where h(z) is a polynomial of degree less than ρ.

Lemma 2.6. [14]. Let L be a non-constant L− function. Then

i) T (r, L) = dL

π r log r + O(r), where dL = 2
∑K

i=1 λi is the degree of L−
function, and K,λi are respectively the positive integer and positive real number
in the functional equation of the definition of L− functions;

ii) N(r, L) = S(r, L),

iii) ρ(L) = 1.
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Lemma 2.7. [13]. Suppose L is a non-constant L-function, there is no gener-
alized Picard exceptional value of L in the complex plane.

Lemma 2.8. [9] Let f be a non-constant meromorphic function. Then

N(r,
1

f
)− 1

2
N1)(r,

1

f
) ≤ 1

2
N(r,

1

f
).

3. Proof of Theorem 1

Lemma 3.1. We have

1)
(q − 1)T (r, L) + S(r, L) ≤ qT (r, f) + S(r, f),

2)

(q − 2)T (r, f) + S(r, f) ≤ qT (r, L) + S(r, L), S(r, f) = S(r, L).

Proof. Applying another form of the two Fundamental Theorems and noting
that N(r, L) = S(r, L), EL(S) = Ef (S), we obtain

(q − 1)T (r, L) ≤ N(r, L) +

q∑
i=1

N(r,
1

L− ai
) + S(r, L),

(q − 1)T (r, L) + S(r, L) ≤
q∑

i=1

N(r,
1

f − ai
) + S(r, f)

≤ qT (r, f) + S(r, f).

Similarly,

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
) + S(r, f),

(q − 1)T (r, f) + S(r, f) ≤ T (r, f) +

q∑
i=1

N(r,
1

L− ai
) + S(r, L),

(q − 2)T (r, f) + S(r, f) ≤ qT (r, L) + S(r, L).

Combining the above inequalities, we get

q − 1

q
T (r, L) + S(r, L) ≤ T (r, f) + S(r, f) ≤ q

q − 2
T (r, L) + S(r, L),
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q − 2

q
T (r, f) + S(r, f) ≤ T (r, L) + S(r, L) ≤ q

q − 1
T (r, f) + S(r, f).

Therefore S(r, f) = S(r, L).
Lemma 3.1 is proved. ■

Set

F =
1

P (f)
, L =

1

P (L)
, H =

F
′′

F ′ − G
′′

G′ .

From Lemma 3.1 we obtain S(r, f) = S(r, L). Put S(r) = S(r, f) = S(r, L).
Then T (r, P (f)) = qT (r, f)+O(1) and T (r, P (L)) = qT (r, L)+O(1), and hence
S(r, P (f)) = S(r) and S(r, P (L)) = S(r). We prove following.

Lemma 3.2. H ≡ 0 if one of the following conditions is satisfied:

1) q ≥ 2k + 4− 2Θ(∞, f) and Θ(∞, f) < 1.

2) q ≥ 2k + 3 and Θ(∞, f) = 1.

Proof. Suppose H ̸≡ 0.

Claim 1. We have

i) (q − 1)T (r, L) ≤ N(r,
1

P (L)
) − No(r,

1

L′ ) + S(r), where No(r,
1
L′ ) is the

counting function of those zeros of L
′
, which are not zeros of the function (L−

a1)(L− a2) · · · (L− aq).

ii) (q− 1)T (r, f) ≤ N(r, f)+N(r,
1

P (f)
)−No(r,

1

f ′ )+S(r), where No(r,
1
f ′ )

is the counting function of those zeros of f
′
, which are not zeros of the function

(f − a1) · · · (f − aq).

Proof. i) Applying another form of the two Fundamental Theorems to L and
the values a1, a2, ..., aq, and noticing that

N(r, L) = S(r, L),

q∑
i=1

N(r,
1

L− ai
) = N(r,

1

P (L)
),

we obtain

(q − 1)T (r, L) ≤ N(r, L) +

q∑
i=1

N(r,
1

L− ai
)−No(r,

1

L′ ) + S(r, L),

(q − 1)T (r, L) ≤ N(r,
1

P (L)
)−No(r,

1

L′ ) + S(r).

ii) The inequality for f is proved by a similar argument.
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Claim 2. We have

N(r,H) ≤ kT (r, L) + kT (r, f) +N(r, f) +No(r,
1

f ′ ) +No(r,
1

L′ ) + S(r).

Proof.

Noting that H has only simple poles, from Lemma 2.2 we obtain

N(r,H) ≤N (2(r, P (f)) +N (2(r, P (L))+

N(r,
1

P ′(f)
;P (f) ̸= 0) +N(r,

1

P ′(L)
;P (L) ̸= 0) + S(r).

On the other hand,

N (2(r, P (L)) = N(r, L) = S(r), N (2(r, P (f)) = N(r, f).

Moreover, we have

N(r,
1

[P (L)]′
;P (L) ̸= 0) ≤

k∑
i=1

N(r,
1

L− di
; (L− a1) · · · (L− aq) ̸= 0) +No(r,

1

L′ )

≤
k∑

i=1

N(r,
1

L− di
) +No(r,

1

L′ ) ≤ kT (r, L) +No(r,
1

L′ ) + S(r).

Thus

N(r,
1

[P (L)]′
;P (L) ̸= 0) ≤ kT (r, L) +No(r,

1

L′ ) + S(r).

Similarly,

N(r,
1

[P (f)]′
;P (f) ̸= 0) ≤ kT (r, f) +No(r,

1

f ′ ) + S(r).

Claim 3. We have

i)

N(r,
1

P (L)
) +N(r,

1

P (f)
) ≤

(
q

2
+ k)T (r, L) + (

q

2
+ k)T (r, f) +N(r, f) +No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r).

ii)
(q − 2k − 2)T (r, L) + (q − 2k − 2)T (r, f) ≤ 4N(r, f) + S(r).
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Proof. i) Note that from Lemma 2.2, if a is a common simple zero of P (f)
and P (L), then H(a) = 0. Therefore,

N1)(r,
1

P (L)
) = N1)(r,

1

P (f)
) ≤ N(r,

1

H
) ≤ T (r,H) + S(r,H)

≤ N(r,H) + S(r),

because by Lemma on logarithmic derivatives, m(r,H) = o(T (r,H)), and by
Lemma 2.1, S(r,H) ≤ S(r). Then, applying Lemma 2.8 and Claim 2, we obtain

N(r,
1

P (L)
) +N(r,

1

P (f)
) = N(r,

1

P (L)
) +N(r,

1

P (f)
)−N1)(r,

1

P (L)
)+

N1)(r,
1

P (L)
) = N(r,

1

P (L)
)− 1

2
N1)(r,

1

P (L)
) +N(r,

1

P (f)
)

−1

2
N1)(r,

1

P (f)
) +N1)(r,

1

P (L)
) ≤ 1

2
(N(r,

1

P (L)
) +N(r,

1

P (f)
)) +N(r,H)

≤ (
q

2
+ k)T (r, L) + (

q

2
+ k)T (r, f) +N(r, f) +No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r).

ii) By Claim 1 and Part i) of Claim 3 we obtain

(2q−2)T (r, L)+(2q−2)T (r, f) ≤ (q+2k)T (r, L)+(q+2k)T (r, f)+4N(r, f)+S(r),

(q − 2k − 2)T (r, L) + (q − 2k − 2)T (r, f) ≤ 4N(r, f) + S(r).

Claim 3 is proved.

Now we use Lemma 3.1 and Part ii) of Claim 3 to obtain a contradiction,
and complete the proof of H ≡ 0.

1) q ≥ 2k + 4− 2Θ(∞, f) and Θ(∞, f) < 1.

Consider α(x) on x ≥ 2k + 4− 2Θ(∞, f), x ∈ R,
where

α(x) = 2x− 4k − 9 + 4Θ(∞, f) +
2k + 6− 4Θ(∞, f)

x
.

We have α′(x) = 2−2k + 6− 4Θ(∞, f)

x2
> 0 on x ≥ 2k+4−2Θ(∞, f), x ∈ R.

Combining this and q ≥ 2k + 4− 2Θ(∞, f) and Θ(∞, f) < 1 we obtain

α(q) = 2q − 4k − 9 + 4Θ(∞, f) +
2k + 6− 4Θ(∞, f)

q
,

α(2k + 4− 2Θ(∞, f)) =
2k + 6− 4Θ(∞, f)

2k + 4− 2Θ(∞, f)
− 1 > 0,
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(3.1) α(q) ≥ α(2k + 4− 2Θ(∞, f)) > 0.

From (3.1) it is given that

(3.2) α(q) ≥ α(2k + 4− 2Θ(∞, f)) > ϵ > 0,

where ϵ is a small positive number.

Using Part ii) of Claim 3 and Part 1) of Lemma 3.1 we get

(q − 2k − 2)T (r, L) + (q − 2k − 2)T (r, f) ≤ 4N(r, f) + S(r),

(q − 2k − 2)T (r, L) + (q − 2k − 2)T (r, f) ≤ 4(1−Θ(∞, f) +
ϵ

4
)T (r, f) + S(r),

(2q − 4k − 9 + 4Θ(∞, f) +
2k + 6− 4Θ(∞, f)

q
− q − 1

q
ϵ)T (r, L) ≤ S(r),

which is a contradiction since (3.2).

2) q ≥ 2k + 3 and Θ(∞, f) = 1.

Consider β(x) on x ≥ 2k + 3, x ∈ R, where

β(x) = 2x− 4k − 5 +
2k + 2

x
.

We have β′(x) = 2− 2k + 2

x2
> 0 on x ≥ 2k + 3, x ∈ R.

Combining this and q ≥ 2k + 3 we obtain

β(q) = 2q − 4k − 5 +
2k + 2

q
, β(2k + 3) = 1 +

2k + 2

2k + 3
> 1,

(3.3) β(q) ≥ β(2k + 3) > 1.

By Part ii) of Claim 3 and Θ(∞, f) = 1 and Lemma 3.1 we get

N(r, f) = S(r), and therefore (q − 2k − 2)T (r, L) + (q − 2k − 2)T (r, f) ≤ S(r),

(3.4) (2q − 4k − 5 +
2k + 2

q
)T (r, L) ≤ S(r).

which is a contradiction since (3.3).

So H ≡ 0. Lemma 3.2 is proved. ■
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Now we return the proof of Theorem 1. We first prove H ≡ 0.

1)

q ≥ 2k + 3, and f ∈Ff

(
Θ(∞, f) ≥ t

)
, 1 ≥ t ≥ 1

2
.

If t = 1, then Θ(∞, f) = 1, and then H ≡ 0 from Part 2) of Lemma 3.2

If 1 > t ≥ 1

2
and 1 > Θ(∞, f) ≥ 1

2
, then

q ≥ 2k + 3 ≥ 2k + 4− 2Θ(∞, f) > 2k + 2.

Therefore, H ≡ 0 from Part 1) of Lemma 3.2.

2)

q ≥ 2k + 4, and f ∈Ff

(
Θ(∞, f) ≥ t

)
}, t <

1

2
.

If Θ(∞, f) <
1

2
, then 0 ≥ −2Θ(∞, f) > −1. Therefore

q ≥ 2k + 4 ≥ 2k + 4− 2Θ(∞, f) > 2k + 3,

which follows that H ≡ 0 from Part 1) of Lemma 3.2.

If Θ(∞, f) ≥ 1

2
, then H ≡ 0 from q ≥ 2k + 4 > 2k + 3 and 1).

Thus, H ≡ 0. Therefore 1
P (L) = c

P (f) + c1 for some constants c ̸= 0 and c1.

By Lemma 2.3 we obtain c1 = 0. Therefore, there is a constant c ̸= 0 such that
P (f) = cP (L). By P (z) is a strong uniqueness polynomial we obtain f = L.

Theorem 1 is proved. ■
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