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A self-adaptive step size algorithm for solving the split
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Abstract. The purpose of this manuscript is to introduce a new self-
adaptive algorithm for solving the split feasibility problem with multiple
output sets in real Hilbert spaces. Our algorithm leverages information
from previous steps to guide its execution, thereby removing the need to
compute or estimate the norm of the given operator. Lastly, we present
a simple numerical example to illustrate the performance of our proposed
algorithm.

1. Introduction

Let H1 and Hj
2, for j = 1, 2, . . . , N , denote real Hilbert spaces, and let

Aj : H1 −→ Hj
2, for j = 1, 2, . . . , N , be bounded linear operators. Consider

nonempty closed convex subset C ⊆ H1 and Qj ⊆ Hj
2 for j = 1, 2, . . . , N ,

respectively. The split feasibility problem with multiple output sets (SFPMOS)
is expressed as follows:

(1.1) Find x∗ ∈ C such that Aj(x
∗) ∈ Qj ∀j = 1, 2, . . . , N.

A particular case of the SFPMOS arises when N = 1, which corresponds
to the split feasibility problem (SFP). The SFP is formulated as finding a
point x∗ ∈ C such that A(x∗) ∈ Q, where C and Q are nonempty closed
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problem, self-adaptive, strong convergence.
2020 Mathematics Subject Classification: 49J40, 90C33, 47H17.



52 Tran Viet Anh

convex subsets of the real Hilbert spaces H1 and H2 := H1
2, respectively. Re-

cently, it has been demonstrated that the SFP can serve as a practical model
in intensity-modulated radiation therapy [11, 12, 14] and in various other real-
world applications. To solve the MSSFP, the SFP, and their generalizations,
numerous iterative projection methods have been developed. For more details,
see [1–8,13,14,16–18,22,25,27,28] and the references therein.

The SFPMOS was initially introduced and explored by Reich et al. [24]. In
the same work, they also proposed the following algorithm to solve (1.1)

(1.2)



x0 ∈ C,

un
j = Aj(x

n), vnj = PQj
(un

j ) ∀j = 1, 2, . . . , N,

yn = xn + δn

N∑
j=1

A∗
j (v

n
j − un

j ),

zn = PC(y
n),

xn+1 = αnu+ (1− αn)z
n,

where u ∈ C, {αn} ⊂ (0, 1), lim
n→∞

αn = 0,

∞∑
n=0

αn = ∞ and {δn} ⊂ [a, b] ⊂(
0,

2

N max
1≤j≤N

{∥Aj∥2}

)
. They proved that the sequence {xn} generated by (1.2)

converges strongly to PΩSFPMOS
(u), provided that the solution set ΩSFPMOS =

{x∗ ∈ C : Aj(x
∗) ∈ Qj ∀j = 1, 2, . . . , N} of the SFPMOS is nonempty.

One approach to studying the problem (1.1) is through the fixed points of
nonexpansive mappings. Specifically, let us define the mappings Tj : H1 −→ H1

for all j = 1, 2, . . . , N by Tj = PC(I
H1 − µjA

∗
j (I

H1 − PQj
)Aj), where IH1 is

the identity mapping in H1 and µj ∈
(
0,

2

∥Aj∥2
)
. It can be shown that each

Tj is a nonexpansive mapping, and the fixed point set Fix(Tj) of Tj coin-
cides the solution set of the split feasibility problem finding a point x∗ ∈ C
such that Aj(x

∗) ∈ Qj . Therefore, the solution set ΩSFPMOS of the SFP-
MOS is the intersection of the fixed point sets of Tj for all j = 1, 2, . . . , N ,

i.e. ΩSFPMOS =
N⋂
j=1

Fix(Tj). This result enables the application of established

methods for solving the intersection of fixed point sets of nonexpansive map-
pings (see [10, 15, 19, 20, 26] and the references therein) to address problem
(1.1).

In this manuscript, we present a different approach to solve the problem
(1.1). The strong convergence of the proposed algorithm is established without
the need for prior knowledge of the norms of the operators Aj . A significant
limitation of the algorithm presented by Reich et al. in [24, Theorem 3.4] is that
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it requires prior knowledge of the norms of the operators Aj to select the se-

quences {δn} that satisfy the condition {δn} ⊂ [a, b] ⊂

0,
2

N max
1≤j≤N

{∥Aj∥2}

.

Similarly, the fixed-point approach based on nonexpansive mappings also relies

on knowing the norms of the operators Aj to choose µj ∈
(
0,

2

∥Aj∥2

)
for each

j = 1, 2, . . . , N . In contrast, our proposed algorithm does not require any prior
knowledge of the norms of the operators Aj , making it more practical and eas-
ier to implement in real-world scenarios where such information may not be
readily available. Furthermore, when the zero element is not in C, the algo-
rithm presented by Reich et al. in [24, Theorem 3.4] cannot be used to find the
minimum-norm solution of the SFPMOS. In contrast, our proposed algorithm
can accomplish this because it allows the choice of u as the zero element in the
Hilbert space H1, whereas Reich et al.’s algorithm requires selecting u from C
and cannot use the zero element if it is not in C.

The paper is structured as follows. Section 2 provides some essential defi-
nitions and preliminary results, which are then utilized in Section 3, where we
present the algorithm and establish its strong convergence. Finally, Section 4
includes a numerical example to demonstrate the convergence of the proposed
algorithm.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. It is
well-known that for all point x ∈ H, there exists a unique point PC(x) ∈ C
such that

(2.1) ∥x− PC(x)∥ = min{∥x− y∥ : y ∈ C}.

The mapping PC : H −→ C defined by (2.1) is called the metric projection of H
onto C. It is well-known that PC is nonexpansive. Furthermore, the following
inequalities hold for all x ∈ H and y ∈ C:

⟨x− PC(x), y − PC(x)⟩ ≤ 0,(2.2)

∥PC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PC(x)∥2.(2.3)

Definition 2.1. Let H1 and H2 be two Hilbert spaces and let A : H1 −→ H2

be a bounded linear operator. An operator A∗ : H2 −→ H1 with the property
⟨A(x), y⟩ = ⟨x,A∗(y)⟩ for all x ∈ H1 and y ∈ H2, is called an adjoint operator.
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The adjoint operator of a bounded linear operator A between Hilbert spaces
H1,H2 always exists and is uniquely determined. Furthermore, A∗ is a bounded
linear operator and ∥A∗∥ = ∥A∥.

The following lemma will be needed in the proof of the main result of our
paper.

Lemma 2.1 (see [23]). Let {an} be a sequence of nonnegative real numbers
such that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let n0 be an integer such that an0

≤ an0+1 and define, for all
integer n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, an ≤ an+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence satisfying lim
n→∞

τ(n) = ∞ and

the following inequalities are satisfied:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

3. The algorithm and convergence analysis

In this section, we propose an algorithm with strong convergence for solving
the problem (1.1). The algorithm is presented as follows.

Algorithm 3.1.
Step 0. Choose u ∈ H1 and sequences {ρn} ⊂ [ρ, ρ] ⊂ (0, 1), {αn} ⊂ (0, 1)

such that lim
n→∞

αn = 0,

∞∑
n=0

αn = ∞.

Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute un

j = Aj(x
n) and vnj = PQj

(un
j ) for all j = 1, 2, . . . , N .

Step 3. Choose jn such that

jn = argmax
{
∥vnj − un

j ∥ : j = 1, 2, . . . , N
}
,

and set un = un
jn
, vn = vnjn , and A = Ajn then compute

yn = xn + δnA
∗(vn − un),

where the step size δn is defined by

δn =


ρn∥vn − un∥2

∥A∗(vn − un)∥2
if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.
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Step 4. Compute zn = PC(y
n) and

xn+1 = αnu+ (1− αn)z
n.

Step 5. Set n := n+ 1, and go to Step 2.

The strong convergence of the sequence generated through Algorithm 3.1
is established by the following theorem.

Theorem 3.1. Let C be a nonempty closed convex subset of H1, and let Qj

for j = 1, 2, . . . , N be N nonempty closed convex subsets of Hj
2, respectively.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to an
element x∗ ∈ ΩSFPMOS, where x∗ = PΩSFPMOS(u), provided the solution set
ΩSFPMOS = {x∗ ∈ C : Aj(x

∗) ∈ Qj ∀i = 1, 2, . . . , N} of the SFPMOS is
nonempty.

Proof. The proof of the theorem is divided into several steps.
Step 1. We show that, for all n ≥ 0

ρ(1− ρ)

1 +

N∑
k=1

∥Ak∥2
∥vn − un∥2 ≤ ∥xn − x∗∥2 − ∥yn − x∗∥2,(3.1)

∥yn − xn∥2 ≤ ρ2

ρ(1− ρ)

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
.(3.2)

Since x∗ ∈ ΩSFPMOS, we have x∗ ∈ C and Aj(x
∗) ∈ Qj for all j = 1, 2, . . . , N .

Thanks to the nonexpansive property of PQj for all j = 1, 2, . . . , N , we have

(3.3) ∥vnj −Aj(x
∗)∥ = ∥PQj

(un
j )− PQj

(Aj(x
∗))∥ ≤ ∥un

j −Aj(x
∗)∥.

From (3.3), we obtain, for all n ≥ 0

⟨xn − x∗, A∗
j (v

n
j − un

j )⟩ = ⟨Aj(x
n − x∗), vnj − un

j ⟩
= ⟨un

j −Aj(x
∗), vnj − un

j ⟩
= ⟨vnj −Aj(x

∗), vnj − un
j ⟩ − ∥vnj − un

j ∥2

=
1

2

[(
∥vnj −Aj(x

∗)∥2 − ∥un
j −Aj(x

∗)∥2
)
− ∥vnj − un

j ∥2
]

≤ −1

2
∥vnj − un

j ∥2 ∀j = 1, 2, . . . , N.(3.4)

From (3.4), with j = jn, we have

(3.5) ⟨xn − x∗, A∗(vn − un) ≤ −1

2
∥vn − un∥2 ∀n ≥ 0.
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Let us consider two cases.
Case 1. A∗(vn − un) = 0. From (3.5), we imply ∥vn − un∥ = 0. Since δn = 0,
we get yn = xn. Thus, (3.1) and (3.2) are proven.
Case 2. A∗(vn − un) ̸= 0.
We have

∥A∗(vn − un)∥2 ≤ ∥A∗∥2∥vn − un∥ = ∥A∥2∥vn − un∥2

≤
(
1 +

N∑
k=1

∥Ak∥2
)
∥vn − un∥2.(3.6)

It follows from (3.5) and (3.6), for all n ≥ 0, that

∥yn − x∗∥2 = ∥(xn − x∗) + δnA
∗(vn − un)∥2

= ∥xn − x∗∥2 + ∥δnA∗(vn − un)∥2 + 2δn⟨xn − x∗, A∗(vn − un)⟩
≤ ∥xn − x∗∥2 + δ2n∥A∗(vn − un)∥2 − δn∥vn − un∥2

= ∥xn − x∗∥2 − ρn(1− ρn)∥vn − un∥4

∥A∗(vn − un)∥2

≤ ∥xn − x∗∥2 −
ρ(1− ρ)∥vn − un∥4

∥A∗(vn − un)∥2
(3.7)

≤ ∥xn − x∗∥2 −
ρ(1− ρ)

1 +

N∑
k=1

∥Ak∥2
∥vn − un∥2.

Therefore, (3.1) is proven.
From (3.7), we get

∥yn − xn∥2 = δ2n∥A∗(vn − un)∥2 =
ρ2n∥vn − un∥4

∥A∗(vn − un)∥2

≤ ρ2∥vn − un∥4

∥A∗(vn − un)∥2

≤ ρ2

ρ(1− ρ)

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
.

Thus, (3.2) holds.
Step 2. The sequences {xn}, {yn} and {zn} are bounded.
Using property (2.3) of the metric projection, we get

∥zn − x∗∥2 = ∥PC(y
n)− x∗∥2

≤ ∥yn − x∗∥2 − ∥PC(y
n)− yn∥2

= ∥yn − x∗∥2 − ∥zn − yn∥2.
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Therefore

(3.8) 0 ≤ ∥zn − yn∥2 ≤ ∥yn − x∗∥2 − ∥zn − x∗∥2.

Based on (3.2) and (3.8), we obtain

(3.9) ∥zn − x∗∥ ≤ ∥yn − x∗∥ ≤ ∥xn − x∗∥ ∀n ≥ 0.

From (3.9), we have

∥xn+1 − x∗∥ = ∥(1− αn)(z
n − x∗) + αn(u− x∗)∥

≤ (1− αn)∥zn − x∗∥+ αn∥u− x∗∥(3.10)

≤ (1− αn)∥xn − x∗∥+ αn∥u− x∗∥.

This implies that

∥xn+1 − x∗∥ ≤ max{∥xn − x∗∥, ∥u− x∗∥} ∀n ≥ 0.

So, by induction, we obtain, for every n ≥ 0 that

∥xn − x∗∥ ≤ max{∥x0 − x∗∥, ∥u− x∗∥}.

Hence, the sequence {xn} is bounded and so are the sequences {yn} and {zn}
thanks to (3.9).
Step 3. We prove that {xn} converges strongly to x∗.
We have

∥xn+1 − x∗∥2 = ∥αnu+ (1− αn)z
n − x∗∥2

= ∥zn − x∗ + αn(u− zn)∥2

= ∥zn − x∗∥2 + 2αn⟨u− zn, zn − x∗⟩+ α2
n∥zn − u∥2,(3.11)

which together with (3.9) implies, for all n ≥ 0

(3.12)

0 ≤ ∥yn − x∗∥2 − ∥zn − x∗∥2

≤ ∥xn − x∗∥2 − ∥zn − x∗∥2

= (∥xn − x∗∥2 − ∥xn+1 − x∗∥2) + 2αn⟨u− zn, zn − x∗⟩
+ α2

n∥zn − u∥2.

Let us consider two cases.
Case 1. There exists n0 ≥ 0 such that {∥xn−x∗∥} is decreasing for n ≥ n0. In
this case, the limit of {∥xn−x∗∥} exists and we denote lim

n→∞
∥xn−x∗∥2 = ξ ≥ 0.

Therefore, it follows from (3.12), lim
n→∞

αn = 0 and the boundedness of {zn} that

(3.13) lim
n→∞

(∥yn−x∗∥2−∥zn−x∗∥2) = 0, lim
n→∞

(∥xn−x∗∥2−∥zn−x∗∥2) = 0.
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It implies from (3.13) that

(3.14) lim
n→∞

(∥xn − x∗∥2 − ∥yn − x∗∥2) = 0.

It follows from (3.1) and (3.14) that lim
n→∞

∥vn − un∥ = 0. From the definition

of jn, we get ∥vnj − un
j ∥ ≤ ∥vn − un∥ for all j = 1, 2, . . . , N . This together with

lim
n→∞

∥vn − un∥ = 0 implies

(3.15) lim
n→∞

∥vnj − un
j ∥ = 0 ∀j = 1, 2, . . . , N.

Using (3.2) and (3.14), we get

(3.16) lim
n→∞

∥yn − xn∥ = 0.

Based on (3.8) and (3.13), we obtain

(3.17) lim
n→∞

∥zn − yn∥ = 0.

From (3.16) and (3.17), we get

(3.18) ∥zn − xn∥ ≤ ∥zn − yn∥+ ∥yn − xn∥ → 0 as n → ∞.

Now, we prove that

(3.19) lim sup
n→∞

⟨u− x∗, zn − x∗⟩ ≤ 0.

Choose a subsequence {znk} of {zn} such that

lim sup
n→∞

⟨u− x∗, zn − x∗⟩ = lim
k→∞

⟨u− x∗, znk − x∗⟩.

Since {znk} is bounded, we may assume that {znk} converges weakly to some
z ∈ H1.
Therefore

(3.20) lim sup
n→∞

⟨u− x∗, zn − x∗⟩ = ⟨u− x∗, z − x∗⟩.

Since C is closed and convex, it is also weakly closed. So, from {znk =
PC(y

nk)} ⊂ C and znk ⇀ z, it follows that z ∈ C.
From znk ⇀ z and (3.18), it follows that xnk ⇀ z. Morever, since each Aj

is a bounded linear operator and xnk ⇀ z, we have unk
j = Aj(x

nk) ⇀ Aj(z).
This together with (3.15) imply vnk

j ⇀ Aj(z) for all j = 1, 2, . . . , N . Since
{vnk

j } ⊂ Qj and Qj is weakly closed then Aj(z) ∈ Qj for all j = 1, 2, . . . , N .
Thus, from z ∈ C and Aj(z) ∈ Qj for all j = 1, 2, . . . , N , we get z ∈ ΩSFPMOS.
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Combining this with x∗ = PΩSFPMOS
(u) and the property (2.2) of the met-

ric projection, we obtain ⟨u − x∗, z − x∗⟩ ≤ 0. So, from (3.20), we have
lim sup
n→∞

⟨u− x∗, zn − x∗⟩ ≤ 0. Thus, (3.19) is proven.

It follows from lim
n→∞

∥xn − x∗∥2 = ξ and (3.13) that

(3.21) lim
n→∞

∥zn − x∗∥2 = ξ.

From lim
n→∞

αn = 0, the boundedness of {zn}, (3.19) and (3.21), we obtain

lim sup
n→∞

(2⟨u− zn, zn − x∗⟩+ αn∥zn − u∥2)

= 2 lim sup
n→∞

⟨u− zn, zn − x∗⟩

= 2 lim sup
n→∞

[⟨u− x∗, zn − x∗⟩ − ∥zn − x∗∥2] ≤ −2ξ.(3.22)

Assume, to get a contradiction, that ξ > 0, and choose ε = ξ > 0. It follows
from (3.22) that there exists n1 ≥ 0 such that

(3.23) 2⟨u− zn, zn − x∗⟩+ αn∥zn − u∥2 ≤ −2ξ + ξ = −ξ ∀n ≥ n1.

From (3.9) and (3.11), we get

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 + αn

[
2⟨u− zn, zn − x∗⟩+ αn∥zn − u∥2

]
∀n ≥ 0,

which together with (3.23) implies

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 ≤ −αnξ ∀n ≥ n1.

Thus, after a summation, we obtain

∥xn+1 − x∗∥2 − ∥xn1 − x∗∥2 ≤ −ξ

 n∑
j=n1

αj

 ∀n ≥ n1.

Therefore, we arrive at a contradiction

ξ

 n∑
j=n1

αj

 ≤ ∥xn1 − x∗∥2 ∀n ≥ n1

because of

∞∑
n=0

αn = ∞. Hence ξ = 0, which implies xn → x∗.

Case 2. Suppose that for any integer m, there exists an integer n such that
n ≥ m and ∥xn − x∗∥ ≤ ∥xn+1 − x∗∥. According to Lemma 2.1, there exists
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a nondecreasing sequence {τ(n)}n≥n2
of N such that lim

n→∞
τ(n) = ∞ and the

following inequalities hold

(3.24) ∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥, ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥ ∀n ≥ n2.

From (3.24) and (3.10), we get

∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥
≤ (1− ατ(n))∥zτ(n) − x∗∥+ ατ(n)∥u− x∗∥ ∀n ≥ n2.(3.25)

From (3.25), we have

∥xτ(n) − x∗∥ − ∥zτ(n) − x∗∥ ≤ ατ(n)∥u− x∗∥ − ατ(n)∥zτ(n) − x∗∥ ∀n ≥ n2,

which together with (3.9) implies, for all n ≥ n2, that

ατ(n)∥u− x∗∥ − ατ(n)∥zτ(n) − x∗∥ ≥ ∥xτ(n) − x∗∥ − ∥zτ(n) − x∗∥
≥ ∥xτ(n) − x∗∥ − ∥yτ(n) − x∗∥
≥ 0.

Then, it follows from the above inequality, the boundedness of {zn} and lim
n→∞

αn =

0 that

(3.26)
lim
n→∞

(∥xτ(n) − x∗∥ − ∥zτ(n) − x∗∥) = 0,

lim
n→∞

(∥xτ(n) − x∗∥ − ∥yτ(n) − x∗∥) = 0.

From (3.26) and the boundedness of {xn}, {yn} and {zn}, we obtain

lim
n→∞

(∥xτ(n) − x∗∥2 − ∥zτ(n) − x∗∥2) = 0,

lim
n→∞

(∥xτ(n) − x∗∥2 − ∥yτ(n) − x∗∥2) = 0.

Arguing similarly as in the first case, we can conclude that

lim sup
n→∞

⟨u− x∗, zτ(n) − x∗⟩ ≤ 0.

Then, the boundedness of {zn} and lim
n→∞

αn = 0 yield

lim sup
n→∞

⟨u− x∗, xτ(n)+1 − x∗⟩ = lim sup
n→∞

⟨u− x∗, zτ(n) − x∗ + ατ(n)(u− zτ(n))⟩

= lim sup
n→∞

⟨u− x∗, zτ(n) − x∗⟩ ≤ 0.(3.27)
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Using the inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩ ∀x, y ∈ H1,

as well as (3.9) and (3.24), we obtain, for all n ≥ n2

∥xτ(n)+1 − x∗∥2 = ∥(1− ατ(n))(z
τ(n) − x∗) + ατ(n)(u− x∗)∥2

≤ ∥(1− ατ(n))(z
τ(n) − x∗)∥2 + 2⟨ατ(n)(u− x∗), xτ(n)+1 − x∗⟩

= (1− ατ(n))
2∥zτ(n) − x∗∥2 + 2ατ(n)⟨u− x∗, xτ(n)+1 − x∗⟩

≤ (1− ατ(n))∥zτ(n) − x∗∥2 + 2ατ(n)⟨u− x∗, xτ(n)+1 − x∗⟩
≤ (1− ατ(n))∥xτ(n) − x∗∥2 + 2ατ(n)⟨u− x∗, xτ(n)+1 − x∗⟩
≤ (1− ατ(n))∥xτ(n)+1 − x∗∥2 + 2ατ(n)⟨u− x∗, xτ(n)+1 − x∗⟩.

In particular, since ατ(n) > 0

∥xτ(n)+1 − x∗∥2 ≤ 2⟨u− x∗, xτ(n)+1 − x∗⟩ ∀n ≥ n2.

Combining the above inequality with (3.24), we get

(3.28) ∥xn − x∗∥2 ≤ 2⟨u− x∗, xτ(n)+1 − x∗⟩ ∀n ≥ n2.

Taking the limit in (3.28) as n → ∞, and using (3.27), we obtain

lim sup
n→∞

∥xn − x∗∥2 ≤ 0,

which implies xn → x∗. This complete the proof of Theorem 3.1. ■

Remark 3.1. We highlight the advantages of Algorithm 3.1 compared to
the algorithm of Reich et al. in [24, Theorem 3.4].

i) In Algorithm 3.1, unlike the result in [24, Theorem 3.4], the step size is
selected in such a way that its implementation does not require any prior
knowledge of the norms of the given bounded linear operators.

ii) When u = 0 ∈ H1, our algorithm becomes the one for finding the
minimum-norm solution of the SFPMOS. However, in the algorithm of
Reich et al. in [24, Theorem 3.4], we are required to choose u ∈ C, and
u = 0 cannot be selected if 0 /∈ C.
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4. Numerical illustrations

Example 4.1. We analyze the SFPMOS with

C = {(x1, x2, x3)
T ∈ R3 : x1 − x2 + x3 ≥ 4},

Q1 = {(u1, u2)
T ∈ R2 : u1 + u2 ≥ 4},

Q2 = {(u1, u2, u3)
T ∈ R3 : u1 + u2 + 2u3 ≤ 5},

Q3 = {(u1, u2, u3, u4)
T ∈ R4 : −2u1 + u2 + u3 − u4 ≥ −6},

Q4 = {(u1, u2, u3, u4, u5)
T ∈ R5 : u1 − 3u2 − 2u3 + u4 − u5 ≥ −24}.

We also consider the bounded linear operators A1 : R3 −→ R2, A2 : R3 −→ R3,
A3 : R3 −→ R4, and A4 : R3 −→ R5, defined by A1(x) = M1x, A2(x) = M2x,
A3(x) = M3x, A4(x) = M4x for all x ∈ R3, where

M1 =

(
3 1 −6
1 1 −2

)
, M2 =

1 1 0
0 1 1
1 0 1

 ,

M3 =


2 1 −1
−1 0 3
0 1 1
1 2 −6

 , M4 =


−1 2 −1
1 −1 2
1 −1 0
1 0 4
1 1 3

 .

The solutions set of the SFPMOS is given by

ΩSFPMOS = {x = (x1, x2, x3)
T ∈ C : Aj(x) ∈ Qj ∀j = 1, 2, 3, 4}

=

{
(t+ 2, 2t− 2, t)T : t ≤ 3

10

}
.

Suppose x = (t+ 2, 2t− 2, t)T ∈ ΩSFPMOS. Then we have

∥x∥ =
√
(t+ 2)2 + (2t− 2)2 + t2

=

√
6

(
t− 3

10

)2

+
2

5

(
3

10
− t

)
+

734

100

≥
√
734

10
.

Equality holds if and only if t =
3

10
. Therefore, the minimum-norm solution of

the SFPMOS is given by x∗ =

(
23

10
,−14

10
,
3

10

)T

.
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We begin by selecting a starting point x0 ∈ R3, where the elements of x0 are
randomly generated within the closed interval [−10, 10]. In Algorithm 3.1, we

define ρn = 1− 10−3 and the sequence {αn} as αn =
1

n+ 2
, for n = 0, 1, 2, . . ..

The stopping criterion is set as ∥xn+1−xn∥ ≤ ε. Table 1 displays the numerical
results of Algorithm 3.1 with varying tolerances. From the numerical results
presented, we observe that the approximate solution xn is a good approximation

to the minimum-norm solution x∗ =

(
23

10
,−14

10
,
3

10

)T

.

Table 1. Algorithm 3.1 for Example 4.1, with different tolerances and ρn =

1− 10−3, αn =
1

n+ 2

Tolerance Iter(n) Time(s) xn

ε = 10−4 721 0.0783 (2.29962586,−1.3901264, 0.30470758)T

ε = 10−5 8090 0.899 (2.29991637,−1.39921942, 0.30036984)T

ε = 10−6 81574 8.72283 (2.29999252,−1.39992094, 0.3000375)T

We conducted the iterative schemes in Python, utilizing version 3.11, on a
2017 MacBook Pro featuring a 2.3 GHz Intel Core i5 processor, an Intel Iris
Plus Graphics 640 graphics card with 1536 MB of memory, and 8 GB of 2133
MHz LPDDR3 RAM.

5. Conclusion

This paper presents a self-adaptive step size algorithm for solving the split
feasibility problem with multiple output sets in real Hilbert spaces. Under cer-
tain conditions on the parameters, we have established a strong convergence
theorem for the algorithm, which does not require the computation or estima-
tion of the norms of the given bounded linear operators. A simple numerical
example is provided to illustrate the effectiveness of the proposed algorithm.
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