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Abstract. We apply the proximal point algorithm to solve a class of im-
plicit price equilibrium models including the Walras supply-demand and
competitive equilibrium ones, where both supply and demand are given
implicitly as the solution-sets of mathematical programs depending on the
price. Such models are formulated as complementarity or variational in-
equality forms. We employ a monotonicity property of the cost operator
to develop proximal point based algorithms to approximate an equilibrium
point of the model. Convergence of the algorithm is proved and some
computational results with many randomly generated data are reported to
show that the proposed algorithms work well for this class of equilibrium
models.

1. Introduction

The proximal point algorithm [19] is a fundamental one that has been widely
applied to various problems in different fields of Applied mathematics. In this
paper we first apply this algorithm for solving the following complementarity
problem

Find p∗ ∈ C : ⟨F (p∗), p∗⟩ = 0, CP (C,F )
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where C is a closed convex cone in Rn and F is an operator from Rn into
itself. Many practical problems can be formulated in the form of this problem,
see e.g. [13, 15]. The main difficulty in solving CP (C,F ) is the condition
⟨F (p∗), p∗⟩ = 0, called complementarity condition. A lot of solution methods
have been developed for this problem, mainly for the case F is an affine operator
satisfying certain properties and is given explicitly, see also [13, 15].

In this paper, we first describe proximal point based algorithms for solving
Problem CP (C,F ), where F is given implicitly as the solution-sets of certain
convex, mathematical programs. Next, we apply the proposed algorithms for
finding an equilibrium point to several practical equilibrium models including
the Walras and competitive price ones that can be formulated equivalently
to Problem CP (C,F ), where the cost operator is given implicitly. We also
consider the case when the strategy set C is not a cone, but a closed convex
set. Such a case arising in some equilibrium models such as competitive ones.

Some computational results by using the proposed algorithms for solving
several implicit price equilibrium models are reported at the end of this paper.

2. Preliminaries

First, let us recall some definitions, see e.g. [21], pages 39, 40, and lemmas
that will be used in the forthcoming sections.

A set C is a convex cone, if

x+ y ∈ C, λx ∈ C ∀x, y ∈ C, λ ≥ 0.

Let C ⊆ Rn be a convex set and f : Rn → R ∪ {+∞} such that f(x) < +∞
for all x ∈ C.

(i) The function f is said to be convex on C, if

f(λx+ (1− λ)y
)
≤ λf(x) + (1− λ)f(y) ∀x, y ∈ C, ∀λ ∈ [0, 1].

(ii) f is said to be strictly convex on C if

f
(
λx+ (1− λ)y

)
< λf(x) + (1− λ)f(y) ∀x, y ∈ C, ∀λ ∈ [0, 1].

(iii) f is said to be strongly convex on C if there exists a number γ > 0
such that

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)− γ∥x− y∥2 ∀x, y ∈ C, ∀λ ∈ [0, 1].
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It is well known that (iii) ⇒ (ii) ⇒ (i). Moreover, the minimization
problem of a strongly convex function on a closed convex set (not necessar-
ily bounded) always admits a unique solution.

The function f is said to be concave (resp. strictly concave) on C if −f is
convex (resp. strictly convex) on C.

The subdifferential of f at a point x, denoted by ∂f(x), is defined as

∂f(x) := {u ∈ Rn : ⟨u, y − x⟩+ f(x) ≤ f(y) ∀y}.

It is well known that if f is differentiable at x, then ∂f(x) ≡ {∇f(x)}.
Let T : Rn → Rn such that T (x) ̸= ∅ and closed convex valued for every

x ∈ C. The following concepts for monotonicity of an operator can be found,
for example, [4] page 293 and in [2, 3, 6, 10, 14, 13].

(i) T is said to be nonexpansive on C if

∥Tx− Ty∥ ≤ ∥x− y∥ ∀x, y ∈ C.

A typical example for nonexpansive mappings is the metric projection that
maps every x ∈ Rn onto C by taking

PC(x) := {y ∈ C : ∥x− y∥ ≤ ∥x− z∥ ∀z ∈ C}.

It is well known, see e.g. [4] page 61, that if C is closed, convex, then PC(x)
is singleton and nonexpansive on Rn, that is ∥PC(x) − PC(y)∥ ≤ ∥x − y∥ for
every x, y ∈ Rn;

(ii) T is said to be monotone on C if ⟨T (x)− T (y), x− y⟩ ≥ 0 ∀x, y ∈ C;

(iii) T is said to be strongly monotone on C with modulus η > 0 if ⟨T (x)−
T (y), x− y⟩ ≥ η∥x− y∥2 ∀x, y ∈ C;

(iv) T is said to be co-coercive (strongly inverse monotone) on C with
modulus ξ > 0 if ⟨T (x)− T (y), x− y⟩ ≥ ξ∥T (x)− T (y)∥2 ∀x, y ∈ C [25];

(v) T is said to be maximal monotone on C, if it is monotone on C and its
graft is not properly contained in that of another monotone operator.

A typical example for maximal monotone operators is the gradient of a
lower semi continuous, properly convex function [18].

Below are some lemmas will be used in the proof of convergence theorems
for the algorithms to be described.

Lemma 2.1. [23] Suppose that {αk} is a sequence of nonnegative numbers
such that

αk+1 ≤ (1− λk)αk + λkδk + σk ∀k,

where
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(i) 0 < λk < 1,
∑+∞

k=1 λk = +∞;

(ii) lim supk→+∞ δk ≤ 0;

(iii)
∑+∞

k=1 |σk| < +∞.

Then limk→+∞ αk = 0.

Lemma 2.2. ([4] Theorem 4.17) Let C be a nonempty closed subset in a Hilbert
space H and T : C → H be a nonexpansive mapping. Let {xk} be a sequence
in C such that xk → x, xk − T (xk) → u. Then x− T (x) = u.

Lemma 2.3. [16] Let φ be a strongly convex differentiable function with mod-
ulus β and L-Lipschitz on C. Then, for any α > 0, it holds that

∥
(
x− 1

α
∇φ(x)

)
−
(
y − 1

α
∇φ(y)

)
∥2 ≤ (1− 2β

α
+

L2

α2
)∥x− y∥2 ∀x, y ∈ C.

3. The proximal point algorithm

Suppose that F is monotone on C. Since C is a closed convex set, the
operator

T (x) := F (x) +NC(x) if x ∈ C and T (x) = F (x) if x ̸∈ C

is maximal monotone, whereNC(x) is the normal cone of C at x. Then the com-
plementarity problem CP (C,F ) can be formulated equivalently as the problem
of computing a solution of the inclusion 0 ∈ T (x) [19]. It is well known from
[11, 19] that the proximal operator Prox := (I + cT )−1 is defined everywhere,
single values, nonexpansive for any c > 0, and its fixed point-set coincides with
the solution-set of Problem CP(C,F ).

By applying the Rockafellar proximal point regulation algorithm [19] to
Problem CP (C,F ), we have the following iterative scheme:

At each iteration k, given xk ∈ C, compute the next iterate by taking

xk+1 := (I + ckT )
−1(xk), (R)

where I is the unit operator, and ck > 0 is the coefficient at iteration k. We
have the following lemma for computing (I + ckT )

−1(xk).

Lemma 3.1. [16] Suppose that T is maximal monotone on Rn and xk ∈ C,
ck > 0 are given, then computing xk+1 = (I + ckT )

−1(xk) amounts to finding
the solution of the monotone complementarity problem

Find xk+1 ∈ C : ⟨Fk(x
k+1), xk+1⟩ = 0, SCP (C,Fk)

where Fk(x) := F (x) + 1
2ck

(x− xk).
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Theorem 3.1. [19] (i) xk+1 = xk if and only if xk is a solution of Problem
CP(C,F );

(ii) The sequence {xk} converges to a solution of CP(C,F ) whenever ck >
c > 0.

The main task at each iteration k is to solve the strongly monotone comple-
mentarity problem SCP (C,Fk). We have the following lemma for an algorithm
to solve strongly monotone complementarity problems.

Lemma 3.2. [16] Suppose ϕ : Rn → Rn is monotone on C with modulus τ .
Then

(i) The operator ϕr(x) := ϕ(x)+ 1
2r (x−a) is strongly monotone with modulus

τ := 1
2r for any r > 0 and a ∈ C;

(ii) The complementarity problem

Find s(r) ∈ C : ⟨ϕr(s(r)), s(r)⟩ = 0 SCP (C, ϕr)

has an unique solution s(r) for any r > 0, moreover, if ϕr is Lipschitz on C
with constant L > 0, then one can choose r such that τ := 1

2r < L/2, for which
the mapping s(·) is a contraction on C with constant c := 1− 2r(L/2− τ). In
addition, x∗ is a solution of Problem SCP (C, ϕr) if and only if it is the fixed
point of the contraction mapping s(·).

From this lemma, by applying Theorem 2.1 in [16] with cost operator ϕr :=
Fk and r := 1

2ck
, a := xk, since s(·) is a contraction mapping, we can use the

Banach iterative scheme zk+1 = s(zk) to approximate the unique fixed point
of s(r) with a linear rate.

Avoiding Lipschitz continuity. In the case the cost operator ϕ is not
Lipschitz or its Lipschitz constant is difficult to estimate, we propose the fol-
lowing algorithm to solve the complementarity problem SCP (C, ϕr). The al-
gorithm does not use the Lipschitz continuity of the cost operator ϕr. Then
the algorithm may not be convergence with a linear rate.

ALGORITHM 1 (for strongly monotone complementarity problem).

Step 1. Choose a sequence {rj} of positive number satisfying

0 < rj < 1, rj <
1

2r
∀j,

∞∑
j=1

rj = +∞,

∞∑
j=1

r2j < +∞.

Pick a point x1 ∈ C, and let j := 1.

Step 2. If xj is a solution, then terminate. Otherwise, compute the next
iterate by taking xj+1 := PrC(x

j − rjv
j) with vj := ϕr(x

j). Increase j by one
and go back to Step 2.
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Theorem 3.2. Suppose that the algorithm never terminates and the sequence
{xj} is bounded, then xj → x∗ as j → ∞.

Proof. Let x∗ be the unique solution of Problem SCP (C, ϕr). Since Pr is the
metric projection on C, from xj+1 = PrC(x

j − rjv
j), it follows that

∥xj+1 − x∗∥2 = ∥PrC(x
j − rjv

j)− PrC(x
∗)∥2 ≤ ∥xj − rjv

j − x∗∥2

= ∥xj − x∗∥2 − 2rj⟨vj , xj − x∗⟩+ r2j∥vj∥2

By using the strong monotonicity of ϕr with modulus r > 0, we have ⟨vj , xj −
x∗⟩ ≥ ⟨v∗, xj − x∗⟩+ r∥xj − x∗∥2 ≥ 0 and −⟨vj , xj − x∗⟩ ≤ −r∥xj − x∗∥2 with
v∗ := ϕr(x

∗). Combining these inequalities to obtain

∥xj+1 − x∗∥2 ≤ (1− 2rjr)∥xj − x∗∥2 + r2j∥vj∥.

Since {xj} is bounded, we have {vj} is bounded too. Then by applying Lemma
2.1 with λj = 2rrj , αj := ∥xj−x∗∥2, δk ≡ 0 we can conclude that ∥xj−x∗∥ → 0
as j → ∞. ■

Applying this algorithm to strongly monotone complementarity subproblem
SCP (C,Fk) needed to solve at each iteration k of the proximal algorithm for
Problem CP (C,F ) we obtain an approximate solution of the iterate point
xk+1 = (I + ckT )

−1(xk). As it has been shown in [19] that if the approximate
solution xj obtained by Algorithm 1 satisfies ∥xj − (I+ ckT )

−1(xk)∥ ≤ ϵk with

ϵk > 0 ∀k,
∞∑
k=1

ϵk < ∞,

then xk → x∗ as k → ∞.

4. An implicit supply-demand Walras equilibrium model

The classical Walras equilibrium price model introduced by E. Walras [22]
is a basic model in economics, which has attracted much attention in the litera-
ture, see e.g. [20]. In this model there are two sectors, producer and consumer
deal with n-commodities (x1, ..., xn) ∈ Rn

+ (the nonnegative orthant of Rn).
For a price p ∈ Rn

+ the supply of producer is given by S(p) ∈ X ⊆ Rn
+, whereas

the demand of consumer is D(p) ∈ X ⊆ Rn
+. A vector p is said to be an

equilibrium price of the model if ⟨q∗, p∗⟩ = 0 with q∗ ∈ F (p∗) := S(p∗)−D(p∗)
being the excess demand at price p∗. Mathematically, the problem of finding
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an equilibrium price can be formulated in the form of a complementarity one
given as

Find p∗ ∈ Rn
+, q

∗ ∈ F (p∗) : ⟨q∗, p∗⟩ = 0. CP (Rn
+, F )

An important task for this model is to find its an equilibrium price. In general
Problem CP (Rn

+, F ) is difficult to solve even when F is linear, because of the
complementarity condition ⟨p, q⟩ = 0. Some solution-methods have been pro-
posed for solving the complementarity problem CP (Rn

+, F ) when F possesses
certain properties see.e.g [10, 15].

In this paper we consider Walras equilibrium models by assuming that they
have the following property:

(Q) P can be a closed convex cone or a closed convex set. In addition, the
supply S(p) and demand D(p) are given implicitly as optimal solution-sets of
certain parametric convex mathematical programs whose objective functions
are defined depending on the benefits of producer and consumer, so that both
S and D are not given explicitly,

Property (Q) arising in some practical models that have been studied by
several authors, see e.g. [12, 15]. In recent paper [12], the supply S(p) and
demand D(p) are given implicitly as the benefit of producer and consumer re-
spectively, which are defined as the optimal solution-sets of certain strongly
convex mathematical programming problems. The strong convexity condition
is not satisfied for several practical models, where the utility functions are cer-
tain Cobb-Douglas ones. Here, we suppose that the supply is given as the
optimal solution-set of the problem for maximizing the benefit of the producer,
which is formulated as the convex (not necessarily strong) mathematical pro-
gram

S(p) := argmaxx{pTx− c(x)} ≡ argminx{c(x)− pTx}(4.1)

subject to X := {x : Ax ≤ b, x ≥ 0}

where c(x) is the cost for producing x, while A = (ai,j) is the coefficient matrix,
for example, ai,jxj being the amount of the material i needed for producing xj .
The demand is defined by the optimal solution-set of another program given as
the solution-set of the problem minimizing the total payment of the consumer,
that is defined as
(4.2)
D(p) := argmin

x
d(p, x) := argmin

x
{pTx+ b(x)} subject to u(x) ≥ M,x ∈ X,

where the objective function d(p, x) consists of the two parts, the first one pTx
represents the amount that consumer have to pay, and the second one b(x) is
the environment tax for using x of the goods, while u(·) is the utility function
of the consumer and M denotes the lower bound of her/his desired benefit.
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The following lemma shows that the operator F := S − D is continuous,
monotone on P .

Lemma 4.1. Suppose that programs defining S and D are solvable for any
p ∈ P , then S and −D are monotone on P , if in addition, X is compact (often
in practice), then S and D are continuous.

Proof. To prove the monotonicity of S, let p1, p2 ∈ P , s1, s2 is the solutions
of the programs defining S(p1), S(p2). Then

c(s1)− (p1)T s1 ≤ c(s2)− (p1)T s2,

c(s2)− (p2)T s2 ≤ c(s1)− (p2)T s1.

Adding these inequalities we obtain

⟨s1 − s2, p1 − p2⟩ ≥ 0,

which implies the monotonicity of S. By the same way, we can prove that
−D is monotone, so the operator F := S −D is monotone. Suppose that the
mathematical programs defining S(p), D(p) solvable. Then continuity of S and
D follows from the Berge maximum theorem [5]. ■

Remark 4.1. In this algorithm we do not require that the objective func-
tions of the mathematical programs defining S and D to be strongly convex as
in the paper [12].

Now we apply the proximal algorithm for finding an equilibrium point of the
Walras equilibrium model, where the strategy set can be a closed convex cone,
denoted by P , and F := S −D is a single valued operator. Each iteration k of
the algorithm has two loops: the outer loop is the iteration k for the proximal
point algorithm to solve the complementarity problem defined as

Find p∗ ∈ P : ⟨p∗, F (p∗)⟩ = 0. CP (P, F )

Now we describe a proximal point algorithm for solving Problem CP (C,F ).
At each iteration k,the main task is to solve the strongly monotone comple-
mentarity problem SCP (P, Fk). For solving this subproblem we use Algorithm
1.

ALGORITHM 2.

Initialization. Choose a sequence {ck} of positive numbers satisfying 0 <
c < ck ≤ 1 for every k, where c is given.

Iteration k = 1, ...,. At each iteration k, we are given a point pk ∈ P , a
sequence {rk,j} of positive numbers satisfying

0 < rk,j < ck,

∞∑
j=1

rk,j = ∞,

∞∑
j=1

r2k,j < ∞,



A proximal point algorithm ... 143

and the strongly monotone operator Fk(p) := F (p)+ck(p−pk) with F := S−D.

If pk is a solution of the problem CP (P, F ), then terminate, otherwise,
solve the strongly monotone problem SCP (P, Fk) by entering into the inner
loop below.

Inner loop. j = 1, .,. At each iteration j we are given a solution pk of
Problem SCP (P, Fk). Let p

k,1 := pk.

Step 1 Compute pk,j+1 := PrP
(
pk,j − rk,jFk(p

k,j)
)
, where PrP stands for

the metric projection onto P .

Step 2. If pk,j+1 is a solution of Problem SCP (P, F ), then stop. Otherwise,
increase j by one and go back to Step 1.

From the proximal point algorithm pk+1 = (I + ckT )
−1, the sequence

{pk} obtained by solving SCP (P, Fk) converges to a solution p∗ of Problem
CP (P, F ).

Remark 4.2. (i) This algorithm seems simple, however, at each iteration
we have to solve convex mathematical programming problems defining S and
D at each iterate.

(ii) In the case P ≡ Rn
+ the projection on P can be computed explicitly.

The case the prices are not independent

When P := Rn
+, the prices are independent. However in some practical

models the prices may not be independent, for example, in competitive models
the price-vector is required to be in the unit simplex, or in a closed convex
set that is not a cone. In this general case, a vector p∗ ∈ P is said to be an
equilibrium point of the model if and only it is a solution of the variational
inequality

Find p∗ ∈ P : ⟨F (p∗), p− p∗⟩ ≥ 0 ∀p ∈ P, V I(P, F )

It is easy to see that when P is a closed convex cone, this problem can be
formulated equivalently to a complementarity one.

Since F := S −D is monotone on P , as before, the operator T := F +NP

with NP being the normal cone of P is maximal monotone, then, for any c > 0,
its proximal operator Prox := (I + cT )−1 is defined everywhere, single values,
nonexpansive and the fixed point-set of Prox is the same as the solution-set of
Problem V I(P, F ) [19]. So starting from any point p1 ∈ P, the sequence {pk}
defined as pk+1 := (I + ckT )

−1(pk) converges to a solution of V I(P, F ).

By a simple calculation we can see that computing pk+1 can be done by
solving the strongly monotone variational inequality

find pk+1 ∈ P : ⟨F(p
k+1), p− pk+1⟩ ≥ 0 ∀p ∈ P, (P, Fk)
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where Fk(p) := F (p) + 1
2ck

(p − pk) with F := S − D. To solve this strongly

monotone variational inequality we apply the algorithm in[16] to each iteration
k of the Rockafellar proximal point algorithm. As in algorithm 2, we choose a
sequence {ck} such that 0 < c < ck ≤ 1 for every k = 1, 2....

Step 1. Choose a sequence {rk,j} of positive number satisfying

0 < rk,j < ck ∀j,
∞∑
j=1

rj = +∞,

∞∑
j=1

r2j < +∞.

Choose pk,1 ∈ P and let j = 1.

Step 2. Let vk,j := Fk(p
k,j). If vk,1 = 0, then pk,j is a solution.

Otherwise, compute the next iterate by taking pk,j+1 := PrP (p
k,j−rk,jv

k,j).

If pk,j+1 = pk,j , terminate: pk,j is the solution of Problem SCP (P, Fk). If
not, increase j by 1 and go back to Step 2 with pk,j is replaced by pk,j+1.

Theorem 4.1. Suppose that P is convex compact (often in practical models),
and the algorithm never terminates, then pk,j tends to a solution pk of Problem
SCP (P, Fk) as j → ∞, and pk → p∗, an equilibrium point of the model.

Proof of this convergence result can be done similarly as that of Algorithm 1.

To close this section we would like to mention that another regularization
approach for ill-posed problems is the bilevel one that recently has been de-
veloped, see e.g.[8, 9, 7, 24]. The bilevel approach for this class of equilibrium
models, where either S or D can be multivalued operators is a subject of our
forthcoming study.

5. Computational results

In this section, we use the algorithm to solve three examples for the model.

Example 5.1. In this example P :≡ Rn
+, c(x) = xTMx, b(x) = xTBx, u(x) =

lTx and Let M := MT
1 M1, B := BT

1 B1 whose entries are randomly generated
in the interval [−10, 10]. Clearly these matrices are symmetric and positive
semi-definite. The feasible domain X := {x ≥ 0 : Ax ≤ b} where A is a m× n
matrix, b ∈ Rm whose all entries are randomly chosen in (0, 20).

We choose the parameter ck = 2
3 for all k; rk,j =

1
(k+j+1)0.8 for all k, j.

Example 5.2. In this example the strategy set P is the unit simplex

P := {xT = (x1, ..., xn)
T : xj ≥ 0 ∀j,

n∑
j=q

xj = 1}.
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In this example c(x) =
∑n

i=1 rie
xi , b(x) =

∑n
i=1 sie

xi , where r = (r1, r2, ..., rn),
s = (s1, s2, ..., sn); ri, si ∈ (0, 0.1), other inputs are chosen as in Example 5.1.

Example 5.3. In this example the strategy set P is a polyhedral convex set
defined as

P := {x1, x2, ..., xn) :

n∑
j=1

xj ≤ n, xj ≥ 0 ∀j}.

For this example other inputs are chosen as in Example 5.2.

We tested these models with Python 3.10 on a computer with the processor:
AMD Ryzen 5 1600 Six- Core Processor 3.20 GHz with the installed memory
(RAM): 16.0 GB.

We stopped the program when |⟨pk, F (pk)⟩| < ϵ, with ϵ = 10−4;

In the tables below we use the following headings:

• Times: the CPU-computational times (in second);

• Iteration: the number of iterations.

Table 1. Computed Results for Example 5.1

n m Times Iteration
5 3 0.82 10
10 8 2.09 17
30 20 2.56 21
50 30 3.56 25
100 80 4.14 27

Table 2. Computed Results for Example 5.2

n m Times Iteration
5 3 1.25 13
10 8 3.15 16
30 20 3.84 20
50 30 3.34 22
100 80 6.62 24
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Table 3. Computed Results for Example 5.3

n m Times Iteration
5 3 1.15 12
10 8 3.34 15
30 20 4.78 24
50 30 5.05 27
100 80 7.54 32

From the computational results reported in the above tables, one can see that
the proposed algorithm works well for this class of implicit supply and demand
Walras price equilibrium model.

Conflict of interest. The authors declare that they have no conflict of
interest.
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