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Abstract. This paper presents primal and dual Fritz John second-
order necessary conditions for strict local Pareto minima of order two
of nonsmooth vector optimization problems in terms of the Páles–Zeidan
second-order directional derivatives without constraint qualifications. Dual
second-order Karush–Kuhn–Tucker necessary and sufficient conditions for
strict local Pareto minima of order two are established under a suitable
constraint qualification.

1. Introduction

Vector equilibrium problem plays an important role in nonlinear analysis. It
provides a unified mathematical model including vector optimization problem,
vector variational inequality problem, and some other problems. There are a lot
of papers dealing with optimality conditions for solutions of vector equilibrium
problems and vector inequalities (see, e. g., [3,7–9,11,12,21–25] and references
therein). In recent years, second-order necessary optimality conditions have
been received attention because of their extension beyond first-order necessary
conditions. There have been many papers to deal with second-order optimality
conditions (see, e. g., [1, 2, 4, 5, 10, 13–15, 19, 20, 30, 31] and references therein).
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Second-order optimality conditions were derived by Ben-Tal [2], Aghezzaf and
Hachimi [1], Jiménez and Novo [15] for optimization problems with twice dif-
ferentiable functions, Ginchev and Ivanov [10] for continuously differentiable
scalar problems, Ivanov [14] for scalar problems involving Lipschitz second-
order Hadamard differentiable functions. Recently, Constantin [4] established
primal and dual second-order necessary conditions for Lipschitz optimization
problems with inequality constraints by using second-order directional deriva-
tives. Constantin [6] derived some second-order optimality conditions for strict
efficiency under Zingwill constraint qualification.

The purpose of this paper is to develop primal and dual second-order nec-
essary optimality conditions for strict local Pareto minima of multiobjective
optimization problems involving inequality and set constraints in terms of the
Páles–Zeidan second-order directional derivatives in Banach spaces.

The paper is organized as follows. After some preliminaries, Section 3 is
devoted to develop primal second-order necessary conditions for strict local
Pareto minima of order two of nonsmooth multiobjective optimization prob-
lems involving inequality and set constraints without constraint qualifications
in terms of the Páles–Zeidan second-order upper generalized directional deriva-
tives. Section 4 deals with dual second-order Fritz John and Karush-Kukn-
Tucker necessary optimality conditions for strict local Pareto minima under a
suitable constraint qualification. Section 5 gives dual second-order sufficient
optimality conditions for strict local Pareto minima.

2. Preliminaries

Let X be a real Banach space, and let f be a real-valued function defined
on X, which is Lipschitz near x ∈ X. We recall that the Clarke generalized
derivative of f at x ∈ X in a direction v ∈ X is defined as

(2.1) f0(x; v) := lim sup
(x,t)→(x,0+)

f(x+ tv)− f(x)

t
.

Following [30], the Páles–Zeidan second-order upper(lower) generalized direc-
tional derivative of f at x in the direction v is defined as

(2.2) f00
+ (x; v) := lim sup

t↓0

f(x+ tv)− f(x)− tf0(x; v)

t2/2
,

(2.3)
(
resp. f00

− (x; v) := lim inf
t↓0

f(x+ tv)− f(x)− tf0(x; v)

t2/2

)
.
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Let f : X → R be Fréchet differentiable at x ∈ X, and ∇f(x) be its gradient
at x. The following limit is called second-order directional derivative at x in
the direction v ∈ Rn

f ′′(x; v) := lim
t↓0

f(x+ tv)− f(x)− t∇f(x)(v)

t2/2
.

Note that if f is continuously Fréchet differentiable near x with the Fréchet
derivative ∇f(x), then f is Lipschitz near x, and f0(x; v) = ∇f(x)v (∀v ∈ X);
If f is continuously Fréchet differentiable near x and second-order directionally
differentiable at x in a direction v ∈ X, then (see [4])

f00
+ (x; v) = f”(x; v).

Let C be a nonempty subset of X. Following [5], an element u ∈ X is called
a tangent vector to C at x ∈ clC if

(2.4) lim
t↓0

1

t
d(x+ tu;C) = 0,

where d(x;C) stands for the distance from x to C, clC is the closure of C. The
set of all tangent vectors to C at x is denoted by Tx(C), and is called the tangent
cone to C at x. Note that Tx(C) is a nonempty closed cone containing 0 ∈ X.
Moreover, (2.4) is equivalent to the existence of a function β : (0,+∞) → X
with β(t) → 0 as t ↓ 0, and

x+ t(u+ β(t)) ∈ C (∀t > 0).

Following [18], we also have

Tx(C) = {u ∈ X : ∃tn → 0+, ∃un → u such that xn = x+tnun ∈ C, ∀n ≥ 1}.

Adapting the definition in [5], an element v ∈ X is said to be a second-order
tangent vector to C at x if there exists u ∈ X such that

(2.5) lim
t↓0

1

t2
d(x+ tu+

t2

2
v;C) = 0 .

The vector u satisfying (2.5) is said to be associated with v. Denote by T 2
x (C)

the set of all second-order tangent vectors to C at x. Observe that v ∈ T 2
x (C)

with the associated vector u is equivalent to the existence of a function β1 :
(0,+∞) → X with β1(t) → 0 as t ↓ 0, and

x+ tu+
t2

2
(v + β1(t)) ∈ C (∀t > 0).

Moreover, v ∈ T 2
x (C) implies that u ∈ Tx(C), and T 2

x (C) is a nonempty cone
containing 0 ∈ X (see [5, 18]).
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3. Primal Second-Order Necessary Conditions for strict local Pareto
minima

Let X be a real Banach space, and let f be a function from X to Rm, and
so, f = (f1, . . . , fm). Let g1, . . . , gn be extended-real-valued functions defined
on X, and C be a subset of X. We set J := {1, . . . ,m}, I := {1, . . . , n} and

M :=
{
x ∈ C : gi(x) ⩽ 0, i ∈ I

}
.

Let us consider the following multiobjective optimization problem:

(MP ) min{f(x) : x ∈ M}.

For x ∈ X, we denote:

I(x) := {i ∈ I : gi(x) = 0},

for u ∈ X:
I(x, u) := {i ∈ I(x) : g0i (x;u) = 0},
J(x, u) := {k ∈ J : f0

k (x;u) = 0}.
Remark that a vector x ∈ X is called a weak local Pareto minimum for (MP) if
there exists a neighborhood V of x such that there is no x ∈ V ∩M satisfying

fk(x) < fk(x) ∀k ∈ J.

Adapting the definition in Jiménez [18], a vector x ∈ M is called a strict local
Pareto minimum of order two for (MP) if there exist a constant α > 0 and a
neighborhood V of x such that(

f(x) + Rm
+

)
∩B

(
f(x), α∥x− x∥2

)
= ∅, ∀x ∈ M ∩ V, x ̸= x, (∗)

where Rm
+ is the nonnegative orthant in Rm, B

(
f(x), α∥x−x∥2

)
stands for the

open ball of radius α∥x− x∥2 around f(x).

Remark 3.1. 1. Condition (*) is equivalent to the following

∥f(x) + d− f(x)∥ > α∥x− x∥2 ∀x ∈ M ∩ V, x ̸= x, ∀d ∈ Rm
+ .

2. The definition of strict local Pareto minimizer becomes the usual notion
of a strict local minimizer of order two when X = R and m = 1 and then
we obtain that

(f(x) + R+) ∩B(f(x), α||x− x||2) = ∅ ∀x ∈ M ∩ V \ {x},

which is equivalent to the following

f(x) > f(x) + α||x− x||2.
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3. It should be noted here that if x ∈ M is a strict local minimum of order
two for (MP) then it is a weak local Pareto minimum for (MP) (see [18]).

We recall Theorem 3.7 by Jiménez [18] on strict local Pareto minima of
order two in terms of the data of Problem (MP), which will be used to prove
primal necessary condition for strict local Pareto minima in next section.

Proposition 3.1. [18] x ∈ M is a strict local Pareto minimum of order two
for (MP) if and only if there exist a number α > 0, a neighborhood U of x, and
at most m sets Vi, i ∈ I ′ ⊂ I, such that {Vi, i ∈ I ′} is a covering of M ∩U \{x},
and verifying

fi(x) > fi(x) + α∥x− x∥2 (∀x ∈ Mi \ {x}),

where Mi = (M ∩ U ∩ Vi) ∪ {x}.

This section deals with primal second-order necessary conditions for strict
local Pareto minima of order two for (MP) in terms of Palés–Zeidan’s second-
order upper generalized directional derivatives.

Adapting the definition in [13], a vector u ∈ X is called critical direction at
x ∈ M if 

f0
k (x;u) ⩽ 0 (∀k ∈ J),

g0i (x;u) ⩽ 0 (∀i ∈ I(x)),

u ∈ Tx(C).

We shall begin with a primal second-order necessary condition for strict
local Pareto minimum of (MP).

Theorem 3.2. Let x ∈ M be a strict local Pareto minimum of (MP). Assume
that the functions fk(k ∈ J) and gi (i ∈ I(x)) are locally Lipschitz at x, the
functions gi (i /∈ I(x) are continuous at x. Then, for every critical direction
u ∈ X, u ̸= 0, there is no v ∈ T 2

x (C) with the associated vector u satisfying the
following system:

(3.1) f0
k (x; v) + f00

k,+(x;u) ≤ 0 (∀k ∈ J(x, u)),

(3.2) g0i (x; v) + g00i,+(x;u) < 0 (∀i ∈ I(x;u)).

Remark 3.2. Constantin [6] established primal and dual Fritz John second-
order necessary conditions for strict local Pareto minima of Lipschitz multiob-
jective optimization problems in terms of the Páles–Zeidan second-order di-
rectional derivatives with Zingwill constraint qualification. In this paper, we
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develop second-order primal and dual Fritz John optimality conditions for strict
local Pareto minima of Lipschitz multiobjective optimization problems in terms
of the Páles–Zeidan second-order directional derivatives without any constraint
qualification. The results obtained here are new and significant in the theory
of optimality conditions.

Proof. [Proof of Theorem 3.2] Assume the contrary, that there is a critical
direction u0 ∈ X such that the system (3.1)–(3.2) has a solution v0 ∈ T 2

x (C).
Hence, there exists a mapping β(t) : (0,+∞) → X with β(t) → 0, as t → 0+

such that

(3.3) x+ tu0 +
t2

2
(v0 + β(t)) ∈ C (∀t > 0).

First, let us consider the inequality constraints. We divide three cases.
(a) Let i ∈ I(x;u0). Then gi(x) = 0 and g0i (x;u0) = 0. Let us show that there
exists ϵi > 0 such that

(3.4) gi
(
x+ tu0 +

t2

2
(v0 + β(t))

)
< 0 (∀t ∈ (0, ϵi),∀i ∈ I(x;u0)).

We first show that there exists ϵi > 0 such that for every t ∈ (0, ϵi), gi(x +
tu0 +

1
2 t

2v0) < 0. If it were not so, for ϵi =
1
n > 0 (n ∈ N), there would exist

tn ∈ (0, 1
n ) such that gi(x+ tnu0 +

1
2 t

2
nv0) = gi(x+ tnu0 +

1
2 t

2
nv0)− gi(x) ⩾ 0.

Consequently,

g0i (x; v0) + g00i,+(x;u0)

⩾ lim sup
n→+∞

gi(x+ tnu0 +
1
2 t

2
nv0)− gi(x+ tnu0)

t2n/2

+ lim sup
n→+∞

gi(x+ tnu0)− gi(x)− tng
0
i (x;u0)

t2n/2

⩾ lim sup
n→+∞

gi(x+ tnu0 +
1
2 t

2
nv0)− gi(x)

t2n/2

⩾ 0,

which conflicts with (3.2), and so, there exists ϵi > 0 such that for every
t ∈ (0, ϵi), gi(x + tu0 +

1
2 t

2v0) < 0. Since β(t) → 0 as t → 0+, in view of the
continuity of gi at x, there is a number ϵi ∈ (0, ϵi) such that (3.4) holds for
every t ∈ (0, ϵi).
(b) Let j ∈ I(x) \ I(x;u0). Then gj(x) = 0 and g0j (x;u0) < 0. We show that

there exists δj > 0 such that

(3.5) gj(x+ tu0 +
1

2
t2(v0 + β(t)) < 0 (∀t ∈ (0, δj),∀j ∈ I(x) \ I(x;u0)).
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To prove (3.5), we first prove that there exists δj > 0 such that

(3.6) gj(x+ tu0 +
1

2
t2v0) < 0 (∀t ∈ (0, δj),∀j ∈ I(x) \ I(x;u0)).

If this were false, for δj = 1
n > 0 (n ∈ N), there would exist tn ∈ (0, 1

n ) such
that gj(x + tnu0 + 1

2 t
2
nv0) ⩾ 0 = gj(x). Since gj is locally Lipschitz at x, it

follows that

0 ⩽
gj(x+ tnu0 +

1
2 t

2
nv0)− gj(x+ tnu0)

tn
+

gj(x+ tnu0)− gj(x)

tn

⩽
1

2
Ljtn||v0||+ g0j (x;u0),

where Lj is the Lipschitz constant of gj at x. By letting n → +∞, we arrive
at g0j (x;u0) ⩾ 0 (∀j ∈ I(x) \ I(x;u0)), a contradiction. Hence, (3.6) holds.
Making use of the continuity of gj at x, it follows from (3.6) that there exists
a number δj ∈ (0, δj) such that (3.5) holds.
(c) Let r ∈ I \ I(x). Then gr(x) < 0. By the continuity of gr, there exists
σr > 0) such that gr(x + tu0 +

1
2 t

2v0) < 0 (∀t ∈ (0, σr),∀r ∈ I \ I(x)). Since
β(t) → 0 as t → 0+, there is σr ∈ (0, σr) such that

(3.7) gr
(
x+ tu0 +

1

2
t2(v0 + β(t))

)
< 0 (∀t ∈ [0, σr),∀r ∈ I \ I(x)).

Now, we set α := min{ϵi, δj , σr : i ∈ I(x;u0), j ∈ I(x) \ I(x;u0), r ∈
I \ I(x)}. It follows from (3.4), (3.5) and (3.7) that

(3.8) gi
(
x+ tu0 +

1

2
t2(v0 + β(t))

)
< 0 (∀t ∈ (0, α),∀i ∈ I).

From (3.3) and (3.8), we deduce that x+ tu0 +
1
2 t

2(v0 + β(t)) (∀t ∈ (0, α))
are feasible points of Problem (MP).

Next, we consider the objective functions.

Since x is a strict Pareto minimum of f on M , in view of Proposition 3.1,
there are α > 0, a neighborhood W of x and at most m sets Vk, k ∈ J ′ ⊂ J
such that {Vk : k ∈ J ′} is a coverring of (M ∩W ) \ {x}, and

fk(x) > fk(x) + α ∥ x− x ∥2 (∀x ∈ Mk \ {x})

where Mk := (M ∩W ∩ Vk) ∪ {x}.
For all sequence tn ↓ 0, tn ∈ (0, α), we have x + tnu0 +

t2n
2 (v0 + β(tn)) ∈⋃

k∈J′ Mk. Hence, there exist an index k and an infinite subsequence t′n ↓ 0
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of {tn}, without loss of generality we still denote by tn, such that x + tnu0 +
t2n
2 (v0 + β(tn)) ̸= x and x+ tnu0 +

t2n
2 (v0 + β(tn)) ∈ Mk,∀n.

Therefore,

(3.9) fk
(
x+ tnu0 +

t2n
2
(v0 + β(tn))

)
> fk(x) + α ∥ tnu0 +

t2n
2
(v0 + β(tn)) ∥2 .

We now show that f0
k (x;u0) = 0.

We have

(3.10) |fk
(
x+

t2n
2
(v0 + β(tn))

)
− fk(x)| ≤ Dk

t2n
2
∥v0 + β(tn)∥,

and

(3.11) |fk
(
x+ tnu0 +

t2n
2
β(tn)

)
− fk(x+ tnu0)| ≤ Dk

t2n
2
∥β(tn)∥,

where Dk is the Lipschitz constant of fk at x.

Therefore,

(3.12) lim
n→∞

fk(x)− f
(
x+

t2n
2 (v0 + β(tn))

)
tn

= 0,

(3.13) lim
n→∞

fk(x+ tnu0)− f
(
x+ tnu0 +

t2n
2 β(tn)

)
t2n/2

= 0.

From (3.9) and (3.12), we have:

f0
k (x;u0) ≥ lim sup

n→∞

fk
(
x+

t2n
2 (v0 + β(tn)) + tnu0

)
− fk

(
x+

t2n
2 (v0 + β(tn))

)
tn

= lim sup
n→∞

fk
(
x+

t2n
2 (v0 + β(tn)) + tnu0

)
− fk(x)

tn

+ lim
n→∞

fk(x)− f
(
x+

t2n
2 (v0 + β(tn))

)
tn

≥ 0.

Hence, f0
k (x;u0) ≥ 0. On the other hand u0 is a critical direction, we get

(3.14) f0
k (x;u0) = 0.
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It follows from (3.9), (3.13) and (3.14) that

f0
k (x; v0) + f00

k,+(x;u0)

≥ lim sup
n→∞

fk
(
x+ tnu0 +

t2n
2 β(tn) +

t2n
2 v0

)
− fk

(
x+ tnu0 +

t2n
2 β(tn)

)
t2n/2

+ lim sup
n→∞

fk(x+ tnu0)− fk(x)− tnf
0
k (x;u0)

t2n/2

≥ 2 lim sup
n→∞

fk
(
x+ tnu0 +

t2n
2 (v0 + β(tn))

)
− fk(x)

t2n

+ 2 lim
n→∞

fk(x+ tnu0)− fk
(
x+ tnu0 +

t2n
2 β(tn)

)
t2n

≥ 2 lim sup
n→∞

α∥tnu0 +
t2n
2 (v0 + β(tn))∥2

t2n
= 2α∥u0∥2 > 0.

Hence,

(3.15) f0
k (x; v0) + f00

k,+(x;u0) > 0,

which contradicts (3.1). Consequently, the system (3.1)-(3.2) has no solution
v ∈ T 2

xC. The proof is complete. ■

Example 3.3. Let X = R2, C = R2
+, f1(x1, x2) = x2

1 + x2
2, f2(x1, x2) =

|x1|, g1(x1, x2) = x2
1 − x2.

We have

M = {x ∈ C | g1(x1, x2) ≤ 0} = {(x1, x2) | x1 ≥ 0, x2 ≥ x2
1}

Observe that x = (0, 0) is a strict local Pareto minimum of order two for (MP).
Indeed, for all x = (x1, x2) ∈ M \ {(0, 0)} and d = (d1, d2) ∈ R2

+, we get

∥f(x) + d− f(x)∥ =
√
(x2

1 + x2
2 + d1)2 + (|x1|+ d2)2

≥ |x2
1 + x2

2 + d1| ≥ x2
1 + x2

2 >
1

2
∥x− x∥2.

It is easy to show that, for all v = (v1, v2) ∈ R2

(3.16) f ′
1(x; v) = 0, f ′

2(x; v) = |v1|, g′1(x; v) = −v2, Tx(C) = T 2
x (C) = R2

+,

f00
1,+(x; v) = 2(v21 + v22), f

00
2,+(x; v) = 0, g001,+(x; v) = 2v21 .

From (3.16), u = (u1, u2) ̸= 0 is a critical direction at x of (MP) iff u1 =
0, u2 > 0. Then, system (3.1)-(3.2) become

0 + 2(02 + u2
2) ≤ 0,
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|v1|+ 0 ≤ 0,

−v2 + 2u2
2 ≤ 0.

It is easy to see that there is no v ∈ T 2
x (C) satisfying above system.

For C = X, we obtain the following consequence.

Corollary 3.1. Assume that C = X and x ∈ M is a strict local Pareto
minimum of (MP). Assume further that the functions fk (k ∈ J), gi (i ∈ I(x))
are locally Lipschitz at x and the functions gi (i ∈ I \I(x)) are continuous at x.
Then for for every critical direction u ∈ X, u ̸= 0, there is no v ∈ X satisfying
the following system:

f0
k (x; v) + f00

k,+(x;u) ≤ 0 (∀k ∈ J(x, u)),

g0i (x; v) + g00i,+(x;u) < 0 (∀i ∈ I(x;u)).

Proof. It can be seen that in the case C = X, we have T 2
x (C) = X. Applying

Theorem 3.2, we obtain the desired conclusion. ■

4. Dual Second-Order Necessary Conditions for Strict Efficiency

In this section, we shall give dual second-order Fritz John necessary condi-
tions for strict local Pareto minima.

Theorem 4.1. Let X be a finite-dimensional normed space, dimX = q,
C = X and x ∈ M a strict local Pareto minimum of order two for problem
(MP). Assume that the functions fk (k ∈ J) and gi (i ∈ I(x)) are Gâteaux
differentiable with the Gâteaux derivative f ′

k (k ∈ J) and g′i(x)(i ∈ I(x)), re-
spectively and the functions fk(k ∈ J) and gi (i ∈ I(x)) are locally Lipschitz at
x, the functions gi (i /∈ I(x)) are continuous at x. Suppose also that for every
v ∈ X, f00

k,+(x; v), g00i,+(x; v) are finite ∀k ∈ J(x, v), i ∈ I(x, v). Then, for
every nonzero critical direction u ∈ X, there exist λk ⩾ 0 (k ∈ J(x, u)), µi ⩾
0 (i ∈ I(x, u)), not all zero, such that

(4.1)
∑

k∈J(x,u)

λkf
′
k(x) +

∑
i∈I(x,u)

µig
′
i(x) = 0,

(4.2)
∑

k∈J(x,u)

λkf
00
k,+(x;u) +

∑
i∈I(x,u)

µig
00
i,+(x;u) ≥ 0.
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Moreover, assume that the above critical direction u satisfies: There exists
v∗ ∈ X such that

(CQ) g′i(x)(v∗) + g00i,+(x;u) < 0 (∀i ∈ I(x;u)).

Then there exists k ∈ J(x, u) such that λk ̸= 0.

Proof. (i) Denote p = |J(x, u)|+ |I(x, u)|, consider the matrix A with the rows

{f ′
k(x) : k ∈ J(x, u)} and {g′i(x) : i ∈ I(x, u)},

and the vector b with the components

{f00
k,+(x;u) : k ∈ J(x, u)} and {g00i,+(x, u) : i ∈ I(x, u)}.

It is easy to see that A = (aij) has p rows and q columns.

With these notations, taking account of Corollary 3.1, it follows that the linear
system Az + b < 0 has no solution v ∈ X, which is equivalent to the fact that
the linear program

min{y : Aw + b ≤ ŷ},

where by ŷ ∈ Rp is denoted the vector with all the components equal to y, has
a non-negative optimal solution. An equivalent form of the last program is

min{y : −Aw + ŷ ≥ b} = min{⟨c, e⟩ : He ≥ b},

where e = (w1, w2, . . . , wq, y), c = (0, 0, . . . , 0, 1) and

H =


−a11 −a12 · · · −a1q 1
−a21 −a22 · · · −a2q 1
· · · · · · · · · · · · · · ·
−ap1 −ap2 · · · −apq 1

 .

By the duality theorem, the dual program

max{bT δ : −AT δ = 0,

p∑
i=1

δi = 1, δi ≥ 0, ∀ i = 1, p}

the system
AT δ = 0, bT δ ≥ 0, δ ≥ 0, δ ̸= 0,

has a solution. Here, the vector δ = (λ, µ) has the same dimension as the
vector b, λ has the components {λk : k ∈ J(x, u)}, µ has the components
{µi : i ∈ I(x, u)}, AT is the transpose of the matrix A, and δ = (δ1, . . . , δp) ≥ 0
means δi ≥ 0 for all i ∈ {1, ..., p}.
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We obtained that there exist λk ≥ 0, k ∈ J(x, u), µi ≥ 0, i ∈ I(x, u), not all
equal to zero, such that∑

k∈J(x,u)

λkf
′
k(x) +

∑
i∈I(x,u)

µig
′
i(x) = AT δ = 0,

∑
k∈J(x,u)

λkf
00
k,+(x;u) +

∑
i∈I(x,u)

µig
00
i,+(x;u) = bT δ ≥ 0.

(ii) We now suppose that the constraint qualification (CQ) holds. From (4.1),
choose v = v∗, we get
(4.3)∑
k∈J(x,u)

λk

(
f ′
k(x)(v∗) + f00

k,+(x;u)
)
+

∑
i∈I(x,u)

µi

(
(g′i(x)(v∗) + g00i,+(x;u)

)
≥ 0.

If λk = 0, ∀k ∈ J(x, u), we have

(4.4)
∑

i∈I(x,u)

µi

(
(g′i(x)(v∗) + g00i,+(x;u)

)
≥ 0.

On the other hand, there are at least one µi > 0 (i ∈ I(x, u), as λk ⩾ 0 (k ∈
J(x, u)), µi ⩾ 0 (i ∈ I(x, u)) and not all zero. From (CQ), we obtain∑

i∈I(x,u)

µi

(
(g′i(x)(v∗) + g00i,+(x;u)

)
< 0.

But this contradicts (4.4). Consequently, exists k ∈ J(x, u) such that λk ̸= 0.

■

Example 4.2. LetX = C = R2, f1(x1, x2) = x2
1+x2

2, f2(x1, x2) = x2, g1(x1, x2) =
x1 − x2

2.
We have

M = {x ∈ C | g1(x1, x2) ≤ 0} = {(x1, x2) | 0 ≤ x1 ≤ x2
2, x2 ≥ 0}

Observe that x = (0, 0) is a strict local Pareto minimum of order two for (MP).
Indeed, for all x = (x1, x2) ∈ M \ {(0, 0)} and d = (d1, d2) ∈ R2

+, we get

∥f(x) + d− f(x)∥ =
√
(x2

1 + x2
2 + d1)2 + (x2 + d2)2

≥ |x2
1 + x2

2 + d1| ≥ x2
1 + x2

2 >
1

2
∥x− x∥2.

It is easy to show that, for all v = (v1, v2) ∈ R2

(4.5) f ′
1(x) = (0, 0), f ′

2(x) = (0, 1), g′1(x) = (1, 0),
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f00
1,+(x; v) = 2(v21 + v22), f

00
2,+(x; v) = 0, g001,+(x; v) = −2v22 .

From (4.5), one has

f ′
1(x)(u) = 0, f ′

2(x)(u) = u2, g
′
1(x)(u) = u1,

therefore u = (u1, u2) ∈ R2
− is critical direction at x of (MP).

Now, we choose λ1 = 1, λ2 = µ1 = 0, we get

f ′
1(x)(v) = 0 ∀v ∈ R2,

f00
1,+(x;u) = 2(u2

1 + u2
2) ≥ 0.

Hence, (4.1) and (4.2) hold.

5. Second-order sufficient optimality conditions

This section provides Fritz John second-order sufficient optimality condi-
tions.

Definition 5.1. Let X be a normed space. A function f : X → R is called
strict regular in the Clarke sense at x if for all u0 ∈ X, f0(x;u0) exist and

f0(x;u0) = lim
n→∞

f(x+ tnun)− f(x)

t
, ∀tn → 0+, un → u0.

Remark 5.1. If f is strict regular in the Clarke sense at x then f is regular
in the Clarke sense at x. Indeed, choose un = u0 ∀n, we get

f0(x;u0) = lim
n→∞

f(x+ tnu0)− f(x)

tn
= lim

t→0+

f(x+ tu0)− f(x)

t
.

Theorem 5.1. Let X = Rs, x ∈ M . Assume that the functions fk(k ∈ J)
and gi (i ∈ I(x)) are locally Lipschitz and strict regular in the Clarke sense at
x, the functions gi (i /∈ I(x)) are continuous at x. Suppose also that for every
critical direction u ∈ Tx(M), there exist λk ⩾ 0 (k ∈ J), µi ⩾ 0 (i ∈ I(x)), not
all zero, such that

(5.1)

m∑
k=1

λkf
0
k (x; v) +

∑
i∈I(x)

µig
0
i (x; v) = 0 ∀v ∈ Tx(M),

(5.2)

m∑
k=1

λkf
00
k,−(x;u) +

∑
i∈I(x)

µig
00
i,−(x;u) > 0.

Then x is a strict local Pareto minimum of order two for problem (MP).
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Proof. Assume the contrary, that x is not a strict local Pareto minimum for
(MP). By virtue of Proposition 3.5(b) [18], there exist xn ∈ M \ {x}, xn → x
and u ∈ X such that

(5.3) lim
n→∞

f(xn)− f(x)

||xn − x||2
= e ∈ [−∞, 0]m and lim

n→∞

xn − x

∥xn − x∥
= u.

Putting e = (e1, . . . , em), tn = ∥xn − x∥ and un =
xn − x

tn
. We have

tn > 0 ∀n, lim
n→∞

tn = 0, lim
n→∞

un = u, xn = x+ tnun,

therefore u ∈ Tx(M).

It follows from (5.3) that

(5.4) lim
n→∞

fk(xn)− fk(x)

||xn − x||2
= lim

n→∞

fk(xn)− fk(x)

t2n
= ek ∈ [−∞, 0].

So,

(5.5) f0
k (x;u) = lim

n→∞

fk(x+ tnun)− fk(x)

tn
= lim

n→∞

fk(xn)− fk(x)

tn
≤ 0.

Since i ∈ I(x) and xn ∈ M , we have gi(x) = 0 and gi(xn) ≤ 0, it follows that

(5.6) g0i (x;u) = lim
n→∞

gi(x+ tnun)− gi(x)

tn
= lim

n→∞

gi(xn)

tn
≤ 0.

From (5.1), we get

m∑
k=1

λkf
0
k (x;u) +

∑
i∈I(x)

µig
0
i (x;u) = 0.

It follows from (5.5) and (5.6) that u is a critical direction at x and

(5.7) λkf
0
k (x;u) = 0, µig

0
i (x;u) = 0, ∀k = 1,m, i ∈ I(x).
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One has

m∑
k=1

λkf
00
k,−(x;u) +

∑
i∈I(x)

µig
00
k,−(x;u)

≤
m∑

k=1

λk lim inf
n→∞

fk(x+ tnu)− fk(x)− tnf
0
k (x;u)

t2n/2

+
∑

i∈I(x)

µi lim inf
n→∞

gi(x+ tnu)− gi(x)− tng
0
i (x;u)

t2n/2

=

m∑
k=1

lim inf
n→∞

λk

(
fk(xn)− fk(x)

)
− tnλkf

0
k (x;u)

t2n/2

+
∑

i∈I(x)

lim inf
n→∞

µi

(
gi(xn)− gi(x)

)
− tnµig

0
i (x;u)

t2n/2

=

m∑
k=1

lim inf
n→∞

2λk

(
fk(xn)− fk(x)

)
t2n

+
∑

i∈I(x)

lim inf
n→∞

2µigi(xn)

t2n

=

m∑
k=1

2λkek +
∑

i∈I(x)

lim inf
n→∞

2µigi(xn)

t2n
.

Hence,
(5.8)

m∑
k=1

λkf
00
k,−(x;u) +

∑
i∈I(x)

µig
00
k,−(x;u) ≤

m∑
k=1

2λkek +
∑

i∈I(x)

lim inf
n→∞

2µigi(xn)

t2n
.

From (5.4),(5.8) and gi(xn) ≤ 0, we have

m∑
k=1

λkf
00
k,−(x;u) +

∑
i∈I(x)

µig
00
k,−(x;u) ≤ 0.

But this contradicts (5.2). Consequently, x is a strict local Pareto minimum
of (MP). The proof is complete. ■

Example 5.2. Let X = R2, C = R2
+, f1(x1, x2) = x2

1 + x2
2, f2(x1, x2) =

2x1 + 1, g1(x1, x2) = 2x2
1 − x2.

We have

M = {x ∈ C | g1(x1, x2) ≤ 0} = {(x1, x2) | x1 ≥ 0, x2 ≥ 2x2
1}.
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Choose x = (0, 0), it is easy to show that, for all v = (v1, v2) ∈ R2

(5.9) f0
1 (x; v) = 0, f0

2 (x; v) = 2v1, g
0
1(x; v) = −v2, Tx(C) = T 2

x (C) = R2
+,

f00
1,−(x; v) = 2(v21 + v22), f

00
2,−(x; v) = 0, g001,−(x; v) = 4v21 .

From (5.9), u = (u1, u2) ̸= 0 is a critical direction at x of (MP) iff u1 = 0, u2 >
0.

Choose λ1 = 1, λ2 = 0, µ1 = 0, v = (v1, v2), u = (0, u2), system (5.1)-(5.2)
hold because of

1× 0 + 0× 2v1 + 0× (−v2) = 0,

1× 2(02 + u2
2) + 0× 0 + 0× 0 > 0.

Observe that x = (0, 0) is a strict local Pareto minimum of order two for (MP).
Indeed, for all x = (x1, x2) ∈ M \ {(0, 0)} and d = (d1, d2) ∈ R2

+, we get

∥f(x) + d− f(x)∥ =
√

(x2
1 + x2

2 + d1)2 + (2x1 + 1 + d2 − 1)2

≥ |x2
1 + x2

2 + d1| ≥ x2
1 + x2

2 >
1

2
∥x− x∥2.

6. Conclusions

Constantin [6] established primal and dual Fritz John second-order neces-
sary conditions for Lipschitz multiobjective optimization problems with Zing-
will constraint qualification. In this paper, we establish second-order primal
and dual Fritz John optimality conditions to nonsmooth multiobjective opti-
mization problems in terms of the Páles–Zeidan second-order upper generalized
directional derivative without any constraint qualifications. Some second-order
Karush-Kuhn-Tucker necessary and sufficient conditions for strict local Pareto
minima of nonsmooth multiobjective optimization problems with suitable con-
straint qualification are derived. The results obtained here are new and signif-
icant in the theory of optimality conditions.
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[16] Jiménez, B., Novo, V.: Second order necessary conditions in set con-
strained differentiable vector optimization. Math. Meth. Oper. Res. 58,
299-317 (2003)
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