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Abstract. In this survey paper we give an overview on some aspects
of singularities of algebraic plane curves over an algebraically closed field
of arbitrary characteristic. We review, in particular, classical results and
recent developments on invariants of plane curve singularities.

1. Introduction

The study of plane curve singularities started with fundamental work of
Heisuke Hironaka on the resolution of singularities ([20] 1964), Oskar Zariski’s
studies in equisingularity ([30] 1965-1968), Michael Artin’s paper on isolated
rational singularities of surfaces ([4] 1966), and the work by René Thom,
Bernard Malgrange, John Mather,... on singularities of differentiable map-
pings. It culminated in the 1970ties and 1980ties with the work of John
Milnor and Pierre Deligne, who intorduced what is now called the Milnor fi-
bration, Milnor number and the Milnor’s formula ([23] 1968, [11] 1973), Eg-
bert Brieskorn’s discovery of exotic spheres as neighborhood boundaries of iso-
lated hypersurface singularities (1966) and the connection to Lie groups (1971),
Vladimir Arnold’s classification of singularities ([1, 2, 3] 1972-1976), and many
others, e.g. Andrei Gabrielov, Sabir Gusein-Zade, Ignaciao Luengo, Seiden-
berg, Walker, Antonio Campillo, C.T.C. Wall, A. Melle-Hernández, Johnatan
Wahl, Le Dung Trang, Bernard Teissier, Dierk Siersma, Joseph Steenbrink,
Gert-Martin Greuel, Yousra Boubakri, Thomas Markwig, Félix Delgado de la
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Mata, P. Cassou-Noguès, E. Garcıa Barroso, Arkadiusz Ploski, Hefez Abramo,
Olmedo Rodrigues, Rodrigo Salomão . . . (see [8, 9, 28, 27, 12, 29, 24, 10, 7, 13,
14, 18]). In this survey paper we give an overview on some aspects of singu-
larities of algebraic plane curves over an algebraically closed field of arbitrary
characteristic. We review, in particular, classical results and recent develop-
ments on invariants of plane curve singularities that should serve as a quick
guide to references.

In this note, by a plane curve singularity we mean a non-unit formal power
series in k[[x, y]]. Invariants of a plane curve singularity f will be quantities
(e.g. integers) associated to f which is stabe in right or contact equivalent
classes. Recall that two plane curve singularities f and g are right equivalent
if f = Φ(g) for some automorphism of local k-algebra k[[x, y]]. They are called
contact equivalent if f = u · Φ(g) for some automorphism of local k-algebra
k[[x, y]] and for some unit u ∈ k[[x, y]]. We denote by f ∼r g and by f ∼c g
respectively.

We study classical invariants of plane curve singularities such as multiplic-
ity, Milnor number (µ(f)), delta and kappa invariants (δ(f), κ(f)), semi-group
(S(f)) and their relations. Especially we are interested in studying the Milnor
formula in positive characteristic, which states, in characteristic zero, that for
any reduced plane curve singularity f

(1.1) µ(f) = 2δ(f)− r(f) + 1,

where r(f) denotes the number of branches of f . More precisely, we give some
partial answers to the following problem.

Problem 1. Is there at least a “reasonable” characterization of those plane
curve singularities such that Equation 1.1 holds?

2. Preliminaries

2.1. Resolution of singularities

Let 0 ̸= f ∈ m ⊂ k[[x, y]]. Then R := Rf = k[[x, y]]/(f) (or f) is called
a plane curve singularity. There is a unique (up to multiplication with units)
decomposition

f = fρ1

1 · . . . · fρr
r ,

with fi ∈ m irreducible in k[[x, y]] and ρi ≥ 1 for all i = 1, . . . , r. The series fi
resp. the rings Rfi are called the branches of f resp. of Rf . The plane curve
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singularity f is said reduced if ρi = 1 for i = 1, . . . , r. It is irreducible if it
reduced and r = 1. Recall that the multiplicity of f , denoted by mt(f), is the
minimal degree of the homogeneous part of f . So

f =
∑

k≥m:=mt(f)

fk(x, y),

where fk is is either zero or a homogeneous polynomial of degree k and fm ̸= 0.
Then fm is decomposed into linear factors,

fm =
s∏

i=1

(αix− βiy)
ri ,

with (βi : αi) ∈ P1 pairwise distinct. We call fm the tangent cone of f . The
points Pi := (βi : αi), i = 1, . . . , s, are the tangent directions or the infinitely
near points in the 1-st neighbourhood of 0 of f . For each i, the number ri is
called the multiplicity of Pi, and denoted by mPi . Note that m = r1+ . . .+ rs.

For each tangent direction P := (β : α) of f , we define a morphism
ιP : k[[x, y]] → k[[xP , yP ]] and a series fP ∈ k[[xP , yP ]] as follows

• if α ̸= 0 then

ιP (x) =
xP yP + βyP

α
, ιP (y) = yP , and ιP (f) = ymP fP

• if α = 0 then

ιP (x) = xP , ιP (y) =
αxP + xP yP

β
, and ιP (f) = xmP fP .

The series fP is called the local equation of the strict transform of f at P . For
each n ≥ 1, if P is an infinitely near points in the n-th neighbourhood of 0,
and if Q is a tangent direction of fP (xP , yP ), then Q is called an infinitely near

point in the (n+1)-th neighbourhood of 0, denoted by Q
n+1→ 0 or simply Q→ 0.

We also denote by fQ(xQ, yQ) the local equation of the strict transform of fP
at Q. Note that, by definition, if Q→ P then mt(fQ) ≤ mt(fP ). The following
lemma can be proved easily by using induction.

Lemma 2.1. Let f, g ∈ k[[x, y]] be plane curve singularities and let P be a
tangent direction of f of multiplicity r. Then

(i) If m = mt(f) = 1, then mt(fP ) = 1 for all P → 0.

(ii) We have mt(fP ) ≤ r ≤ m. In particular, if f has at least two tangent
directions, then mt(fP ) < m.
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(iii) Assume g is an irreducible component of f . Then if Q
n→ 0 for g then

Q
n→ 0 for f , and moreover, gQ is an irreducible component of fQ.

We denote by R(n) the ring

R(n) := R
(n)
f :=

⊕

Q
n→0

k[[xQ, yQ]]/fQ(xQ, yQ),

and call it the n-th strict transform of f . Then we have the following inclusions

R = R(0) ↪→ R(1) ↪→ . . . ↪→ R(n) → . . .(2.1)

defined inductively as

R = R(0) ↪→ R(1) =
⊕

P
1→0

k[[xP , yP ]]/fP (xP , yP ), g 7→ ⊕ιP (g).

Theorem 2.1. Let f ∈ k[[x, y]] be a reduced plane curve singularities. Then

(i) the sequence of injective morphisms (2.1) stabilizes. More precisely, there
exists k ≥ 1 such that

R(n) ∼=
r⊕

i=1

k[[t]],

for all n ≥ k;

(ii) the morphisms R(i) ↪→ R(i+1) are integral extensions in the quotient ring
Q(R) of R;

(iii) the ring

R(n) ∼=
r⊕

i=1

k[[t]],

for all n≫ 1 is the integral closure of R, is also called the normalization
of R and denoted by R̄.

Proposition 2.2. Any plane curve singularity f ∈ k[[x, y]] can be factorized as

f =
∏

P
1→0

f̄P

in k[[x, y]] such that f̄P has a unique tangent direction, and the f̄P are pairwise
coprime.

In particular, if f ∈ m ⊂ k[[x, y]] is irreducible, then f has a unique tangent
direction.



On invariants of plane curve singularities in positive characteristic 5

2.2. Parametrization equivalence

Definition 2.1. Let 0 ̸= f ∈ m ⊂ k[[x, y]] be reduced and R ↪→ R̄ be its
normalization. A composition of the natural projection k[[x, y]] ↠ R, the nor-
malization R ↪→ R̄ and an isomorphism R̄ ∼=

⊕r
i=1 k[[t]],

ψ : k[[x, y]] ↠ R ↪→ R̄ ∼=
r⊕

i=1

k[[t]]

is called a (primitive) parametrization of f (or of R). More precisely,

(a) if f is irreducible, then a parametrization of f is given by a map

ψ : k[[x, y]] −→ k[[t]], (x, y) 7→ (x(t), y(t)) ,

(b) if f decomposes into several branches, then a parametrization of R is
given by a set of parametrizations of the branches. More precisely, if
f = f1 · . . . · fr is a decomposition of f into irreducible factors, then
R̄ ∼=

⊕r
i=1 k[[t]] is the normalization of R and a parametrization ψ of R

can be represented as a matrix of the form:

ψ(t) = (ψ1(t), . . . , ψr(t)) ,

where for i = 1, . . . , r, (ψi(t) = (xi(t), yi(t)) represents a parametrization
of the i-th branch.

A parametrization of a reduced plane curve singularity has the following
properties:

Proposition 2.3. Let 0 ̸= f ∈ m ⊂ k[[x, y]] be reduced and ψ : k[[x, y]] ↠ R ↪→
R̄ ∼=

⊕r
i=1 k[[t]] be its parametrization. Then

(i) ker(ψ) = (f),

(ii) ψ satisfies the following universal factorization property: Each ψ′ : k[[x, y]] →⊕r
i=1 k[[t]] such that ψ′(f) = 0, factorizes in a unique way through ψ, that

is there exists the unique morphism ϕ :
⊕r

i=1 k[[t]] →
⊕r

i=1 k[[t]] such that
ψ′ = ϕ ◦ ψ. Moreover, if ψ′ is also a parametrization of f , then ϕ is an
isomorphism.

Proposition 2.4. Let f ∈ k[[x, y]] be irreducible such that m := mt(f) =
ordf(0, y). Assume that m is not divisible by char(k), then f has a Puiseux
parametrization, i.e. a parametrization of the form

(x(t)|y(t)) := (tm|
∑

k≥m

ckt
k).
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Moreover, there exists a unit u ∈ k[[x, y]] such that

f = u ·
m∏

j=1

(y − y(ξjx1/m)),

where ξ is a primitive m-th root of unity.

Now we define the notion of parametrization equivalence.

Definition 2.2. Let ψ,ψ′ : k[[x, y]] → R̄ =
⊕r

i=1 k[[t]]. Then ψ is said to be
equivalent to ψ′, ψ ∼ ψ′, if there exist a reparametrization ϕ ∈ Autk(R̄) and a
coordinate change Φ ∈ Autk(k[[x, y]]) such that ψ′ ◦ Φ = ϕ ◦ ψ.

Let f, g ∈ k[[x, y]] be reduced. Then f is said to be parametrization equiva-
lent to g, f ∼p g, if there exist a parametrization ψ of f and a parametrization
ψ′ of g such that ψ ∼ ψ′.

Note that, if f ∼p g, then for any parametrization ψ (resp. ψ′) of f (resp.
g) we have ψ ∼ ψ′ by Proposition 2.3(ii).

Proposition 2.5. Let f, g be two given plane curve singularities. Then

f ∼p g ⇔ f ∼c g.

Proof.

cf. [25, Proposition 1.2.10]. ■

2.3. Intersection multiplicity and classical invariants

Definition 2.3. Let f ∈ k[[x, y]] be reduced and let ψ : k[[x, y]] ↠ R ↪→ R̄ ∼=⊕r
i=1 k[[t]] be a parametrization of f .

(a) We call δ(f) := dimkR̄/R the δ-invariant of f .

(b) We introduce the valuation map

v := (v1, ..., vr) : R→ (Z≥0 ∪∞)r, g 7→ ord(g(xi(t), yi(t)))i=1,...,r.

Its image Γ(R) := Γ(f) := v(R) is a semigroup, called the semigroup of values
of f .

(c) Let C := (R : R̄) := {u ∈ R | uR̄ ⊂ R} be the conductor ideal of R̄ in R
(cf. [31]). Then C is an ideal of both R and R̄. So one has C = (tc1)×· · ·×(tcr )
for some c := (c1, . . . , cr) ∈ Zr

≥0. We call c the conductor (exponent) of f . One
obviously has c+Zr

≥0 ⊂ S(f) and c is the minimum element in S(f) with this
property w.r.t. the product ordering on Zr

≥0, i.e. the partial ordering given by:
if α = (α1, . . . , αr), β = (β1, . . . , βr) ∈ Zr

≥0 the α ≤ β if and only if αi ≤ βi for
every i = 1, . . . , r.
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Definition 2.4. Let g ∈ k[[x, y]] be irreducible and (x(t), y(t)) its parametriza-
tion. Then the intersection multiplicity of any f ∈ k[[x, y]] with g is given
by

i0(f, g) := ordf(x(t), y(t)).

If u is a unit then we define i0(f, u) := 0.

The intersection multiplicity of f with a plane curve singularity g = g1 · . . . ·
gs, gi irreducible, is defined to be the sum

i(f, g) := i0(f, g1) + . . .+ i(f, gs).

The Milnor number µ(f) and kappa invariant κ(f) of f are defined respectively
as

µ(f) := i0(fx, fy); κ(f) := i0(f, αfx + βfy),

where (α : β) ∈ P1 is generic.

Proposition 2.6. Let f, g ∈ k[[x, y]]. Then

i0(f, g) = i0(g, f) = dim k[[x, y]]/(f, g).

Proof.

cf. [15, Proposition I.3.12] ■

Corollary 2.1. Let f ∈ k[[x, y]] be an irreducible plane curve singularity. A
couple (x(t), y(t)) of two power series is a parametrization of f if and only if

f (x(t), y(t)) = 0 and min{ordx(t), ordy(t)} = mt(f).

Proposition 2.7. Let f, g ∈ k[[x, y]] be two reduced power series which have
no factor in common. Then

δ(fg) = δ(f) + δ(g) + i0(f, g)

and
κ(fg) = κ(f) + κ(g) + i0(f, g).

Proof.

cf. [15, Proposition I.3.32, Corollary 3.39] ■

Proposition 2.8. Let f ∈ k[[x, y]] be a reduced plane curve singularity. Then

δ(f) =
∑

Q→0

mt(fQ) (mt(fQ)− 1)

2
.
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Proof.

cf. [15, Proposition I.3.34] ■

Proposition 2.9. Let f = f1 · . . . ·fr with fi irreducible and let c = (c1, . . . , cr)
its conductor. Then, for any i = 1, . . . , r one has

ci = 2δ(fi) +
∑

j ̸=i

i0(fi, fj))

= c(fi) +
∑

j ̸=i

i0(fi, fj)

and therefore 2δ(f) = c(f) := c1 + · · ·+ cr.

Proof.

cf. [19]. ■

Lemma 2.2 (Dedekind’s formula). Suppose that i0(f, x) = ord(f) ̸= 0 mod p.
Then

i0

(
f,
∂f

∂y

)
= c(f) + ord(f)− 1.

For more facts on the conductor see [15], [12], [19]. The following propo-
sition says that the δ-invariant, the conductor and the maximal contact mul-
tiplicity are invariant under contact equivalence, and by Proposition 2.5, they
are also invariant under parametrization equivalence.

Proposition 2.10. Let f, g ∈ k[[x, y]], let u, v ∈ k[[x, y]]∗ be unit and let Φ ∈
Autk(k[[x, y]]). Then i(f, g) = i(u · Φ(f), v · Φ(g)). Moreover, if f ∼c g, then

(i) δ(f) = δ(g).

(ii) κ(f) = κ(g).

(iii) c(f) = c(g) (up to a permutation of the indices {1, . . . , r}).

Proof.

cf. [25, Proposition 1.2.19]. ■

For reduced plane curve f = f1 · . . . · fr with fi irreducible we define

1. mt(f) := (mt(f1), . . . ,mt(fr)) ∈ Zr the multi-multiplicity of f ,

2. c(f) := (c(f1), . . . , c(fr)) = (2δ(f1), . . . , 2δ(fr)) ∈ Zr the multi-conductor
of f .

These tuples are invariant under parametrization and contact equivalence
as the following corollary shows.
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Corollary 2.2. If f ∼c g then mt(f) = mt(g) and c(f) = c(g) (up to a
permutation of the indices {1, . . . , r}).

Proof.

Follows from Proposition 2.10. ■

We recall that if f is a plane curve singularity then its Milnor number
µ(f) is dimk[[x, y]]/(fx, fy), where fx, fy be the partials of f . Proposition 2.6
yields that the Milnor number can be computed as an intersection multiplicity:
µ(f) = i(fx, fy).

2.4. Newton diagrams and Newton factorizations

Let us recall the definition of the Newton diagram of a plane curve singu-
larity. To each power series f =

∑
(α,β) cα,βx

αyβ ∈ k[[x, y]] we can associate its

Newton polyhedron Γ+(f) as the convex hull of the set

⋃

α∈supp(f)

((α, β) + R2
≥0).

where supp(f) = {α|cα,β ̸= 0} denotes the support of f . This is an unbounded
polytope in Rn. We call the union Γ(f) of its compact faces the Newton diagram
of f . By Γ−(f) we denote the union of all line segments joining the origin to
a point on Γ(f). For each subset ∆ in R2

≥0 we denote

in∆(f) :=
∑

(α,β)∈∆

cα,βx
αyβ ∈ k[[x, y]].

The initial part of f is defined to be

fin := inΓ(f)(f).

Proposition 2.11. Let f ∈ m ⊂ k[[x, y]] be an irreducible plane curve singular-
ity such tha i0(f, x) = n and i0(f, x) = m. Let (x(t), y(t)) be parametrization
of f . Then

(i) ord(x(t)) = n and ord(y(t)) = m.

(ii) The Newton diagram of f is a straight line segment.

(iii) There exist ξ, λ ∈ k∗ such that

fin(x, y) = ξ · (xm/q − λyn/q)q,

where q = (m,n).
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Proof.

cf. [9, Lemma 3.4.3, 3.4.4, 3.4.5]. ■

Proposition 2.12. [8, Lemma 3] Let f ∈ k[[x, y]] and let Ei, i = 1, . . . , k be
the edges of its Newton diagram. Then there is a factorization of f :

f = monomial · f̄1 · . . . · f̄k

such that f̄i is convenient, and inEi
(f) = monomial × (f̄i)in. In particular, if

f is convenient then f = f̄1 · . . . · f̄k.

3. Milnor numbers and delta invariants

3.1. Milnor numbers

We first introduce the different notions of non-degeneracy originated by
Kouchnirenko and Wall. For this let

f =
∑

α

cαx
α ∈ m ⊂ k[[x]] := k[[x1, . . . , xn]]

be a power series, let P be a C-polytope, i.e. a compact rational polytope
P of dimension n − 1 in the positive orthant Rn

≥0 and the region above P
is convex and every ray in the positive orthant emanating from the origin
meets P in exactly one point. For each subset ∆ ⊂ Rn

≥0 we denote by f∆ :=
in∆(f) :=

∑
α∈∆ cαx

α the initial form or principal part of f along ∆. Following
Kouchnirenko we call f non-degenerate (ND) along ∆ if the Jacobian ideal∗

j(in∆(f)) has no zero in the torus (k∗)n. f is then said to be Newton non-
degenerate (NND) if f is non-degenerate along each face (of any dimension) of
the Newton diagram Γ(f). We do not require f to be convenient.

To define inner non-degeneracy we need to fix two more notions. The face
∆ is an inner face of P if it is not contained in any coordinate hyperplane. Each
point q ∈ kn determines a coordinate hyperspace Hq =

⋂
qi=0{xi = 0} ⊂ Rn

in Rn. We call f inner non-degenerate (IND) along ∆ if for each zero q of the
Jacobian ideal j(in∆(f)) the polytope ∆ contains no point on Hq. f is called
inner Newton non-degenerate (INND) w.r.t. a C-polytope P if no point of
supp(f) lies below P and f is IND along each inner face of P . We call f simply
inner Newton non-degenerate (INND) if it is INND w.r.t some C-polytope.

∗The Jacobian ideal j(f) denotes the ideal generated by all partials of f ∈ k[[x]].
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Finally, we call f weakly non-degenerate (WND) along ∆ if the Tjurina
ideal† tj(in∆(f)) has no zero in the torus (k∗)n, and f is called weakly Newton
non-degenerate (WNND) if f is weakly non-degenerate along each facet of Γ(f).
Note that NND implies WNND while NND does not imply INND. See [7,
Remark 3.1] for facts on and relations between the different types of non-
degeneracy.

For any compact polytope Q in Rn
≥0 we denote by Vk(Q) the sum of the k-

dimensional Euclidean volumes of the intersections of Q with the k-dimensional
coordinate subspaces of Rn and, following Kouchnirenko, we then call

µN (Q) =

n∑

k=0

(−1)n−kk!Vk(Q)

the Newton number of Q. For a power series f ∈ k[[x]] we define the Newton
number of f to be

µN (f) = sup{µN (Γ−(fm))|fm := f + xm1 + . . .+ xmn ,m ≥ 1}.

If f is convenient then
µN (f) = µN (Γ−(f)).

The following theorem was proved by Kouchnirenko in arbitrary characteristic.
We recall that µ(f) := dim k[[x]]/j(f) is the Milnor number of f .

Theorem 3.1. [21] For f ∈ k[[x]] we have µN (f) ≤ µ(f), and if f is NND
and convenient then µN (f) = µ(f) <∞.

Since Theorem 3.1 does not cover all semi-quasihomogeneous singularities,
Wall introduced the condition INND (denoted by NPND* in [29]). Using The-
orem 3.1, Wall proved the following theorem for k = C which was extended to
arbitrary k in [7].

Theorem 3.2. [29], [7] If f ∈ k[[x]] is INND, then

µ(f) = µN (f) = µN (Γ−(f)) <∞.

Kouchnirenko proved that the condition “convenient” is not necessary in
Theorem 3.1. In the planar case, the authors in [7] show that Kouchnirenko’s
result holds in arbitrary characteristic without the assumption that f is con-
venient (allowing µ(f) = ∞):

Proposition 3.3. [7, Proposition 4.5] Suppose that f ∈ k[[x, y]] is NND, then
µN (f) = µ(f).

†For f ∈ k[[x]] we call tj(f) = (f) + j(f) the Tjurina ideal of f .
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Theorem 3.4. Let f ∈ m ⊂ k[[x, y]]. Then the following are equivalent

(i) µ(f) = µN (f) <∞.

(ii) f is INND.

Proof.

The theorem follows from the following lemmas (for proofs, see [16]):

Lemma 3.1. Let f, g ∈ k[[x, y]] be convenient such that Γ−(f) ⊆ Γ−(g). Then

(i) µN (f) ≤ µN (g).

(ii) The equality holds if and only if Γ−(f) ∩ R2
≥1 = Γ−(g) ∩ R2

≥1, where

R2
≥1 = {(x, y) ∈ R2|x ≥ 1, y ≥ 1}.

Note that Part (i) of the lemma holds true in many variables by [6, Cor.
5.6]. Let us denote by Γ1(f) the cone joining the origin with Γ(f) ∩ R2

≥1. (cf.
Fig. 1).
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Lemma 3.2. Let f =
∑
cijx

iyj ∈ K[[x, y]] be convenient and let (0, n) (resp.
(m, 0)) be the vertex on the y-axis (resp. on the x-axis) of Γ(f). Assume that
m = n = 0 mod p then µ(f) > µN (f).

Lemma 3.3. Let f ∈ K[[x, y]] be convenient. If f is degenerate along some
edge or some inner vertex of Γ(f) then µ(f) > µN (f).

■

Corollary 3.1. Let f ∈ k[[x, y]] and let M ∈ N such that Γ(f) ⊂ Γ(fM ) with
fM := f + xM + yM . Then f is INND if and only if it is INND w.r.t. Γ(fm)
for some (equivalently for all) m > M .
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3.2. Delta-invariants

We consider now another important invariant of plane curve singularities,
the invariant δ and its combinatorial counterpart, the Newton invariant δN . We
show that both coincide iff f is weighted homogeneous Newton non-degenerate
(WHNND), a new non-degenerate condition introduced below.

Let E1, . . . , Ek be the edges of the Newton diagram of f . We denote by
l(Ei) the lattice length of Ei, i.e. the number of integral points on Ei minus one
and by s(inEi(f)) the number of non-monomial irreducible (reduced) factors
of inEi(f). We set

(a) If f is convenient, we define

δN (f) := V2(Γ−(f))−
V1(Γ−(f))

2
+

∑k
i=1 l(Ei)

2
,

and otherwise we set δN (f) := sup{δN (fm)|fm := f + xm + ym,m ∈ N} and
call it the Newton δ-invariant of f .

(b) rN (f) :=
∑k

i=1 l(Ei) + max{j|xj divides f}+max{l|yl divides f}.
(c) sN (f) :=

∑k
i=1 s(inEi(f))+max{j|xj divides f}+max{l|yl divides f}.

Note that all of these numbers depend on the Newton diagram of f and
hence are coordinate-dependent.

Proposition 3.5. For 0 ̸= f ∈ (x, y) we have r(f) ≤ rN (f), and if f is
WNND then r(f) = rN (f).

Proof.

cf. [7, Lemma 4.10] ■

Let E be an edge of the Newton diagram of f . Then we can write fE as
follows,

inE(f) =
s∏

i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, gcd(m0, n0) = 1.
It easy to see that

s = s(inE(f)) and l(E) =

s∑

i=1

ri.

This implies s(inE(f)) ≤ l(E) and hence sN (f) ≤ rN (f).

Let f = fwd +fwd+1+ . . . with f
w
d ̸= 0 be the (n0,m0)-weighted homogeneous

decomposition of f .
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Definition 3.1. We say that f is weighted homogeneous non-degenerate (WHND)
along E if either ri = 1 for all i = 1, . . . , s or (aix

m0 − biy
n0) does not divide

fwd+1 for each ri > 1.

f is called weighted homogeneous Newton non-degenerate (WHNND) if its
Newton diagram has no edge or if it is WHND along each edge of its Newton
diagram.

Remark 3.1. (a) In [22] the author introduced superisolated singularities to
study the µ-constant stratum. We recall that f ∈ k[[x, y]] is superisolated if
it becomes regular after only one blowing up. By ([22, Lemma 1]), this is
equivalent to: fm+1(βi, αi) ̸= 0 for all tangent directions (βi : αi) of f with
ri > 1, where f = fm + fm+1 + . . . is the homogeneous decomposition of f and

fm =
s∏

i=1

(αix− βiy)
ri .

Note that this condition concerns all factors of fm including monomials. For
WHNND singularities we require a similar condition, but for “all weights” and
without any condition on the monomial factors of the first term of the weighted
homogeneous decomposition of f .

(b) Since a plane curve singularity is superisolated iff it becomes regular
after only one blowing up, we have δ(f) = m(m − 1)/2 and hence δ(f) =
δN (f) = m(m− 1)/2, by Proposition 4.1. It follows from Theorem 4.3 that

(c) A superisolated plane curve singularity is WHNND.

(d) The plane curve singularity x2 + y5 is WHNND but not superisolated.

Proposition 3.6. With notations as above, f is WND along E if and only
if s(fE) = l(E) or, equivalently, iff ri = 1 for all i = 1, . . . , s. In particular,
WNND implies WHNND.

Proof.

cf. [16, Proposition 3.5] ■

Proposition 3.7. For 0 ̸= f ∈ (x, y) we have sN (f) ≤ r(f) and if f is
WHNND then sN (f) = r(f).

Proof.

cf. [16, Proposition 3.7] ■

Proposition 3.8. For 0 ̸= f ∈ (x, y) we have sN (f) ≤ r(f) ≤ rN (f), and both
equalities hold if and only if f is WNND.
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Proof.

The inequalities follow from Proposition 3.5 and Proposition 3.7. For each
edge E of Γ(f), by Proposition 3.6, f is WND along E iff s(fE) = l(E). This
implies that f is WNND if and only if sN (f) = rN (f) since s(fE) ≤ l(E) and
both sides are additive with respect to edges of Γ(f). ■

We investigate now the relations between ν(f), δN (f) and δ(f), which were
studied in [5] and [7].

Proposition 3.9. [7, Prop. 4.9] For 0 ̸= f ∈ (x, y) we have δN (f) ≤ δ(f),
and if f is WNND then δN (f) = δ(f).

Hence WNND is sufficient but, by the following example, not necessary for
δN (f) = δ(f).

Example 3.10. Let f(x, y) = (x+ y)2 + y3 ∈ k[[x, y]]. Then f is not WNND
but δN (f) = δ(f) = 1. This easy example shows also that WNND depends on
the coordinates since x2 + y3 is WNND. Note that f is WHNND.

Theorem 3.11. [16, Theorem 3.12] Let f ∈ k[[x, y]] be reduced. Then δ(f) =
δN (f) if and only if f is WHNND.

Proof.

Recall that, if E is an edge of the Newton diagram of f . Then we can write
fE as follows,

inE(f) =
s∏

i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, gcd(m0, n0) = 1.
It easy to see that

s = s(inE(f)) and l(E) =

s∑

i=1

ri.

The theorem is then based on the following lemmas. We refer to [16] for detail
proofs.

Lemma 3.4. There exist an integer n and an infinitely near point P
n→ 0 in

the n-th neighbourhood of 0, such that

inEP
(fP )(u, v) = monomial ×

s∏

i=1

(aiu− biv)
ri ,

where fP is the local equation of the strict transform of f at P and EP is some
edge of its Newton diagram Γ(fP ). Moreover, f is WHND along E if and only
if fP is WHND along EP .



16 Nguyen Hong Duc

Let us denote by Qi the points (ai : bi) and by mQi
the multiplicity of fQi

.
Then

Lemma 3.5. The following are equivalent

(i) f is WHND along E.

(ii) mQi = 1 for all i.

■

3.3. Milnor formula

We recall that if f is a plane curve singularity then its Milnor number µ(f)
is dim k[[x, y]]/(fx, fy), where fx, fy be the partials of f . Proposition 2.6 yields
that the Milnor number can be computed as the intersection multiplicity of fx
and fy: µ(f) = i(fx, fy). Moreover if k = C, the Milnor’s famous formula (see,
[23, Thm 10.5], or also [15, Prop. 3.35]) gives a relation between the Milnor
number, the δ-invariant:

µ(f) = 2δ(f)− r(f) + 1.

This also holds true in characteristic zero. But in positive characteristic, it is in
general not true as the following example shows: f = x3+x4+y6+y7 ∈ k[[x, y]]
with char(k) = 3. Then

r(f) = 1; µ(f) = 18; δ(f) = 6.

In positive characteristic the equality holds under certain conditions of the
Newton diagram, e.g. NND ([7, Thm. 9]) or INND ([16, Cor. 3.16]). How-
ever without the assumption of Newton non-degeneracy one has at least an
inequality as proven by Pierre Deligne [11], see also [24]:

µ(f) ≥ 2δ(f)− r(f) + 1.

The difference of the two sides is measured by the so called Swan character,
denoted by Sw(f), which counts wild vanishing cycles that can only occur in
positive characteristic.

However it still holds true if f is NND by [7, Thm. 4.13]. Using the general
inequality

µN (f) = 2δN (f)− rN (f) + 1 ≤ 2δ(f)− r(f) + 1 ≤ µ(f)

from [7], then Theorem 3.4, Proposition 3.5 and Proposition 4.2 imply.

Although we can compute the number of wild vanishing cycles, it seems
hard to understand them. In [16] we have posed the following problems.
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Problem 3.12. Is there any “geometric” way to understand the wild vanishing
cycles, distinguishing them from the ordinary vanishing cycles counted by 2δ−
r + 1? Is there at least a “reasonable” characterization of those singularities
without wild vanishing cycles?

Problem 3.13. Find an “elementary proof” for the inequality

µ(f) ≥ 2δ(f)− r(f) + 1.

We will discuss more carefully about this topic in the last two sections.

4. Gamma and kappa invariants

The results in this section are borrowed from [26].

4.1. Gamma invariants

Following [26, Section 2] we introduce and study new (gamma) invariants
γ, γ̃ of plane curve singularities which have not been considered before. In
characteristic zero, these invariants coincide and are equal to the Milnor number
(see Remark 4.1). So they may be considered as generalizations of the Milnor
number in positive characteristic and are believed to be useful in studying
classical invariants. In this section we use them to connect the delta and kappa
invariant. We will show, in Proposition 4.1, that

κ(f) ≥ γ(f) + mt(f)− 1

and in Theorem 4.4, that

γ(f) ≥ 2δ(f)− r(f) + 1

and obtain the inequality in the main result (Theorem 4.5) of the section:

κ(f) ≥ 2δ(f) + mt(f)− 1

with equalitity if and only if p is m-good for f (see, Definition 4.3 for the notion
of m-goodness).

Definition 4.1. Let f ∈ k[[x, y]] be reduced. The number γ̃x,y(f) (or γ̃(f), if
the coordinate {x, y} is fixed) of f , is defined as follows:
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(a) γ̃(x) := 0, γ̃(y) := 0.

(b) If f is irreducible and convenient (i.e. i0(f, x), i0(f, y) <∞), then

γ̃(f) := min{i0(f, fx)− i0(f, y) + 1, i0(f, fy)− i0(f, x) + 1}.

(c) If f = f1 · . . . · fr, then

γ̃(f) :=
r∑

i=1

(
γ̃(fi) +

∑

j ̸=i

i0(fi, fj)
)
− r + 1.

Definition 4.2. The gamma invariant of a reduced plane curve singularity f ,
denoted by γ(f), is the minimum of γ̃X,Y (f) for all coordinates X,Y .

Remark 4.1. (a) In characteristic zero, γ(f) = γ̃(f) = µ(f) due to Theorems
4.3, 4.4 and the Milnor formula.

(b) In general we have, by definition, that γ(f) ≤ γ̃(f) (with equality if p
is im-good for f , see Definition 4.3 and Corollary 4.1) and that γ(f) = γ̃(g)
for some g right equivalent to f (f is called right equivalent to g, denoted by
f ∼r g, if there is an automorphism Φ ∈ Autk(k[[x, y]]) such that f = Φ(g)).

(c) The number γ̃ depends on the choice of coordinates, i.e. it is not invari-
ant under right equivalence. E.g. f = x3+x4+y5 and g = (x+y)3+(x+y)4+y5

in k[[x, y]] with char(k) = 3 and then f ∼r g, but γ̃(f) = 8, γ̃(g) = 10. However,
as we will see in Proposition 4.2, if the characteristic p is multiplicity good for
f then γ̃(f) = γ̃(g) for all g contact equivalent to f . Recall that f, g are contact
equivalent if there is an automorphism Φ ∈ Autk(k[[x, y]]) and a unit u ∈ k[[x, y]]
such that f = u · Φ(g), and we denote this by f ∼c g.

(d) It follows from the definition that γ̃(u) = 1 and γ̃(u ·f) = γ̃(f) for every
unit u and therefore γ is invariant under contact equivalence.

(e) The Milnor number µ is invariant under right equivalence. The numbers
δ, κ,mt, r, i are invariant under contact equivalence (see, for instance [25], Prop.
1.2.19 for the invariance of δ). This means that, if f ∼c g then

δ(f) = δ(g), κ(f) = κ(g), mt(f) = mt(g) and r(f) = r(g).

Moreover, for any Φ ∈ Autk (k[[x, y]]) and units u, v, one has

i0(f, h) = i0 (u · Φ(f), v · Φ(h)) .

Before studying in detail gamma invariants, we collect several facts on in-
variants of plane curve singularities which we use later. For proofs, we refer to
[15] and [25].
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Remark 4.2. (a) If f is irreducible, then

κ(f) = min{i0(f, fx), i0(f, fy)}.

Indeed, taking a parametrization (x(t), y(t)) of f we obtain that

κ(f) = ord (αfx(x(t), y(t)) + βfy(x(t), y(t))) ,

which equals to the minimum of i(f, fx) and i(f, fy) since (α : β) is generic.

(b) If f is convenient, then

γ̃(f) = i0(f, αxfx + βyfy)− i0(f, x)− i0(f, y) + 1,

where (α : β) ∈ P1 is generic.

Definition 4.3. Let char(k) = p ≥ 0 and let f = f1 · . . . · fr ∈ k[[x, y]] be
reduced with fi irreducible. The characteristic p is said to be

(a) multiplicity good (m-good) for f if the multiplicities mt(fi) ̸= 0 (mod p)
for all i = 1, . . . , r;

(b) intersection multiplicity good (im-good) for f if for all i = 1, . . . , r, either
i(fi, x) ̸= 0 (mod p) or i(fi, y) ̸= 0 (mod p);

(c) right intersection multiplicity good (right im-good) for f if it is im-good
for f after some change of coordinate. That is, it is im-good for some g
right equivalent to f .

Note that these notions are trivial in characteristic zero, i.e. if p = 0 then
it is always m-good, im-good and right im-good for f . In general we have

“m-good” =⇒ “im-good” =⇒ “right im-good”.

The following proposition gives us the first relations between the gamma in-
variants and classical invariants.

Proposition 4.1. Let f ∈ k[[x, y]] be reduced. Then

γ(f) ≤ γ̃(f) ≤ κ(f)−mt(f) + 1

with equality if p is m-good for f .

Proof.

cf. [26, Proposition 2.6 ]. ■

The following proposition says that the number γ̃ is invariant under contact
equivalence in the class of singularities for which p is m-good. It will be shown
in Corollary 4.1 that γ̃ is invariant under contact equivalence in the class of
singularities for which p is im-good.
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Proposition 4.2. Let f ∈ k[[x, y]] be reduced such that p is m-good for f and
let g ∼c f . Then γ̃(g) = γ̃(f). In particular, γ(f) = γ̃(f).

Proof.

This follows from Proposition 4.1 and Remark 4.1(e). See [25, Lemma 2.3.4]
for a direct proof. ■

Theorem 4.3. Let f ∈ k[[x, y]] be reduced. Then

γ̃(f) ≥ 2δ(f)− r(f) + 1.

Equality holds if and only if the characteristic p is im-good for f .

Proof.

cf. [26, Theorem 2.11 ]. ■

Corollary 4.1. Assume that p is im-good for f . Then

γ(f) = γ̃(f).

The following simple corollary should be useful in computation, since the
number in the left side is easily computed.

Corollary 4.2. Assume that p > mt(f). Then

µ(f)− γ̃(f) = Sw(f).

Theorem 4.4. Let f ∈ k[[x, y]] be reduced. Then

γ(f) ≥ 2δ(f)− r(f) + 1.

Equality holds if and only if the characteristic p is right im-good for f .

Proof.

Taking g right equivalent to f such that γ(f) = γ̃(g) and combining Theo-
rem 4.3 and Remark 4.1 we get

γ(f) = γ̃(g) ≥ 2δ(g)− r(g) + 1 = 2δ(f)− r(f) + 1

with equality if and only if p is im-good for g. It remains to show that if p is
right im-good for f , then

γ(f) = 2δ(f)− r(f) + 1.
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Indeed, by definition, p is im-good for some h right equivalent to f . Again
combining Theorem 4.3 and Remark 4.1 we get

γ(f) = γ(h) ≤ γ̃(h) = 2δ(h)− r(h) + 1 = 2δ(f)− r(f) + 1 ≤ γ(f).

This implies that
γ(f) = 2δ(f)− r(f) + 1,

which completes the theorem. ■

4.2. Kappa invariants and Plücker formulas

We prove in this section the main result (Theorem 4.5) and apply it to
Plücker formulas (Corollaries 4.4, 4.5). Furthermore we show, in Corollary 4.3
(resp. Corollary 4.5), that if p is “big” for f (resp. for a plane curve C), then
f (resp. C) has no wild vanishing cycle.

Theorem 4.5. Let f ∈ k[[x, y]] be reduced. One has

κ(f) ≥ 2δ(f) + mt(f)− r(f)

with equality if and only if p is m-good for f .

The following interesting corollary says that if the characteristic p is “big”
for f , then f has no wild vanishing cycle.

Corollary 4.3. Assume that p > κ(f). Then f has no wild vanishing cycle,
i.e. Sw(f) = 0. Moreover one has

κ(f) = 2δ(f) + mt(f)− r(f)

= µ(f) + mt(f)− 1.

Let C be a irreducible curve of degree d in P2 defined by a homogeneous
polynomial F ∈ k[x, y, z]. Let Sing(C) resp. C∗ := C \ Sing(C) the singular
resp. smooth locus of C, and let s(C) := ♯Sing(C) the number of singular
points. Let ρ : C∗ → P̌2, P = (x : y : z) 7→ (Fx(P ) : Fy(P ) : Fz(P )) the dual
(Gauss) map and deg(ρ) its degree. We call the closure of the image of ρ in P̌2

the dual curve of C denoted by Č. We denote by ď the degree of Č. For each
singular point P ∈ Sing(C) take a local equation fP = 0 of C at P , and define

δ(C) :=
∑
δ(fP ), mt(C) :=

∑
mt(fP ),

µ(C) :=
∑
µ(fP ), r(C) :=

∑
r(fP ),

Sw(C) :=
∑

Sw(fP ).

where all the sums are taken over P ∈ Sing(C).
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Corollary 4.4. Using the above notions, we have

deg(ρ) · ď ≤ d(d− 1)− 2δ(C) + r(C)−mt(C)

= d(d− 1)− µ(C)−mt(C) + s(C) + Sw(C),

with equality if and only if p is multiplicity good (m-good) for C, i.e. p is
m-good for all the fP .

Combining Corollaries 4.3 and 4.3 we obtain

Corollary 4.5. With the above notions, assume that

max
P∈Sing(C)

{κ(fP )} < p,

(for example, d(d−1) < p). Then C has no wild vanishing cycle, i.e. Sw(C) =
0. Moreover one has

deg(ρ) · ď = d(d− 1)− 2δ(C) + r(C)−mt(C)

= d(d− 1)− µ(C)−mt(C) + s(C).

5. Semigroup of a plane algebroid branch

In this section we study the semigroup of a given irreducible plane curve
singularity and apply it to study Problem 3.12 proposed in Section 3. The
proofs can be found in [13, 14].

5.1. Semigroups

We say that a subset G of N is a semigroup if it contains 0 and if it is
closed under addition. Let n > 0 be an integer. A sequence of positive in-
tegers (v0, . . . , vh) is said to be a Seidenberg n-characteristic sequence or n-
characteristic sequence if v0 = n and it satisfies the following two axioms

(a) Set di = gcd(v0, . . . , vi) for 0 ≤ i ≤ h and ni =
di−1

di
for 1 ≤ i ≤ h. Then

dh = 1 and ni > 1 for 1 ≤ i ≤ h.

(b) ni−1vi−1 < vi for 2 ≤ i ≤ h.

Note that condition (b) implies that the sequence (v1, . . . , vh) is strictly increas-
ing. If n > 1 then h ≥ 1. If h = 1 then the sequence (v0, v1) is a Seidenberg
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n-characteristic sequence if and only if v0 = n and gcd(v0, v1) = 1. There is
exactly one 1-sequence which is (1).

Let G be a nonzero semigroup and let n ∈ G, n > 0. Then there exists (cf.
[17], Chapter 6, Proposition 6.1) a unique sequence v0, . . . , vh such that v0 = n,
vk = min(G\v0N + · · · + vk−1N) for k ∈ {1, . . . , h} and G = v0N + · · · + vhN.
We call the sequence (v0, . . . , vh) the n-minimal system of generators of G. If
n = min(G\{0}) then we say that (v0, . . . , vh) is the minimal set of generators
of G. We will study semigroups generated by n-characteristic sequences.

Proposition 5.1. Let G = v0N+· · ·+vhN where (v0, . . . , vh) is an n-characteristic
sequence. Then

(i) The sequence (v0, . . . , vh) is the n-minimal system of generators of G.

(ii) min(G\{0}) = min(v0, v1).

(iii) The minimal system of generators of G is (v0, v1, . . . , vh) if v0 < v1,
(v1, v0, . . . , vh) if v1 < v0 and v0 ̸≡ 0 (mod v1) and (v1, v2, . . . , vh) if
v0 ≡ 0 (mod v1). Moreover, the minimal system of generators of G is a
min(G\{0})-characteristic sequence.

(iv) Let c =
∑h

k=1(nk−1)vk−v0+1. Then for every a, b ∈ Z: if a+ b = c−1
then exactly one element of the pair (a, b) belongs to G. Consequently c
is the smallest element of G such that all integers bigger than or equal to
it are in G.

(v) c is an even number and ♯(N\G) = c

2
.

The number c is called the conductor of the semigroup G.

5.2. Polar factorization theorems

The aim of this section is to study the structure of the semigroup associated
with a plane branch and its relation to the factorization theorems.

Let f = f(x, y) ∈ k[[x, y]] be an irreducible power series and let S(f) be the
semigroup associated with the branch {f = 0}. Suppose that {f = 0} ≠ {x =
0} and put n = i0(f, x). That is,

S(f) = {i(f, g) | g ∈ k[[x, y]] \ (f)k[[x, y]]}.

Let (b̄0, . . . , b̄h), b̄0 = n be the n-minimal system of generators of S(f). We
define

e0 = n, ek = gcd(ek−1, b̄k) and nk =
ek−1

ek
for k ∈ {1, . . . , h}.
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Lemma 5.1. We have eh = 1.

Proof.

It follows from Theorem 2.1 that π : k[[x, y]]/(f) → k[[t]] is the normalization,
and hence

Q (k[[x, y]]/(f)) ∼= k((t)).

This implies that, there exist p, q ∈ k[[x, y]]/(f) such that

p (x(t), y(t))

q (x(t), y(t))
= t,

where x(t) = π(x) and y(t) = π(y). Taking order of both sides we get

ord p (x(t), y(t))− ord q (x(t), y(t)) = 1.

Since ord p (x(t), y(t)) and ord q (x(t), y(t)) are elements in S(f), it follows that
gcd(S(f)) = 1 and hence eh = 1. ■

Corollary 5.1 (Conductor formula). One has

c(f) =
h∑

k=1

(nk − 1)b̄k − b̄0 + 1.

Theorem 5.2 (Semigroup Theorem). Let {f = 0} be a branch such that {f =
0} ≠ {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the n-minimal system of
generators of the semigroup S(f). There exists a sequence of monic polynomials
f0, f1, . . . , fh−1 ∈ k[[x]][y] such that for k ∈ {1, . . . , h}:

(ak) degy(fk−1) =
n

ek−1
,

(bk) i0(f, fk−1) = b̄k for k ∈ {1, . . . , h},

(ck) if k > 1 then nk−1b̄k−1 < b̄k.

Moreover nk > 1 for all k ∈ {1, . . . , h}.

Theorem 5.3 (Merle-Granja’s Factorization Theorem). Let {f = 0} be a
branch such that {f = 0} ̸= {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the
n-minimal system of generators of the semigroup S(f). Fix k, 1 ≤ k ≤ h. Let
g = g(x, y) ∈ k[[x, y]] be a power series such that

(i) i0(g, x) =
n
ek

− 1,

(ii) i0(f, g) =
∑k

i=1(ni − 1)b̄i.
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Then there is a factorization g = g1 · · · gk ∈ k[[x, y]] such that

1. i0(gi, x) =
n
ei

− n
ei−1

for i ∈ {1, . . . , k},

2. if ϕ ∈ k[[x, y]] is an irreducible factor of gi, i ∈ {1, . . . , k} then

(a) i0(f,ϕ)
i0(ϕ,x)

= ei−1b̄i
n ,

(b) i0(ϕ, x) ≡ 0 mod n
ei−1

.

Theorem 5.4 (Merle’s factorization theorem). Let {f = 0} be a branch such
that {f = 0} ≠ {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the n-minimal
system of generators of the semigroup S(f). Suppose that n > 1 and n ̸≡ 0
mod (char k). Then ∂f

∂y = g1 · · · gh in k[[x, y]], where

(i) i0(gi, x) =
n
ei

− n
ei−1

for i ∈ {1, . . . , h}.

(ii) If ϕ ∈ k[[x, y]] is an irreducible factor of gi, i ∈ {1, . . . , h}, then

i0(f, ϕ)

i0(ϕ, x)
=
ei−1b̄i
n

and i0(ϕ, x) ≡ 0 mod
n

ei−1
.

Proof. Since n ̸≡ 0 (mod char k) we have i0
(

∂f
∂y , x

)
= n−1. By the Dedekind

formula and the Conductor formula we have i0

(
f, ∂f∂y

)
= c(f) + n − 1 =

∑h
k=1(nk − 1)b̄k. The theorem is then proved by applying Theorem 5.3 to the

series g = ∂f
∂y . ■

5.3. Garćıa Barroso-Ploski’s theorem

In this section, we give a proof of the following theorem.

Theorem 5.5. [14, Theorem 1.1] Let f ∈ k[[x, y]] be an irreducible singularity
and let (b̄0, . . . , b̄h) be the minimal system of generators of S(f). Suppose that
p = chark > ordf . Then the following two conditions are equivalent:

(i) b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , h};

(ii) µ(f) = c(f).

Proof. Since p > ordf , it follows from Dedekind’s formula (Lemma 2.2) that

i0(f,
∂f

∂y
) = c(f) + ordf − 1.
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It remains to prove that

i0(f,
∂f

∂y
) = µ(f) + ordf − 1

if and only if b̄k ̸≡ 0 (modp) for k ∈ {1, . . . , h}.
In fact, let ϕ be an irreducible factor of ∂f

∂y and let (x(t), y(t)) be a parametriza-
tion of ϕ = 0. Then

ordx(t) = i0(x, ϕ) = ordϕ < ordf < p

and, consequently, ord x(t) ̸≡ 0(modp), which implies ord x′(t) = ordx(t)− 1.
We have

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))x′(t).

This yields

ord f(x(t), y(t))− 1 ≤ ord
∂f

∂x
(x(t), y(t)) + ordx(t)− 1

with equality if and only if i0(f, ϕ) = ordf(x(t), y(t)) ̸≡ 0 mod p. Taking the
sum over all irreducible factors ∂f

∂y gives us

(5.1) i0(f,
∂f

∂y
) ≤ i0(

∂f

∂x
,
∂f

∂y
) + ordf − 1 = µ(f) + ordf − 1

with equality if and only if i0(f, ϕ) ̸≡ 0 mod p for all ϕ.

Let ∂f
∂y = g1 · · · gh be the Merle factorization of the polar ∂f

∂y and assume
that ϕ is an irreducible factor of gk. Then by Theorem 5.4, we can write
ord ϕ = mk

n
ek−1

, where mk ⩾ 1 is an integer. Since ordϕ < p, it yields that

mk < p and therefore mk ̸≡ 0 mod p. Again, by Theorem 5.4

i0(f, ϕ) =
ek−1b̄k
n

ord ϕ = mk b̄k.

Therefore, i(f, ϕ) ̸≡ 0 (modp) if and only if b̄k ̸≡ 0 (modp). The theorem
hence follows from (5.1). ■

Remark 5.1. If p < ord f , then the proof of Theorem 5.5 fails, even if ord f ̸≡
0 (mod p). Take f = xp+2 + yp+1 + xp+1y.

Conjecture 5.6. Let f ∈ k[[x, y]] be an irreducible singularity and let b̄0, . . . , b̄g
be the minimal system of generators of S(f). Then the following two conditions
are equivalent:

(i) b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , g};
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(ii) µ(f) = c(f).

The conjecture is true if S(f) is generated by b̄0 and b̄1. Recently, Hefez,
Rodrigues and Salomao in [18] have proved that (i) implies (ii).

Theorem 5.7 (Hefez, Rodrigues and Salomao). Let f ∈ k[[x, y]] be an irre-
ducible singularity and let b̄0, . . . , b̄g be the minimal system of generators of
S(f). If b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , g} then µ(f) = c(f).
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Abstract. In this paper, we investigate shared value problems related to a
meromorphic function of hyper order less than one and its linear difference-
differential polynomial. In general, under certain conditions of sharing
values of the meromorphic functions and their difference-differential poly-
nomial, a given meromorphic function must satisfy a difference-differential
equation. Furthermore, we also study the order of meromorphic solutions
of some classes of difference-differential equations.

1. Introduction

We use standard notations from Nevanlinna theory. Denote by σ(f) the
order of growth of a meromorphic function f on the complex plane C, and also
use the notation ς(f) to denote the hyper order of f ,

σ(f) = lim sup
r→∞

log T (r, f)

log r
, ς(f) = lim sup

r→∞

log log T (r, f)

log r
,
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respectively, where T (r, f) is the characteristic function of f.
A meromorphic function a is said to be small with respect to f if T (r, a) =
o(T (r, f)), as r → +∞ possibly outside a set of finite Lebesgue measure. We

denote S(f) by the set of small functions with respect to f and Ŝ(f) = S(f)∪
{∞}. Let a be a small function with respect to f. The defect δ(f, a) of f at a
is defined by

δ(a, f) = 1− lim sup
r→∞

N(r,
1

f − a
)

T (r, f)
, Θ(a, f) = 1− lim sup

r→∞

N(r,
1

f − a
)

T (r, f)
.

We can define another defect as follows:

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)

T (r, f)
, δ(∞, f) = 1− lim sup

r→∞

N(r, f)

T (r, f)
.

The five-point theorem due to Nevanlinna states that if two non-constant
meromorphic functions f and g in C share five distinct values ignoring multi-
plicities (IM), then f ≡ g. Recently, Halburd, Korhonen, and Tohge [7, 8, 10],
Chiang and Feng [3] extended the Nevanlinna theory for difference operator.
Difference Nevanlinna theory has emerged as a result of recent interest on value
distribution and growth of meromorphic solutions of difference equations [3, 9],
also uniqueness of meromorphic functions with difference polynomials.

Definition 1.1. [15] Let l be a non-negative integer or infinite. Denote by
El(a, f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ l and l + 1 times if m > l. If El(a, f) = El(a, g), we say that
f and g share (a, l). It is easy to see that if f and g share (a, l), then f and g
share (a, p) for 0 ≤ p ≤ l. Also we note that f and g share the value a - IM or
CM if and only if f and g share (a, 0) or (a,∞), respectively.

Let p be a positive integer and a ∈ C ∪ {∞}. We use Np)(r,
1

f − a
) to

denote the counting function of the zeros of f − a, whose multiplicities are not

greater than p, N(p+1(r,
1

f − a
) to denote the counting function of the zeros of

f − a whose multiplicities are not less than p + 1, and we use Np)(r,
1

f − a
)

and N (p+1(r,
1

f − a
) to denote their corresponding reduced counting functions

(ignoring multiplicities) respectively. We use Ep)(a, f) (E(p+1(a, f)) to denote
the set of zeros of f−a with multiplicities ≤ p (≥ p+1) (ignoring multiplicity),

respectively. We also denote Np(r,
1

f − a
) by

Np(r,
1

f − a
) = N(r,

1

f − a
) + · · ·+N (p(r,

1

f − a
).
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Then we define the truncated deficiency as

δp(a, f) = 1− lim sup
r→∞

Np(r,
1

f − a
)

T (r, f)
.

Let f be a nonconstant meromorphic function with hyper-order less than
1, we denote L(f) by

L(f) :=

k∑

j=1

ajf(z + cj),

where aj ̸= 0, j = 1, . . . , k, cj ∈ C (j = 1, . . . , k) are distinct complex numbers.

In 2015, Li, Korhonen and Yang [13] proved some results uniqueness for
entire function f and its linear difference polynomial L(f) which share partially
values, and under some conditions about defect values. In 2020, X. Qi and L.
Yang [18] investigated the uniqueness problem for derivative of transcendental
entire function of finite order f and f(z + c) share 0-CM and a-IM, where a
is a nonzero complex. In 2022, S. Chen and A. Xu [2] extended the results
of Qi-Yang [18] as follows: Let f be a non-constant meromorphic function
of hyper order ς(f) < 1, c be a non-zero finite complex number, and k be
a positive integer. If f (k)(z) and f(z + c) share 0,∞-CM and 1 − IM, then
f (k)(z) ≡ f(z + c). Motivate by the results of Li, Korhonen and Yang [13], in
this paper, we first prove a result for uniqueness of meromorphic function and
its linear difference-differential polynomial (L(f))(n) as follows.

Theorem 1.1. Let k, n be positive integer numbers. Let f(z) be a non-constant
meromorphic function with hyper order less than 1, and assume that (L(f))(n)

is not a constant function. Suppose that f − 1 and (L(f))(n) − 1 share value
(0, l), f and (L(f))(n) share ∞− IM and

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (i ≥ 2).

Then

(L(f))(n) ≡ f(1.1)

if one of the following assumptions holds:

(1) l = 0 (i.e. f − 1 and (L(f))(n) − 1 share the value 0 IM) and

2δ2(0, f)+3Θ(0, f)+((2n+4)k+3)Θ(∞, f)+2(k−1)δ(∞, f) > (2n+6)k+5;

(2) l = 1 and

2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > (n+ 3)k+ 3;
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(3) l ≥ 2 and

2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f) > (n+ 3)k + 2.

Remark 1.1. In Theorem 1.1, the condition E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (i ≥

2) is weaker than condition f and (L(f))(n) share 0−CM. If (L(f))(n) and f
share 0 − CM, then E(i(0, f) = E(i(0, (L(f))

(n)) (i ≥ 1). Then Theorem 1.1

still holds when (L(f))(n) and f share 0-CM.

From Theorem 1.1, when f is an entire function, we get the following result:

Corollary 1.1. Let k, n be positive integer numbers. Let f(z) be an noncon-
stant entire function with hyper order less than 1, and assume that (L(f))(n)

is not a constant function. Suppose that f − 1 and (L(f))(n) − 1 share value
(0, l) and

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (i ≥ 2).

Then
(L(f))(n) ≡ f

if one of the following assumptions holds:

(1) l = 0 (i.e. f − 1 and (L(f))(n) − 1 share the value 0 IM) and

2δ2(0, f) + 3Θ(0, f) > 4;

(2) l = 1 and

2δ2(0, f) +
1

2
Θ(0, f) >

3

2
;

(3) l ≥ 2 and δ2(0, f) >
1

2
.

The equation (L(f))(n) ≡ f implies also that f is a solution to a linear
difference-differential equation with constant coefficients. Therefore, in the
principle, we can give some properties of solutions by using the characteristic
equation for linear difference-differential equations. Motivate by the works of
X. Qi and L. Yang [18] and S. Chen and A. Xu [2], we prove the uniqueness
result for derivative of meromorphic function and its difference polynomial as
follows:

Theorem 1.2. Let k, n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that L(f) and
f (n) are not constant functions. Suppose that f (n)−1 and L(f)−1 share value
(0, l), f (n) and L(f) share ∞-IM, and

E(i(0, f) ⊂ E(i(0, L(f)) (i ≥ 2).
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Then

L(f) ≡ f (n)(1.2)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and L(f)− 1 share the value 0 IM) and

(4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > 6k + 2n+ 6;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + (2k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f) > 3k + 3;

(3) l ≥ 2 and

(2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f) > 3k + 2.

Since f (n)(z) and f(z+ c) share 0-CM implies that E(i(0, f) ⊂ E(i(0, f(z+

c)) (i ≥ 2), then Theorem 1.2 still holds when f (n)(z) and f(z+ c) share 0-CM
and L(f) = f(z + c), k = 1. The assumptions in Theorem 1.2 are weaker than
those in Theorem D. Namely, we consider that f (n) and f(z+c) share partially
value 0 and ∞-IM, f (n) and f(z + c) share (1, l). We note that the method
proving Theorem 1.2 is not the same to [2] and [18]. For more results about
uniqueness of meromorphic functions and their shift share partially value, we
recommend the readers to [4, 11, 12]. Outside that problem, the uniqueness of
difference-differential of meromorphic functions sharing values or small func-
tions which was considered by many authors, we refer the readers to [5, 17] for
more details. From Theorem 1.2, we get the following result:

Corollary 1.2. Let n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that f(z + c)
and f (n) are not constant functions, where c is a nonzero complex number.
Suppose that f (n)−1 and f(z+c)−1 share value (0, l), f (n) and f(z+c) share
∞-IM, and

E(i(0, f) ⊂ E(i(0, f(z + c)) (i ≥ 2).

Then
f(z + c) ≡ f (n)(z)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and L(f)− 1 share the value 0 IM) and



36 Ha Tran Phuong and Nguyen Van Thin

(2n+ 7)Θ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > 2n+ 12;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) +

9

2
Θ(∞, f) > 6;

(3) l ≥ 2 and

4Θ(∞, f) + δ2(0, f) + δn+2(0, f) > 5.

From Theorem 1.2, when k = 1 and L(f) = f(z + c), we get the following
result for entire functions:

Corollary 1.3. Let k, n be positive integer numbers. Let f(z) be a nonconstant
entire function with hyper order less than 1, and assume that f(z+ c) and f (n)

are not constant functions. Suppose that f (n) − 1 and f(z + c)− 1 share value
(0, l), and

E(i(0, f) ⊂ E(i(0, f(z + c)) (i ≥ 2).

Then

f(z + c) ≡ f (n)(z)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and f(z + c)− 1 share the value 0 IM) and

2Θ(0, f) + δ2(0, f) + 2δn+1(0, f) + δn+2(0, f) > 5;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) >

3

2
;

(3) l ≥ 2 and

δ2(0, f) + δn+2(0, f) > 1.

Finally, we study the growth of solutions to equations (1.1) and (1.2).

Theorem 1.3. The order of all transcendental meromorphic solutions f of
equations (1.1) and (1.2) must satisfy σ(f) ≥ 1.
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Example 1.4. The function f(z) = sin z has order σ(f) = 1 and f is a
solution of equation

f ′(z) = −2f(z + π) + f(z − π

2
).

Here L(f) = −2f(z + π) + f(z − π

2
). We also have that f is a solution of

f ′(z + π) = f(z),

where L(f) = f(z + π).

2. Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (Halburd-Korhonen-Tohge [10]). Let h : [0,+∞) → [0,+∞) be a
non-decreasing continuous function, and let s ∈ (0,+∞). If the hyper order of
h is strictly less than one, i.e.,

lim sup
r→∞

log log h(r)

log r
= ς < 1,

then

h(r + s) = h(r) + o(
h(r)

r1−ς−ε
),

where ε > 0 and r → ∞ outside of a set of finite logarithmic measure.

From Lemma 2.1, we get the following corollary.

Corollary 2.1. [1, 10] Let f be a non-constant meromorphic function with
ς(f) = ς < 1, and c ∈ C \ {0}. Then

N(r, f(z + c)) ≤ N(r, f) + S(r, f), N(r, f(z + c)) ≤ N(r, f) + S(r, f),

N(r,
1

f(z + c)
) ≤ N(r,

1

f
) + S(r, f), N(r,

1

f(z + c)
) ≤ N(r,

1

f
) + S(r, f),

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [19] Let n be a postive integer number. Let f be a non-constant
meromorphic function such that f (n) ̸≡ 0. Then

N(r,
1

f (n)
) ⩽ T (r, f (n))− T (r, f) +N(r,

1

f
) + S(r, f);

N(r,
1

f (n)
) ⩽ nN(r, f) +N(r,

1

f
) + S(r, f).
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Lemma 2.3. [21] Let p and k be two positive integers. Let f be a non-constant
meromorphic function such that f (k) ̸≡ 0. Then

Np(r,
1

f (k)
) ⩽ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f);

Np(r,
1

f (k)
) ⩽ kN(r, f) +Np+k(r,

1

f
) + S(r, f).

Lemma 2.4. [20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), 0), then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+ 2(N(r,
1

f
) +N(r, f)) + (N(r,

1

g
) +N(r, g)) + S(r, f) + S(r, g),

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.

Lemma 2.5. [20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), 1), then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f) + S(r, g),

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.

Lemma 2.6. [16, 20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), l), l ≥ 2, then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
) + S(r, f) + S(r, g)

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.
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Lemma 2.7. [13] Let f be a non-constant meromorphic function with hyper-
order less than 1, and L(f) ̸≡ 0 be defined as in Theorem A. Then

N(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

L(f)
) ≤ (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

From Lemma 2.7, we get the following result:

Lemma 2.8. Let n, p be integer numbers. Let f be a non-constant mero-
morphic function with hyper order less than 1 such that L(f) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, L(f)) (all i ≥ p+ 1). Then

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

L(f)
) ≤ (k − 1)N(r, f) +Np(r,

1

f
) + S(r, f).

Proof. Apply to Lemma 2.7, we have

N(r,
1

L(f)
) ⩽ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f).(2.1)

We have

N(r,
1

L(f)
) = Np(r,

1

L(f)
) +

∞∑

j=p+1

N (j(r,
1

L(f)
)(2.2)

and

N(r,
1

f
) = Np(r,

1

f
) +

∞∑

j=p+1

N (j(r,
1

f
).(2.3)

Hence, combining (2.1) to (2.3) and by the assumption

E(i(0, f) ⊂ E(i(0, L(f)) (all i ≥ p+ 1),

we get N (j(r,
1

f
) ≤ N (j(r,

1

L(f)
) for all j ≥ p+ 1. Using Lemma 2.7 and (2.2),

we have

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f)−

∞∑

j=p+1

N (j(r,
1

L(f)
)(2.4)

+N(r,
1

f
) + S(r, f).
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Combine (2.3) and (2.4) to get

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +Np(r,

1

f
)

+
∞∑

j=p+1

N (j(r,
1

f
)−

∞∑

j=p+1

N (j(r,
1

L(f)
) + S(r, f)

≤ T (r, L(f))− T (r, f) +Np(r,
1

f
) + S(r, f).

The remain inequality is similarly proved. For convenience to readers, we write
some steps as follows. From (2.1) and Lemma 2.7, we have

Np(r,
1

L(f)
) ≤ (k − 1)N(r, f) +N(r,

1

f
)−

∞∑

j=p+1

N (j(r,
1

L(f)
) + S(r, f).

(2.5)

Then second statement comes from (2.3) and (2.5). ■

Next, we prove some results as following:

Lemma 2.9. Let n be a integer number. Let f be a non-constant meromorphic
function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Then

N(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

Proof. Apply Lemma 2.2, we have

N(r,
1

(L(f))(n)
) ⩽ T (r, (L(f))(n))− T (r, L(f)) +N(r,

1

L(f)
) + S(r, f).(2.6)

By Lemma 2.7, from (2.6), we get

N(r,
1

L(f)
) ⩽ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f).(2.7)

Combine (2.6) and (2.7), we get the first inequality. Next, we show the second
inequality. By Lemma 2.2, we have

N(r,
1

(L(f))(n)
) ⩽ nN(r, L(f)) +N(r,

1

L(f)
) + S(r, f).(2.8)
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Combining (2.8), Lemma 2.7 and Corollary 2.1, we obtain

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

■

From Lemma 2.9, we get the following result.

Corollary 2.2. Let n be a integer number. Let f be a non-constant entire
function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Then

N(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

(L(f))(n)
) ≤ N(r,

1

f
) + S(r, f).

Lemma 2.10. Let n, p be integer numbers. Let f be a non-constant meromor-
phic function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, (L(f))

(n)) (all i ≥ p+ 1). Then

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,

1

f
) + S(r, f).

Proof. Apply Lemma 2.9, we have

N(r,
1

(L(f))(n)
) ⩽ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f).(2.9)

We have

N(r,
1

(L(f))(n)
) = Np(r,

1

(L(f))(n)
) +

∞∑

j=p+1

N (j(r,
1

(L(f))(n)
)(2.10)

and

N(r,
1

f
) = Np(r,

1

f
) +

∞∑

j=p+1

N (j(r,
1

f
).(2.11)

Hence, combining (2.9) to (2.11) and by the assumption

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (all i ≥ p+ 1),
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we get

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
)

+

∞∑

j=p+1

N (j(r,
1

f
)−

∞∑

j=p+1

N (j(r,
1

(L(f))(n)
) + S(r, f)

≤ T (r, (L(f))(n))− T (r, f) +Np(r,
1

f
) + S(r, f).

By Lemma 2.9, we have

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).(2.12)

Hence, combining (2.9), (2.11) and (2.12), we obtain

Np(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,

1

f
)

+
∞∑

j=p+1

N (j(r,
1

f
)−

∞∑

j=p+1

N (j(r,
1

(L(f))(n)
) + S(r, f)

≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,
1

f
) + S(r, f).

■

From Lemma 2.10, we get the following result.

Corollary 2.3. Let n, p be integer numbers. Let f be a non-constant en-
tire function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, (L(f))

(n)) (all i ≥ p+ 1). Then

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

(L(f))(n)
) ≤ Np(r,

1

f
) + S(r, f).

Lemma 2.11. Let c1 and c2 be two arbitrary complex numbers, and let f be a
meromorphic function of finite order σ. Assume that ε > 0, then there exists a
subset E ⊂ R with finite logarithmic measure so that for all |z| = r ̸∈ E ∪ [0, 1],
we have

exp(−rσ−1+ε) ≤
∣∣∣f(z + c1)

f(z + c2)

∣∣∣ ≤ exp(rσ−1+ε).



On meromorphic solution of linear difference - differential equation via ... 43

Lemma 2.12. [6, Corollary 1] Assume that f is a transcendental meromorphic
function of finite order σ = σ(f). Let ε > 0, k > j ≥ 0 be two integers. Then
there exists a set E ⊂ [0, 2π) with linear measure zero, so that if φ ∈ [0, 2π)\E,
then there is a constant R0 = R0(φ) > 0 so that for all z verifying argz = φ
and |z| ≥ R0, we have

∣∣∣∣
f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

Lemma 2.13. Assume that f is a transcendental meromorphic function of
finite order σ = σ(f). Let c1 and c2 be complex numbers and k is a positive
integer and ε > 0. Then there is a subset E1 ⊂ R with finite logarithmic measure
and set E ⊂ [0, 2π) with linear measure zero so that if z = reiφ, φ ∈ [0, 2π)\E,
we have that ∣∣∣∣

f (k)(z + c1)

f(z + c2)

∣∣∣∣ ≤ |z|k(σ−1+ε)exp(rσ−1+ε)

holds for all |z| = r ≥ r0(φ) > 1 and |z| ̸∈ E1.

Proof. Since f has finite order, then by Corollary 2.1, we have

T (r, f(z + c1)) = T (r, f) + o(T (r, f)).

It implies that f(z + c1) has finite order and σf(z + c1) = σ(f). By Lemma
2.12 for g(z) = f(z + c1), there is a set E ⊂ [0, 2π) with linear measure zero,
so that if φ ∈ [0, 2π) \ E, then there is a constant R0 = R0(φ) > 1 so that

∣∣∣∣
g(k)(z)

g(z)

∣∣∣∣ ≤ |z|k(σ−1+ε)(2.13)

holds for all z satisfying argz = φ and |z| ≥ R0 > 1. Using Lemma 2.11, there
is a subset E ⊂ R with finite logarithmic measure so that for all r ̸∈ E1 ∪ [0, 1],
we have

exp(−rσ−1+ε) ≤
∣∣∣f(z + c1)

f(z + c2)

∣∣∣ ≤ exp(rσ−1+ε).(2.14)

Combine (2.13) and (2.13), we deduce that

∣∣∣∣
f (k)(z + c1)

f(z + c2)

∣∣∣∣ =
∣∣∣∣
f (k)(z + c1)

f(z + c1)

f(z + c1)

f(z + c2)

∣∣∣∣ ≤ |z|k(σ−1+ε)exp(rσ−1+ε)

holds for all z : argz = φ and |z| ≥ R0 > 1 and |z| ̸∈ E1. ■
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3. Proof of Theorems

3.1. Proof of Theorem 1.1

Proof. From the conditions of Theorem 1.1, we know that f and (L(f))(n)

share (1, l). We consider three cases as following of l.

Case 1: l = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
) +N2(r, f) +N2(r,

1

f
)

+ 2(N(r,
1

(L(f))(n)
) +N(r, (L(f))(n))) + (N(r,

1

f
) +N(r, f)) + S(r, f),

(3.1)

and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
)

+ 2(N(r,
1

f
) +N(r, f)) + (N(r,

1

(L(f))(n)
) +N(r, (L(f))(n))) + S(r, f).

(3.2)

First, from Corollary 2.1, we have

N2(r, (L(f))
(n)) ≤ 2N(r, (L(f))(n)) = 2N(r, L(f)) ≤ 2kN(r, f) + S(r, f).

(3.3)

By Lemma 2.10, we know

N2(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N2(r,

1

f
) + S(r, f),(3.4)

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

Still using Lemma 2.10 and (3.1), (3.3)-(3.4), we get

T (r, (L(f))(n)) ⩽ T (r, (L(f))(n))− T (r, f) + 2N2(r,
1

f
) + 3N(r,

1

f
)

+ (k(2n+ 4) + 3)N(r, f) + 2(k − 1)N(r, f) + S(r, f).
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This implies

T (r, f) ⩽ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 4) + 3)N(r, f)(3.5)

+ 2(k − 1)N(r, f) + S(r, f).

Similarly, from Lemma 2.10 and (3.2), we obtain

T (r, f) ⩽ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 3) + 4)N(r, f)

+ 2(k − 1)N(r, f) + S(r, f)

≤ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 4) + 3)N(r, f)

+ 2(k − 1)N(r, f) + S(r, f).(3.6)

Therefore, combining (3.5) and (3.6), we get

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) + 3(1−Θ(0, f))T (r, f)

+ (k(2n+ 4) + 3)(1−Θ(∞, f))T (r, f)

+ 2(k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies (K1 − ((2n+ 6)k + 5))T (r, f) ≤ S(r, f), where

K1 = 2δ2(0, f) + 3Θ(0, f) + ((2n+ 4)k + 3)Θ(∞, f)

+ 2(k − 1)δ(∞, f)− ((2n+ 6)k + 5) > 0

since

2δ2(0, f)+3Θ(0, f)+((2n+4)k+3)Θ(∞, f)+2(k−1)δ(∞, f) > (2n+6)k+5.

This is a contradiction. Thus, by Lemma 2.4, we must have f ≡ (L(f))(n) or
f.(L(f))(n) ≡ 1. We consider the case f.(L(f))(n) ≡ 1. Since f and (L(f))(n)

share ∞− IM, then the case f.(L(f))(n) ≡ 1 is impossible. Hence, we obtain

f ≡ (L(f))(n).

We have finished the proof of Theorem 1.1 in the case l = 0.

Case 2: l = 1. Apply to Lemma 2.5, we may assume that two inequality below
hold:

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
) +N2(r, f) +N2(r,

1

f
)

+
1

2
(N(r,

1

(L(f))(n)
) +N(r, (L(f))(n))) + S(r, f),(3.7)
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and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
)(3.8)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f).

Combine Lemma 2.10 and (3.7), we get

T (r, (L(f))(n)) ⩽ T (r, (L(f))(n))− T (r, f) + 2N2(r,
1

f
) +

1

2
N(r,

1

f
)

+ ((
n+ 5

2
)k + 2)N(r, f) +

k − 1

2
N(r, f) + S(r, f).

This implies

T (r, f) ⩽ 2N2(r,
1

f
) +

1

2
N(r,

1

f
) + ((

n+ 5

2
)k + 2)N(r, f)(3.9)

+
k − 1

2
N(r, f) + S(r, f).

Similarly, from Lemma 2.10, (3.3)-(3.4) and (3.8), we obtain

T (r, f) ⩽ 2N2(r,
1

f
) +

1

2
N(r,

1

f
) + ((n+ 2)k +

5

2
)N(r, f)(3.10)

+ (k − 1)N(r, f) + S(r, f).

Since

((
n+ 5

2
k+2)N(r, f) +

k − 1

2
N(r, f) ≤ ((n+2)k+

5

2
)N(r, f) + (k− 1)N(r, f),

then, combining (3.9) and (3.10), we get

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) +
1

2
(1−Θ(0, f))T (r, f)

+ ((n+ 2)k +
5

2
)(1−Θ(∞, f))T (r, f) + (k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies
(K2 − ((n+ 3)k + 3))T (r, f) ≤ S(r, f),

where

K2 = 2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f).

This is a contradiction with

2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > (n+ 3)k+ 3.
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By an argument as Case 1, we have

f ≡ (L(f))(n).

Case 3: l ≥ 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
)(3.11)

+N2(r, f) +N2(r,
1

f
) + S(r, f),

and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
) + S(r, f).

(3.12)

Using Lemma 2.10, (3.3)-(3.4) and (3.11), (3.12) implies that

T (r, f) ⩽ 2N2(r,
1

f
) + ((n+ 2)k + 2)N(r, f) + (k − 1)N(r, f) + S(r, f).

(3.13)

Indeed, (3.11) implies

T (r, f) ≤ (2k + 2)N(r, f) + 2N2(r,
1

f
) + S(r, f)

≤ 2N2(r,
1

f
) + ((n+ 2)k + 2)N(r, f) + (k − 1)N(r, f) + S(r, f).

Therefore, from (3.13) we deduce

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) + ((n+ 2)k + 2)(1−Θ(∞, f))T (r, f)

+ (k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies (K3 − ((n+ 3)k + 2))T (r, f) ≤ S(r, f), where

K3 = 2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f).

This is a contradiction with

2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f) > (n+ 3)k + 2.

By an argument as Case 1, we have f ≡ (L(f))(n). ■
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3.2. Proof of Theorem 1.2

Proof. From the conditions of Theorem 1.2, we know that f (n) and L(f) share
(1, l). We consider three cases as following of l.

Case 1: l = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
) +N2(r, f

(n)) +N2(r,
1

f (n)
)

(3.14)

+ 2(N(r,
1

L(f)
) +N(r, L(f))) + (N(r,

1

f (n)
) +N(r, f (n))) + S(r, f),

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
)

(3.15)

+ 2(N(r,
1

f (n)
) +N(r, f (n))) + (N(r,

1

L(f)
) +N(r, L(f))) + S(r, f).

From Corrollary 2.1 and (3.14), we have

T (r, L(f)) ⩽ (2k + 2)N(r, f) +N2(r,
1

L(f)
) +N2(r,

1

f (n)
)(3.16)

+ (2k + 1)N(r, f) + 2N(r,
1

L(f)
) +N(r,

1

f (n)
) + S(r, f),

Using Lemma 2.2 and Lemma 2.8, (3.16) implies that

T (r, L(f)) ⩽ (2k + 2)N(r, f) + T (r, L(f))− T (r, f) +N2(r,
1

f
)

+ nN(r, f) +Nn+2(r,
1

f
) + (2k + 1)N(r, f) + 2((k − 1)N(r, f)

+N(r,
1

f
)) + nN(r, f) +Nn+1(r,

1

f
) + S(r, f).

Hence, we deduce

T (r, f) ≤ (4k + 2n+ 3)N(r, f) + 2(k − 1)N(r, f) + 2N(r,
1

f
)(3.17)

+N2(r,
1

f
) +Nn+2(r,

1

f
) + 2Nn+1(r,

1

f
) + S(r, f).
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From (3.15), using Lemma 2.2 and Lemma 2.8, we have

T (r, f) ⩽ (2n+ 3k + 4)N(r, f) + 2(k − 1)N(r, f) +N(r,
1

f
)

+N2(r,
1

f
) + 2Nn+1(r,

1

f
) +Nn+2(r,

1

f
)

≤ (4k + 2n+ 3)N(r, f) + 2(k − 1)N(r, f) + 2N(r,
1

f
)

+N2(r,
1

f
) + 2Nn+1(r,

1

f
) +Nn+2(r,

1

f
) + S(r, f).(3.18)

From (3.17) and (3.18), we have K4T (r, f) ≤ S(r, f), where

K4 = (4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f)

+ 2δn+1(0, f) + δn+2(0, f)− (6k + 2n+ 6).

It is a contradiction since

(4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > (6k + 2n+ 6).

Thus, by Lemma 2.4, we must have f (n) ≡ L(f) or f (n).L(f) ≡ 1. The equality
f (n).L(f) ≡ 1 cannot occur since f (n) and L(f) share ∞-IM. Hence, we obtain

f ≡ (L(f))(n).

We have finished the proof of Theorem 1.2 in the case l = 0.

Case 2: l = 1. Apply Lemma 2.5, we may assume that two inequalities below
hold:

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
) +N2(r, f) +N2(r,

1

f
)(3.19)

+
1

2
(N(r,

1

L(f)
) +N(r, L(f))) + S(r, f),

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
)(3.20)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f).
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Combine Lemma 2.8 and (3.19), we get

T (r, L(f)) ⩽ (2k + 2)N(r, f) + T (r, L(f))− T (r, f) + 2N2(r,
1

f
)

+
1

2
((k − 1)N(r, f) +N(r,

1

f
)) +

k

2
N(r, f) + S(r, f).

It implies that

T (r, f) ≤ 2N2(r,
1

f
) +

1

2
N(r,

1

f
)

+ (
5k

2
+ 2)N(r, f) +

k − 1

2
N(r, f) + S(r, f)

≤ N2(r,
1

f
) +Nn+2(r,

1

f
) +

1

2
N(r,

1

f
)

+ (2k +
5

2
)N(r, f) + (k − 1)N(r, f) + S(r, f).(3.21)

Similarly, from Lemma 2.3, Lemma 2.8 and (3.20), we obtain

T (r, f) ⩽ T (r, f (n))− T (r, f) + (2k +
5

2
)N(r, f) + (k − 1)N(r, f) +N2(r,

1

f
)

+Nn+2(r,
1

f
) +

1

2
N(r,

1

f
) + S(r, f).

Hence, we deduce

T (r, f) ⩽ (2k +
5

2
)N(r, f) + (k − 1)N(r, f) +N2(r,

1

f
)(3.22)

+Nn+2(r,
1

f
) +

1

2
N(r,

1

f
) + S(r, f).

From (3.21) and (3.22), we get (K5 − ((3k + 3))T (r, f) ≤ S(r, f), where

K5 = δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + (2k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f).

It is a contradiction with

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + ((2k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > 3k+3.

By an argument as Case 1 of Theorem 1.1, we have

f (n) ≡ L(f).
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Case 3: l ≥ 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
)

+N2(r, f) +N2(r,
1

f
) + S(r, f),(3.23)

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
) + S(r, f).

(3.24)

Combine Lemma 2.8 and (3.23), we get

T (r, L(f)) ⩽ T (r, L(f))− T (r, f) + (2k + 2)N(r, f) + 2N2(r,
1

f
) + S(r, f).

This implies

T (r, f) ⩽ 2N2(r,
1

f
) + (2k + 2)N(r, f) + S(r, f)

≤ N2(r,
1

f
) +Nn+2(r,

1

f
) + (k − 1)N(r, f) + (2k + 2)N(r, f) + S(r, f).

(3.25)

Using Lemma 2.3, Lemma 2.8 and (3.24), we deduce

T (r, f (n)) ≤ (2k + 2)N(r, f) + (k − 1)N(r, f) +N2(r,
1

f
) +Nn+2(r,

1

f
)

+ T (r, f (n))− T (r, f) + S(r, f).

It implies that

T (r, f) ≤ (2k + 2)N(r, f) + (k − 1)N(r, f) +N2(r,
1

f
) +Nn+2(r,

1

f
) + S(r, f).

(3.26)

From (3.25) and (3.26), we get (K6 − (3k + 2))T (r, f) ⩽ S(r, f), where

K6 = (2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f).

This is a contradiction with

(2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f) > 3k + 2.

By an argument as Case 1, we have

f (n) ≡ L(f).

■
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3.3. Proof of Theorem 1.3

Proof. First, we assume that f is a transcendental meromorphic solution of
(1.1). It means that

(
k∑

j=1

ajf(z + cj))
(n) = f.(3.27)

Assume that the solution of (3.27) has order σ(f) < 1, then we can choose
ε > 0 such that 0 < ε < 1 − σ. Apply Lemma 2.13, there is a subset Ej

1 ⊂ R
with finite logarithmic measure and set Ej ⊂ [0, 2π) with linear measure zero
so that if z = reiφ, φ ∈ [0, 2π) \ Ej , we have that

∣∣∣∣
f (n)(z + cj)

f(z)

∣∣∣∣ ≤ |z|n(σ−1+ε)exp(rσ−1+ε), j = 1, . . . , k,(3.28)

hold for all |z| = r ≥ rj(φ) > 1 and |z| ̸∈ Ej
1. We denote E1 = ∪k

j=1E
j
1 and

E = ∪k
j=1Ej , then E has measure zero in [0, 2π) and E1 has finite logarithmic

measure. Denote r0 = maxj=1,...,k rj(φ), then (3.28) holds for all j = 1, . . . , k
and z = reiφ, φ ∈ [0, 2π) \ E and |z| > r0, |z| ̸∈ E1. Thus, from (3.27) and
(3.28), we get

1 ≤
k∑

j=1

|aj |rn(σ−1+ε)exp(rσ−1+ε).(3.29)

Since σ−1+ε < 0, let r → ∞, r ̸∈ E1 in (3.29), the right side tends to zero and
we get a contradiction. Hence we get σ(f) ≥ 1. If f is a solution of (1.2), using
Lemma 2.13 and by arguments as previous computing, we obtain σ(f) ≥ 1.

■
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Abstract. In this paper, we introduce a new algorithm for solving strongly
monotone variational inequality problem, where the constraint set is the
solution set of the split variational inequality and fixed point problem. Our
method uses dynamic step sizes selected based on information of the pre-
vious step, which gives strong convergence result without the prior knowl-
edge of the given bounded linear operator’s norm. In addition, using our
method, we do not require any information of the Lipschitz and strongly
monotone constants of the mappings. Several corollaries of our main re-
sult are also presented. Finally, a numerical example has been given to
illustrate the effectiveness of our proposed algorithm.

1. Introduction

Consider two real Hilbert spaces, denoted as H1 and H2, with a bounded
linear operator A : H1 −→ H2. Let C be a nonempty closed convex subset of
H1. Additionally, let F : H1 −→ H1 and T : H2 −→ H2 be given mappings.
The Split Variational Inequality and Fixed Point Problem (SVIFPP) aim to
find a solution x∗ in the spaceH1 for which the image A(x∗), under the operator
A, serves as a fixed point for another mapping in H2.

To be more specific, the SVIFPP can be formulated as follows:

(1.1) Find x∗ ∈ C : ⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ C

Key words and phrases: Variational inequality, split variational inequality and fixed point
problem, pseudomonotone mapping, demicontractive mapping.
2020 Mathematics Subject Classification: 49J40, 90C33, 47H17.
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such that

(1.2) T (A(x∗)) = A(x∗).

A particular instance of the SVIFPP, denoted by equations (1.1)-(1.2) with
F = 0 and T = PQ, corresponds to the Split Feasibility Problem (SFP). In
short, the SFP can be stated as follows:

(1.3) Find x∗ ∈ C such that A(x∗) ∈ Q,

where C and Q are two nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Recently, it has been demonstrated that the SFP
can serve as a practical model in intensity-modulated radiation therapy [10,11,
13] and in various other real-world applications. To solve the SFP and their
generalizations, numerous iterative projection methods have been developed.
For more details, see [1–9,12–16,18,21,23,24] and the references therein.

To find a specific solution to the SVIFPP, Hai et al. [14] investigated the
following variational inequality problem

(1.4) Find x∗ ∈ ΩSVIFPP such that ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSVIFPP,

where S : H1 −→ H1 is η-strongly monotone and κ-Lipschitz continuous on
H1, F : H1 −→ H1 is pseudomonotone on C and L-Lipschitz continuous on
H1, T : H2 −→ H2 is γ-demicontractive and demi-closed at zero, ΩSVIFPP =
{x∗ ∈ Sol(C,F ) : A(x∗) ∈ Fix(T )} defines the solution set of the SVIFPP.
As detailed in [14], the authors recommended the subgradient extragradient
method to solve problem (1.4) (refer to Algorithm 1 in [14])

(1.5)





x0 ∈ H1,

un = A(xn),

vn = T (un),

yn = xn + δnA
∗(vn − un),

zn = PC(y
n − µnF (y

n)),

tn = PCn(y
n − µnF (z

n)),

xn+1 = tn − εnS(t
n)

where Cn = {ω ∈ H1 : ⟨yn − µnF (y
n) − zn, ω − zn⟩ ≤ 0}, {δn} ⊂ [δ, δ] ⊂(

0,
1− γ

∥A∥2 + 1

)
, {µn} ⊂ [a, b] ⊂

(
0,

1

L

)
, {εn} ⊂ (0, 1), lim

n→∞
εn = 0 and

∞∑

n=0

εn = ∞. In [14], the authors proved that the sequence {xn}, generated

by (1.5), converges strongly to the unique solution x∗ of the variational in-
equality problem (1.4), assuming the solution set ΩSVIFPP of the SVIFPP is
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nonempty.
In extragradient methods, performing two projections onto the constrained

set C per iteration can hinder the algorithm’s efficiency. To overcome this chal-
lenge, Tseng’s extragradient method [20] reduces the computational burden by
performing only one projection onto C in each iteration. The formulation of
Tseng’s extragradient method is outlined as follows:

(1.6)





x0 ∈ H,
yn = PC(x

n − µF (xn)),

xn+1 = yn − µ(F (yn)− F (xn)),

where F is L-Lipschitz continuous, and µ ∈
(
0,

1

L

)
. It is important to highlight

that the main drawback of Algorithms (1.5) and (1.6) is the need to know the
Lipschitz constants of the operator F , or at the very least, to have estimates
of this parameter.

In this paper, motivated by the previously discussed works, we propose a
novel algorithm designed to solve the variational inequality problem over the
solution set of the split variational inequality and fixed point problem (1.4).
The main contribution of the algorithm is the replacement of the subgradient
extragradient method in Algorithm (1.5) with a modified version of Tseng’s
extragradient methods, which use self-adaptive step sizes. By implementing
this modification, the need for the Lipschitz constant of the cost operator F is
removed, resulting in a faster convergence rate. Additionally, our method does
not require any prior information regarding the norm of the operator A.

The paper is structured as follows. Section 2 presents key definitions and
preliminary results, which are utilized in Section 3, where the algorithm is
introduced, its strong convergence is established, and several corollaries are
discussed. In the final section, a numerical example is provided to compare the
performance of the proposed algorithm with that of Hai et al. [14].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. It is
well-known that for all point x ∈ H, there exists a unique point PC(x) ∈ C
such that

(2.1) ∥x− PC(x)∥ = min{∥x− y∥ : y ∈ C}.
The mapping PC : H −→ C defined by (2.1) is called the metric projection of
H onto C. Notably, PC is nonexpansive. Additionally, the following inequality



58 Tran Viet Anh

holds for all for all x ∈ H and y ∈ C:

⟨x− PC(x), y − PC(x)⟩ ≤ 0.

Definition 2.1. Let H1 and H2 be two Hilbert spaces and let A : H1 −→ H2

be a bounded linear operator. An operator A∗ : H2 −→ H1 with the property
⟨A(x), y⟩ = ⟨x,A∗(y)⟩ for all x ∈ H1 and y ∈ H2, is called an adjoint operator.

The adjoint operator of a bounded linear operator A between Hilbert spaces
H1, H2 always exists and is uniquely determined. Additionally, A∗ is a bounded
linear operator and the equality ∥A∗∥ = ∥A∥ holds true.

Definition 2.2 (see [17]). A mapping S : H −→ H is said to be

(i) η-strongly monotone on H if there exists η > 0 such that

⟨S(x)− S(y), x− y⟩ ≥ η∥x− y∥2 ∀x, y ∈ H;

(ii) κ-Lipschitz continuous on H if

∥S(x)− S(y)∥ ≤ κ∥x− y∥ ∀x, y ∈ H.

Definition 2.3. A mapping T : H −→ H is said to be

(i) γ-demicontractive if Fix(T ) ̸= ∅ and there exists a constant γ ∈ [0, 1)
such that

∥T (x)− x∗∥2 ≤ ∥x− x∗∥2 + γ∥T (x)− x∥2 ∀x ∈ H,∀x∗ ∈ Fix(T );

(ii) demi-closed at zero if, for every sequence {xn} in H, the following impli-
cation holds

{
xn ⇀ x

lim
n→∞

∥T (xn)− xn∥ = 0
⇒ x ∈ Fix(T ).

The subsequent lemmas are essential for establishing the main result in our
paper.

Lemma 2.1 (see [16]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let F : H −→ H be a mapping such that lim sup

n→∞
⟨F (xn), y −

yn⟩ ≤ ⟨F (x), y − y⟩ for every sequences {xn}, {yn} in H converging weakly to
x and y, respectively. Assume that µn ≥ a > 0 for all n, {xn} is a sequence in
H satisfying xn ⇀ x and lim

n→∞
∥xn − yn∥ = 0, where yn = PC(x

n − µnF (x
n))

for all n. Then x ∈ Sol(C,F ).
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Lemma 2.2 (see [22]). Let {un} be a sequence of nonnegative real numbers,

{αn} be a sequence in (0, 1) such that
∞∑

n=0

αn = ∞ and {vn} be a sequence of

real numbers with lim sup
n→∞

vn ≤ 0. Suppose that

un+1 ≤ (1− αn)un + αnvn ∀n ≥ 0.

Then lim
n→∞

un = 0.

Lemma 2.3 (see [19]). Let {an} be a sequence of nonnegative real numbers
such that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let n0 be an integer such that an0 ≤ an0+1 and define, for all
integer n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence satisfying lim
n→∞

τ(n) = ∞ and

the following inequalities are satisfied:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

3. The algorithm and convergence analysis

In this section, we propose an algorithm with strong convergence for solving
the problem (1.4). We specify the following assumptions related to the map-
pings S, F and T involved in the formulation of the problem (1.4).

(A1): S : H1 −→ H1 is η-strongly monotone and κ-Lipschitz continuous on
H1.

(A2): F : H1 −→ H1 is pseudomonotone on C and L-Lipschitz continuous
on H1.

(A3): lim sup
n→∞

⟨F (xn), y− yn⟩ ≤ ⟨F (x), y− y⟩ for every sequence {xn}, {yn}
in H1 converging weakly to x and y, respectively.

(A4): T : H2 −→ H2 is γ-demicontractive and demi-closed at zero.
The algorithm is presented as follows.

Algorithm 3.1.
Step 0. Choose µ0 > 0, µ ∈ (0, 1), {ρn} ⊂ [a, b] ⊂

(
0, 1 − γ

)
, {εn} ⊂ (0, 1)

such that lim
n→∞

εn = 0 and

∞∑

n=0

εn = ∞.



60 Tran Viet Anh

Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute un = A(xn), vn = T (un) and

yn = xn + δnA
∗(vn − un),

where the step size δn is chosen in such a way that

δn =





ρn∥vn − un∥2
∥A∗(vn − un)∥2 if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.

Step 3. Compute
zn = PC(y

n − µnF (y
n)),

tn = zn − µn(F (z
n)− F (yn)),

where

µn+1 =




min

{
µ∥yn − zn∥

∥F (yn)− F (zn)∥ , µn

}
if F (yn) ̸= F (zn),

µn if F (yn) = F (zn).

Step 4. Compute
xn+1 = tn − εnS(t

n).

Step 5. Set n := n+ 1, and go to Step 2.

The strong convergence of the sequence generated through Algorithm 3.1
is established by the following theorem.

Theorem 3.1. Assuming that conditions (A1), (A2), (A3) and (A4) hold,
the sequence {xn} generated by Algorithm 3.1 converges strongly to the unique
solution of problem (1.4), provided that the solution set ΩSVIFPP of the SVIFPP
is nonempty.

Proof. Since ΩSVIFPP ̸= ∅, the problem (1.4) has a unique solution, denoted
by x∗. In particular, x∗ ∈ ΩSVIFPP, which implies that x∗ ∈ Sol(C,F ) and
A(x∗) ∈ Fix(T ). The proof of the theorem is divided into several steps.
Step 1. For all n ≥ 0, we show that

(3.1)
(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2.

Given that zn = PC(y
n − µnF (y

n)) and x∗ ∈ C, by utilizing the properties of
the projection mapping, we have

⟨yn − µnF (y
n)− zn, x∗ − zn⟩ ≤ 0
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or, equivalently

(3.2) −⟨yn − zn, zn − x∗⟩ ≤ −µn⟨F (yn), zn − x∗⟩.

By applying the equality

∥y∥2 = ∥x+ y∥2 − ∥x∥2 − 2⟨x, y⟩ ∀x, y ∈ H1

and taking (3.2) into consideration, we derive

∥zn − x∗∥2 = ∥(yn − zn) + (zn − x∗)∥2 − ∥yn − zn∥2 − 2⟨yn − zn, zn − x∗⟩
≤ ∥yn − x∗∥2 − ∥yn − zn∥2 − 2µn⟨F (yn), zn − x∗⟩.(3.3)

Since x∗ ∈ Sol(C,F ), it follows that ⟨F (x∗), z − x∗⟩ ≥ 0 for all z ∈ C. By
applying the pseudomonotonicity of F on C, we deduce that ⟨F (z), z−x∗⟩ ≥ 0
for all z ∈ C. Taking z = zn ∈ C, we obtain

(3.4) ⟨F (zn), zn − x∗⟩ ≥ 0.

From the definition of µn+1, it follows that

(3.5) ∥F (yn)− F (zn)∥ ≤ µ

µn+1
∥yn − zn∥.

Indeed, if F (yn) = F (zn), then the inequality (3.5) is satisfied. Otherwise, we
derive the following

µn+1 = min

{
µ∥yn − zn∥

∥F (yn)− F (zn)∥ , µn

}
≤ µ∥yn − zn∥

∥F (yn)− F (zn)∥ ,

which implies (3.5).
From (3.3), (3.4) and (3.5), we obtain

∥tn − x∗∥2 = ∥zn − x∗ − µn(F (z
n)− F (yn))∥2

= ∥zn − x∗∥2 − 2µn⟨F (zn)− F (yn), zn − x∗⟩
+ µ2

n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 − ∥yn − zn∥2 − 2µn⟨F (zn), zn − x∗⟩
+ µ2

n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 − ∥yn − zn∥2 + µ2
n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 −
(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2.

As a result, we get

(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2 ∀n ≥ 0.
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Step 2. For all n ≥ 0, we have

(3.6) ⟨xn − x∗, A∗(vn − un)⟩ ≤ −1− γ

2
∥vn − un∥2.

Thanks to the γ-demicontractivity of T , we get

⟨xn − x∗, A∗(vn − un)⟩
= ⟨A(xn − x∗), vn − un⟩
= ⟨vn −A(x∗), vn − un⟩ − ∥vn − un∥2

=
1

2

[(
∥vn −A(x∗)∥2 − ∥un −A(x∗)∥2

)
− ∥vn − un∥2

]

=
1

2

[(
∥T (un)−A(x∗)∥2 − ∥un −A(x∗)∥2

)
− ∥vn − un∥2

]

≤ 1

2

[
γ∥T (un)− un∥2 − ∥vn − un∥2

]

= −1− γ

2
∥vn − un∥2.

Step 3. We show that

(3.7) µn+1 ≤ µn, µn ≥ min
(µ
L
, µ0

)
∀n ≥ 0, lim

n→∞
µn = µ∗ ≥ min

(µ
L
, µ0

)
.

Since F is L-Lipschitz continuous on H1, we have

∥F (yn)− F (zn)∥ ≤ L∥yn − zn∥.
Thus, when F (yn) ̸= F (zn), it follows that

µ∥yn − zn∥
∥F (yn)− F (zn)∥ ≥ µ

L
.

By induction, we obtain

µn ≥ min
(µ
L
, µ0

)
∀n ≥ 0.

From the definition of µn+1, it is clear that µn+1 ≤ µn for all n ≥ 0. Therefore,

together with the fact that µn ≥ min
(µ
L
, µ0

)
for all n ≥ 0, it follows that the

sequence {µn} has a limit, denoted by µ∗, and we conclude that lim
n→∞

µn =

µ∗ ≥ min
(µ
L
, µ0

)
.

Step 4. We show that, for all n ≥ 0

(3.8)

a2

(∥A∥+ 1)2
∥vn − un∥2 ≤ ∥yn − xn∥2,

∥yn − xn∥2 ≤ b

1− γ − b

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
.



An algorithm for solving the VIP over the solution set of the SVIFPP 63

We now consider two distinct cases.
Case 1. A∗(vn − un) = 0. From (3.6), we deduce that ∥vn − un∥ = 0. Since
δn = 0, it follows that yn = xn. Therefore, (3.8) holds.
Case 2. A∗(vn − un) ̸= 0. It follows from (3.6) that

∥yn − x∗∥2 = ∥(xn − x∗) + δnA
∗(vn − un)∥2

= ∥xn − x∗∥2 + ∥δnA∗(vn − un)∥2 + 2δn⟨xn − x∗, A∗(vn − un)⟩
≤ ∥xn − x∗∥2 + δ2n∥A∗(vn − un)∥2 − δn(1− γ)∥vn − un∥2

= ∥xn − x∗∥2 − ρ2n∥vn − un∥4
∥A∗(vn − un)∥2 · 1− γ − ρn

ρn

≤ ∥xn − x∗∥2 − ρ2n∥vn − un∥4
∥A∗(vn − un)∥2 · 1− γ − b

b
∀n ≥ 0.(3.9)

By applying (3.9), we get

∥yn − xn∥2 = δ2n∥A∗(vn − un)∥2

=
ρ2n∥vn − un∥4
∥A∗(vn − un)∥4 ∥A

∗(vn − un)∥2

=
ρ2n∥vn − un∥4
∥A∗(vn − un)∥2(3.10)

≤ b

1− γ − b

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
∀n ≥ 0.

On the other hand

(3.11) ∥A∗(vn−un)∥ ≤ ∥A∗∥∥vn−un∥ = ∥A∥∥vn−un∥ ≤ (∥A∥+1)∥vn−un∥.

By using (3.10) and (3.11) together, we obtain

∥yn − xn∥2 ≥ ρ2n∥vn − un∥4
(∥A∥+ 1)2∥vn − un∥2 ≥ a2

(∥A∥+ 1)2
∥vn − un∥2 ∀n ≥ 0.

Therefore, the inequalities in (3.8) are proven.

Now, choose ε ∈
(
0,

2η

κ2

)
. From lim

n→∞
εn = 0 and lim

n→∞

(
1−µ2 µ2

n

µ2
n+1

)
= 1−µ2 >

0, there exists n0 ∈ N such that

(3.12) εn < ε ∀n ≥ n0, 1− µ2 µ2
n

µ2
n+1

>
1− µ2

2
> 0 ∀n ≥ n0.

Step 5. For all n ≥ n0, we show that

(3.13) ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥ ≤
(
1− εnτ

ε

)
∥tn − x∗∥,
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where τ = 1−
√

1− ε(2η − εκ2) ∈ (0, 1].
Given the κ-Lipschitz continuity and η-strong monotonicity of S on H1, we
deduce

∥tn − x∗−ε(S(tn)− S(x∗))∥2

= ∥tn − x∗∥2 − 2ε⟨tn − x∗, S(tn)− S(x∗)⟩+ ε2∥S(tn)− S(x∗)∥2

≤ ∥tn − x∗∥2 − 2εη∥tn − x∗∥2 + ε2κ2∥tn − x∗∥2

=
[
1− ε(2η − εκ2)

]
∥tn − x∗∥2.

From (3.12) and the inequality above, it follows that

∥tn−εnS(tn)− x∗ + εnS(x
∗)∥

=
∥∥∥
(
1− εn

ε

)
(tn − x∗) +

εn
ε

[
tn − x∗ − ε(S(tn)− S(x∗))

]∥∥∥

≤
(
1− εn

ε

)
∥tn − x∗∥+ εn

ε
∥tn − x∗ − ε(S(tn)− S(x∗))∥

≤
(
1− εn

ε

)
∥tn − x∗∥+ εn

ε

√
1− ε(2η − εκ2)∥tn − x∗∥

=
[
1− εn

ε

(
1−

√
1− ε(2η − εκ2)

)]
∥tn − x∗∥

=
(
1− εnτ

ε

)
∥tn − x∗∥ ∀n ≥ n0.

Step 6. The sequences {xn}, {yn}, {tn} and {S(tn)} are bounded.
From inequality (3.13), we obtain

∥xn+1 − x∗∥ = ∥tn − εnS(t
n)− x∗ + εnS(x

∗)− εnS(x
∗)∥

≤ ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥+ εn∥S(x∗)∥
≤
(
1− εnτ

ε

)
∥tn − x∗∥+ εn∥S(x∗)∥ ∀n ≥ n0.(3.14)

Using (3.1), (3.8) and (3.12), we get

(3.15) ∥tn − x∗∥ ≤ ∥yn − x∗∥ ≤ ∥xn − x∗∥ ∀n ≥ n0.

By applying (3.14) and (3.15), we derive

∥xn+1 − x∗∥ ≤
(
1− εnτ

ε

)
∥xn − x∗∥+ εn∥S(x∗)∥

=
(
1− εnτ

ε

)
∥xn − x∗∥+ εnτ

ε
· ε∥S(x

∗)∥
τ

∀n ≥ n0.

In particular,

∥xn+1 − x∗∥ ≤ max
{
∥xn − x∗∥, ε∥S(x

∗)∥
τ

}
∀n ≥ n0,
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and thus, by induction, we have

∥xn − x∗∥ ≤ max
{
∥xn0 − x∗∥, ε∥S(x

∗)∥
τ

}
∀n ≥ n0.

Therefore, the sequence {xn} is bounded and this is true for the sequences
{yn}, {tn} and {S(tn)} as well, thanks to (3.15) and the Lipschitz continuity
of S.
Step 7. We prove that {xn} converges strongly to x∗.
Based on (3.13), we deduce, for every n ≥ n0, that

∥xn+1 − x∗∥2 ≤ ∥xn+1 − x∗∥2 + ε2n∥S(x∗)∥2

= ∥xn+1 − x∗ + εnS(x
∗)∥2 − 2⟨εnS(x∗), xn+1 − x∗⟩

= ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥2 − 2εn⟨S(x∗), xn+1 − x∗⟩

≤
[(

1− εnτ

ε

)
∥tn − x∗∥

]2
− 2εn⟨S(x∗), xn+1 − x∗⟩

≤
(
1− εnτ

ε

)
∥tn − x∗∥2 − 2εn⟨S(x∗), xn+1 − x∗⟩.(3.16)

We will consider two cases.
Case 1. Let us consider the case where there exists n∗ such that {∥xn−x∗∥} is
decreasing for n ≥ n∗. As a result, the limit of {∥xn−x∗∥} exists. Consequently,
from (3.15) and (3.16), we deduce, for all n ≥ n0, that

0 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2

≤ ∥xn − x∗∥2 − ∥tn − x∗∥2

≤
(
∥xn − x∗∥2 − ∥xn+1 − x∗∥2

)
− 2εn⟨S(x∗), xn+1 − x∗⟩.

Given that ∥xn − x∗∥ has a limit, with lim
n→∞

εn = 0, and the sequence {xn} is

bounded, the above inequalities yield that

lim
n→∞

(∥yn − x∗∥2 − ∥tn − x∗∥2) = 0,(3.17)

lim
n→∞

(∥xn − x∗∥2 − ∥tn − x∗∥2) = 0.(3.18)

It follows from (3.1), (3.12) and (3.17) that

(3.19) lim
n→∞

∥yn − zn∥ = 0.

From (3.17) and (3.18), we have

(3.20) lim
n→∞

(∥xn − x∗∥2 − ∥yn − x∗∥2) = 0.
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Consequently, from (3.8) and (3.20), we get

lim
n→∞

∥yn − xn∥ = 0,(3.21)

lim
n→∞

∥vn − un∥ ⇒ lim
n→∞

∥T (un)− un∥ = 0.(3.22)

Applying the triangle inequality along with the L-Lipschitz continuity of F on
H1, we have

∥xn − tn∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − tn∥
= ∥xn − yn∥+ ∥yn − zn∥+ ∥µn(F (z

n)− F (yn))∥
≤ ∥xn − yn∥+ ∥yn − zn∥+ µnL∥zn − yn∥
≤ ∥xn − yn∥+ (1 + µ0L)∥yn − zn∥.

Therefore, using (3.19) and (3.21), it follows that

(3.23) lim
n→∞

∥xn − tn∥ = 0.

Now, we prove that

(3.24) lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ ≤ 0.

Choose a subsequence {xnν} from {xn} such that

lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ = lim
ν→∞

⟨S(x∗), x∗ − xnν ⟩.

As {xnν} is bounded, we can assume without loss of generality that xnν ⇀ x.
Hence

(3.25) lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ = ⟨S(x∗), x∗ − x⟩.

Using the weak convergence xnν ⇀ x and (3.21), we infer ynν ⇀ x. From
(3.19), we have lim

ν→∞
∥ynν − znν∥ = 0. Since znν = PC(y

nν − µnν
F (ynν )),

ynν ⇀ x, µnν ≥ min
(µ
L
, µ0

)
> 0. By Lemma 2.1, we obtain x ∈ Sol(C,F ).

From xnν ⇀ x, we imply unν = A(xnν )⇀ A(x). Together with (3.22) and the
demiclosedness of T , it follows that A(x) ∈ Fix(T ). Taking into account that
x ∈ Sol(C,F ), we conclude that x ∈ ΩSVIFPP. Consequently, ⟨S(x∗), x−x∗⟩ ≥
0, and combined with (3.25), this gives (3.24).
By applying (3.15) and (3.16), we get

(3.26) ∥xn+1 − x∗∥2 ≤
(
1− εnτ

ε

)
∥xn − x∗∥2 + εnτ

ε
bn ∀n ≥ n0,
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where

bn =
2ε⟨S(x∗), x∗ − xn+1⟩

τ
.

Using (3.24), we conclude that lim sup
n→∞

bn ≤ 0. Since εn < ε ∀n ≥ n0 and

0 < τ ≤ 1, it follows that
{εnτ

ε

}
n≥n0

⊂ (0, 1). As a result, from (3.26),

∞∑

n=0

εn = ∞, lim sup
n→∞

bn ≤ 0 and Lemma 2.2, we deduce that lim
n→∞

∥xn−x∗∥2 =

0, which implies xn → x∗ as n→ ∞.
Case 2. Assume that for every integer m, there exists an integer n such that
n ≥ m and ∥xn − x∗∥ ≤ ∥xn+1 − x∗∥. By applying Lemma 2.3, we can define
a nondecreasing sequence {τ(n)}n≥N of N such that lim

n→∞
τ(n) = ∞ and the

following inequalities hold

(3.27) ∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥, ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥ ∀n ≥ N.

Select n∗ ≥ N such that τ(n) ≥ n0 for all n ≥ n∗. Using (3.27) and (3.14), we
get

∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥
≤
(
1− ετ(n)τ

ε

)
∥tτ(n) − x∗∥+ ετ(n)∥S(x∗)∥

≤ ∥tτ(n) − x∗∥+ ετ(n)∥S(x∗)∥ ∀n ≥ n∗,

which together with (3.15) implies, for all n ≥ n∗, that

(3.28)
0 ≤ ∥yτ(n) − x∗∥ − ∥tτ(n) − x∗∥
≤ ∥xτ(n) − x∗∥ − ∥tτ(n) − x∗∥ ≤ ετ(n)∥S(x∗)∥.

Then, it follows from (3.28) and lim
n→∞

εn = 0 that

(3.29)
lim
n→∞

(∥yτ(n) − x∗∥ − ∥tτ(n) − x∗∥) = 0,

lim
n→∞

(∥xτ(n) − x∗∥ − ∥tτ(n) − x∗∥) = 0.

Using (3.29) and the fact that the sequences {xn}, {yn} and {tn} are bounded,
we derive

lim
n→∞

(∥yτ(n) − x∗∥2 − ∥tτ(n) − x∗∥2) = 0,

lim
n→∞

(∥xτ(n) − x∗∥2 − ∥tτ(n) − x∗∥2) = 0.

Applying the same reasoning as in the first case, it follows that

(3.30) lim
n→∞

∥xτ(n) − tτ(n)∥ = 0, lim sup
n→∞

⟨S(x∗), x∗ − xτ(n)⟩ ≤ 0.



68 Tran Viet Anh

We now observe that

∥xτ(n)+1 − xτ(n)∥ = ∥tτ(n) − xτ(n) − ετ(n)S(t
τ(n))∥

≤ ∥tτ(n) − xτ(n)∥+ ετ(n)∥S(tτ(n))∥,

which, in combination with (3.30), lim
n→∞

εn = 0 and the boundedness of {S(tτ(n))},
implies

(3.31) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.

Using (3.31) along with the Cauchy-Schwarz inequality, we get

(3.32) lim
n→∞

⟨S(x∗), xτ(n) − xτ(n)+1⟩ = 0.

By combining (3.32) and (3.30), we conclude that

lim sup
n→∞

⟨S(x∗), x∗ − xτ(n)+1⟩

= lim sup
n→∞

[
⟨S(x∗), x∗ − xτ(n)⟩+ ⟨S(x∗), xτ(n) − xτ(n)+1⟩

]

= lim sup
n→∞

⟨S(x∗), x∗ − xτ(n)⟩ ≤ 0.(3.33)

Also, from (3.16) and (3.15), we get

(3.34) ∥xn+1−x∗∥2 ≤
(
1− εnτ

ε

)
∥xn−x∗∥2+2εn⟨S(x∗), x∗−xn+1⟩ ∀n ≥ n0,

Since τ(n) ≥ n0 holds for all n ≥ n∗, we can conclude from (3.34) and (3.27)
that for all n ≥ n∗

∥xτ(n)+1 − x∗∥2 ≤
(
1− ετ(n)τ

ε

)
∥xτ(n) − x∗∥2 + 2ετ(n)⟨S(x∗), x∗ − xτ(n)+1⟩

≤
(
1− ετ(n)τ

ε

)
∥xτ(n)+1 − x∗∥2 + 2ετ(n)⟨S(x∗), x∗ − xτ(n)+1⟩.

As a result, since ετ(n) > 0

∥xτ(n)+1 − x∗∥2 ≤ 2ε

τ
⟨S(x∗), x∗ − xτ(n)+1⟩ ∀n ≥ n∗.

By combining this inequality with (3.27), given that n∗ ≥ N , we have

(3.35) ∥xn − x∗∥2 ≤ 2ε

τ
⟨S(x∗), x∗ − xτ(n)+1⟩ ∀n ≥ n∗.

Taking the limit in (3.35) as n→ ∞ and applying (3.33), we arrive at

lim sup
n→∞

∥xn − x∗∥2 ≤ 0.

Therefore, it follows that xn → x∗ as n → ∞. This completes the proof of
Theorem 3.1. ■
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Remark 3.1. We highlight the advantages of Algorithm 3.1 compared to
the algorithm of Hai et al. in [14, Algorithm 1].

i) In Algorithm 3.1, unlike the result in [14, Algorithm 1], the step size is
selected in such a way that its implementation does not require any prior
knowledge of the norms of the given bounded linear operators.

ii) Algorithm 1 in [14] requires computing or estimating the Lipschitz con-
stant of the mapping F , which is generally a challenging task in practice.
In contrast, our Algorithm 3.1 removes this restriction.

When F is set to zero and T is defined as PQ, the SVIFPP described by
equations (1.1)-(1.2) reduces to the SFP given in (1.3). Consequently, utilizing
the results from Algorithm 1 and Theorem 3.1, we derive the following result for
solving the variational inequality problem over the solution set of the SFP. It
is important to note that the proposed algorithm requires only two projections
per iteration, and notably, its implementation does not rely on any information
about the norm of the operator A.

Algorithm 3.2.
Step 0. Choose {ρn} ⊂ [a, b] ⊂ (0, 1), {εn} ⊂ (0, 1) such that lim

n→∞
εn = 0 and

∞∑

n=0

εn = ∞.

Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute un = A(xn), vn = PQ(u

n) and

yn = xn + δnA
∗(vn − un),

where the stepsize δn is chosen in such a way that

δn =





ρn∥vn − un∥2
∥A∗(vn − un)∥2 if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.

Step 3. Compute zn = PC(y
n).

Step 4. Compute
xn+1 = zn − εnS(z

n).

Step 5. Set n := n+ 1, and go to Step 2.

Corollary 3.1. Let C and Q be two nonempty closed convex subsets of two
real Hilbert spaces H1 and H2, respectively, and let S : H1 −→ H1 be a strongly
monotone and Lipschitz continuous mapping. Suppose that the solution set
ΩSFP = {x∗ ∈ C : A(x∗) ∈ Q} of the SFP is nonempty. Then the sequence
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{xn} generated by Algorithm 3.2 converges strongly to x∗ ∈ ΩSFP, which is the
unique solution of the variational inequality problem

(3.36) ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSFP,

provided that the solution set ΩSFP of the SFP is nonempty.

Assume the following conditions to be satisfied:
(B1): S : H −→ H is strongly monotone and Lipschitz continuous on H.
(B2): F : H −→ H is pseudomonotone on C and Lipschitz continuous on

H.
(B3): lim sup

n→∞
⟨F (xn), y− yn⟩ ≤ ⟨F (x), y− y⟩ for every sequence {xn}, {yn}

in H converging weakly to x and y, respectively.
When H1 = H2 := H, and both T and A are the identity mappings in H,

the SVIFPP reduces to the variational inequality problem (1.1). Consequently,
by applying Algorithm 3.1 and utilizing Theorem 3.1, we obtain the following
result for solving the variational inequality problem over the solution set of an-
other VIP. It is important to emphasize that the proposed algorithm requires
only one projection onto the feasible set at each iteration, and its implemen-
tation does not require any information about the Lipschitz constants of the
mappings S and F , nor the modulus of strong monotonicity of S.

Algorithm 3.3.
Step 0. Choose µ0 > 0, µ ∈ (0, 1) and {εn} ⊂ (0, 1) such that lim

n→∞
εn = 0,

∞∑

n=0

εn = ∞.

Step 1. Let x0 ∈ H. Set n := 0.
Step 2. Compute

yn = PC(x
n − µnF (x

n)),

zn = yn − µn(F (y
n)− F (xn)),

where

µn+1 =




min

{
µ∥xn − yn∥

∥F (xn)− F (yn)∥ , µn

}
if F (xn) ̸= F (yn),

µn if F (xn) = F (yn).

Step 3. Compute
xn+1 = zn − εnS(z

n).

Step 4. Set n := n+ 1, and go to Step 2.

Corollary 3.2. Under the assumption that conditions (B1), (B2) and (B3)
hold, the sequence {xn} generated by Algorithm 3.3 converges strongly to a
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point x∗ ∈ Sol(C,F ), which is the unique solution of the variational inequality

(3.37) ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ Sol(C,F ),

provided that Sol(C,F ) ̸= ∅.

4. Numerical illustrations

In this section, we present numerical experiments to demonstrate the effec-
tiveness of the proposed algorithm. The Python scripts were run on a 2017
MacBook Pro, featuring a 2.3 GHz Intel Core i5 processor, an Intel Iris Plus
Graphics 640 with 1536 MB of memory, and 8 GB of 2133 MHz LPDDR3
RAM. The experiments were conducted using Python version 3.11.

Example 4.1. ( [14]) Let RK be endowed with the standard Euclidean norm

∥x∥ =
(
x21 + x22 + · · ·+ x2K

) 1
2 for all x = (x1, x2, . . . , xK)T ∈ RK . We consider

the SVIFPP with the mapping F : R4 −→ R4 defined by F (x) = (sin ∥x∥+2)a0

for all x ∈ R4, where a0 = (12,−4, 4,−4)T ∈ R4. Additionally, let C be the set
defined as

C = {(x1, x2, x3, x4)T ∈ R4 : 12x1 − 4x2 + 4x3 − 4x4 ≥ 9}

and the bounded linear operator A : R4 −→ R2 defined by A(x) = Mx for all
x ∈ R4, where

M =

(
1 0 1 1
0 1 1 −1

)

Assume that T : R2 −→ R2 is defined by, for all y = (y1, y2)
T ∈ R2

T (y) =

{
(y1, y2)

T if y1 ≤ 0,

(−2y1, y2)
T if y1 > 0.

Then T is
1

3
-demicontractive and Fix(T ) = (−∞, 0]× R.

Consider the mapping S : R4 −→ R4 be defined by S(x) = x for all x ∈ R4.
This mapping S is strongly monotone with η = 1 and Lipschitz continuous
with κ = 1 on R4. In this situation, the problem (1.4) becomes the problem of
finding the minimum-norm solution of the SVIFPP.
The solution set ΩSVIFPP of the SVIFPP is given by

ΩSVIFPP = {(x1, x2, x3, x4)T ∈ Sol(C,F ) : A(x1, x2, x3, x4) ∈ Fix(T )}
= {(x1, x2, x3, x4)T ∈ R4 : 12x1 − 4x2 + 4x3 − 4x4 = 9, x1 + x3 + x4 ≤ 0}.
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and the minimum-norm solution x∗ of the SVIFPP is x∗ =
(1
2
,−1

4
, 0,−1

2

)T
.

We now provide a comparison between Algorithm 3.1 and Algorithm 1

in [14]. Given that the exact solution of the problem is x∗ =
(1
2
,−1

4
, 0,−1

2

)T
,

we using ∥xn−x∗∥ ≤ ε as the stopping condition. Both algorithms use the same
initial point x0, obtained by randomly generating values within the interval
[−10, 10]. The parameters for each algorithm are chosen as follows:

• Algorithm 3.1: µ0 = 2, µ = 0.1, ρn = 1− 10−2 and εn =
1

n+ 2
.

• Algorithm 1 in [14]: δn =
n+ 1

500n+ 510
, µn =

n+ 1

600n+ 605
and εn =

1

n+ 2
.

Table 1. A comparison of Algorithm 3.1 and Algorithm 1 in [14] using
various tolerances ε and the stopping criterion ∥xn − x∗∥ ≤ ε

ε = 10−3 ε = 10−4

Iter(n) CPU time(s) Iter(n) CPU time(s)

Algorithm 3.1 4274 0.8088 89639 9.6047
Algorithm 1 in [14] 28470 2.1334 295407 18.5596

Table 1 shows that our Algorithm 3.1 outperforms Algorithm 1 in [14] in
terms of both the number of iterations and CPU time.

Example 4.2. We consider the mapping S : R3 −→ R3 defined by S(x) =
(4x1+16, 4x2−4, 4x3+3)T for all x = (x1, x2, x3)

T ∈ R3. It is straightforward
to verify that S is both strongly monotone and Lipschitz continuous on R3.
Define the sets C = {(x1, x2, x3)T ∈ R3 : x1 − x2 +2x3 = 4}, Q = {(u1, u2)T ∈
R2 : 3u1 − u2 = 10} and let the bounded linear operator A : R3 −→ R2 be
defined by A(x) =Mx, where

M =

(
1 −4 2
2 −9 −4

)
.

The solution set ΩSFP of the SFP is given by

ΩSFP =

{
x1 − x2 + 2x3 = 4

3(x1 − 4x2 + 2x3)− (2x1 − 9x2 − 4x3) = 10

=

{
x1 − x2 + 2x3 = 4

x1 − 3x2 + 10x3 = 10,

which can be expressed in parametric form as:

ΩSFP =
{
(2t+ 1, 4t− 3, t)T : t ∈ R

}
.
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Assume that x∗ = (2t∗ + 1, 4t∗ − 3, t∗)T ∈ ΩSFP satisfies the variational in-
equality

⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSFP.

Given that S(x∗) = (8t∗+20, 16t∗−16, 4t∗+3), x−x∗ = (2t−2t∗, 4t−4t∗, t−
t∗)T , the inequality becomes

(8t∗ + 20)(2t− 2t∗) + (16t∗ − 16)(4t− 4t∗) + (4t∗ + 3)(t− t∗) ≥ 0 ∀t ∈ R.

This expression simplifies to 21(4t∗−1)(t−t∗) ≥ 0 for all t ∈ R. This inequality
holds if and only if t∗ =

1

4
. Therefore, the unique solution to the variational

inequality problem (3.36) is x∗ =
(3
2
,−2,

1

4

)T
.

We select an initial point x0 ∈ R3, where each component of x0 is randomly

generated within the closed interval [−10, 10]. With εn =
1

n+ 2
and the stop-

ping criterion ∥xn − x∗∥ ≤ ε, we compute approximate solutions to the exact

solution x∗ =
(3
2
,−2,

1

4

)T
for various tolerance levels ε, as presented in Table

2.

Table 2. Approximate solutions corresponding to various tolerance levels
ε, obtained using Algorithm 3.2 with the stopping criterion ∥xn − x∗∥ ≤ ε

ε Iter(n) CPU time(s) xn

ε = 10−2 19392 1.2879 (1.491653,−1.996977, 0.254602)T

ε = 10−3 194115 10.8199 (1.499165,−1.999698, 0.250460)T

ε = 10−4 1941349 109.1283 (1.499917,−1.999970, 0.250046)T

Example 4.3. We consider the set C ⊂ R3 defined by

C = {x = (x1, x2, x3)
T ∈ R3 : 2x1 − x2 + 5x3 ≥ 6}.

Next, define the mapping F : R3 −→ R3 by F (x) = (sin ∥x∥+ 6)f0 for all x ∈
R3, where f0 = (2,−1, 5)T ∈ R3. It is easy to verify that F is pseudomonotone
and Lipschitz continuous on R3. Furthermore, the solution set Sol(C,F ) of the
variational inequality problem V IP (C,F ) is given by

Sol(C,F ) = {x = (x1, x2, x3)
T ∈ R3 : 2x1 − x2 + 5x3 = 6}.

Now, consider the mapping S : R3 −→ R3 defined by S(x) = x for all
x ∈ R3. This mapping is strongly monotone with modulus η = 1 and Lip-
schitz continuous with constant L = 1 on R3. In this setting, Problem (3.37)
reduces to finding the minimum-norm solution of the variational inequality



74 Tran Viet Anh

problem V IP (C,F ). The resulting minimum-norm solution is given by x∗ =
PSol(C,F )(0) = (0.4,−0.2, 1)T .

We select an initial point x0 ∈ R3, where each component of x0 is ran-
domly generated within the closed interval [−10, 10]. With parameters µ0 =

4, µ = 0.7, εn =
1

n+ 2
in Algorithm 3.3 and using the stopping criterion

∥xn+1 − xn∥ ≤ ε. With the tolerance ε = 10−9, an approximate solution is
obtained after 84027 iterations (with time 6.109 seconds), given by

x84027 = (0.400055,−0.199997, 0.999936)T ,

which serves as a good approximation to the exact solution x∗ = (0.4,−0.2, 1)T .

5. Conclusion

We propose a new algorithm for solving the strongly monotone variational
inequality problem over the solution set of split variational inequality and fixed
point problem in real Hilbert spaces. By placing suitable conditions on the
parameters, we prove a strong convergence theorem for the algorithm, which
avoids the need to compute or estimate the norms of the bounded linear op-
erators. Importantly, the algorithm does not require prior knowledge of the
Lipschitz or strongly monotone constants of the mappings. Additionally, we
derive several corollaries from our main result and demonstrate the algorithm’s
performance with a basic numerical example.
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Abstract. In this paper, we prove that a non-autonomous stochastic dif-
ferential equation generates a continuous random dynamical system. The
flow then possesses a random pullback attractor under the dissipativity
condition(s) of the drift and smallness of diffusion part.

1. Introduction

This work is a follow up part of [7], [14] to study the the asymptotic quali-
tative behavior of the differential equation

(1.1) dyt = f(t, yt)dt+ g(t, yt)dB
H
t , t ∈ R, y0 ∈ Rd.

in which BH is a fractional Brownian motion with Hurst parameter H bigger

than
1

2
; f and g are some continuous functions on R× Rd.

When dealing with qualitative properties of (1.1), one important problem
is the generation of random dynamical system, RDS in short ([1]). The concept
of RDS is a combining idea of randomness and dynamical system. Theory

Key words and phrases: stochastic differential equations (SDE), Young integrals, Bebutov
flow, random dynamical systems, random attractors.
2020 Mathematics Subject Classification: 37H10, 60H10
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of RDS is the frame work to study the system’s asymptotic for instance the
random attractors, random manifolds, Lyapunov spectrum,...In general cases,
when f, g are functions of (t, y) ∈ R × Rd, the system generates a stochastic
two-parameter flow X(t0, t, y0, ω) by mean of its Cauchy operators [4], the flow
induces a random dynamical system (RDS) in case f, g are time independent.

In [22, 23], a nonautonomous ordinary differential equations dy(t) = f(t, yt)dt
is considered. By introducing the space ”hull” of f , the solution can be viewed
as a dynamical system. Motivated by these results, we establish conditions on
f, g to construct appropriate spaces for f, g which admit needed probability
structures. The flow is then defined on the product spaces and possesses group
property. Equation (1.1) then generates a RDS in the sense of Bebutov flow
[22].

One another topic in this paper is study the existence of random pullback
attractor of the system, see for instant [5] or [8], [10] for recent results estab-
lished for stochastic differential equations driven by Hölder noises. We show
in Section 3 that the generated RDS possesses a random pullback random at-
tractor under dissipative assumption of f and point out that the attractor is
singleton if dissipativity is strict and g is small in some sense.

2. Preliminaries

We briefly recall some notions used in the sequence.

• Let C([a, b],Rr), r ≥ 1, denote the space of all continuous paths x :
[a, b] → Rr equipped with supremum norm ∥·∥∞,[a,b] given by ∥x∥∞,[a,b] =
supt∈[a,b] |xt|.

• For 0 < α < 1, let x is a Hölder continuous function with exponent α on
[a, b]. The semi norm α− Hölder of x is defined as

|||x|||α−Hol,[a,b] = sup
a≤s<t≤b

|xt − xs|
(t− s)α

.

• For given p ≥ 1, denote by Cp−var([a, b],Rr) ⊂ C([a, b],Rr) the space
consists of all continuous paths x of finite p−variation, i.e.

|||x|||p−var,[a,b] :=

(
sup

a=t0<t1<···<tn=b

n∑

i=1

|xti+1
− xti |p

)1/p

<∞.



RDSs generated by nonautonomous SDEs driven by fBms 79

The p−variation norm of x is defined by

∥x∥p−var,[a,b] := |xa|+ |||x|||p−var,[a,b] .

Then (Cp−var([a, b],Rr), ∥ · ∥p−var,[a,b]) is a (nonseparable) Banach space
[11, Theorem 5.25, p. 92].

Young integral

Assume y ∈ Cq−var([a, b],Rd×m) and x ∈ Cp−var([a, b],Rm) with 1
p + 1

q > 1,

the Young integral
∫ b

a
ytdxt is defined as the limitation of the Darboux sum

∫ b

a

ytdxt := lim
|Π|→0

∑

ti∈Π

yti(xti+1
− xti),

where the limit is taken over all the finite partitions Π = {a = t0 < t1 < · · · <
tn = b} of [a, b] with |Π| := max

i
|ti+1− ti| (see [24]). The integral satisfies ([11,

Theorem 6.8, p. 116])

∣∣∣
∫ b

a

yudxu − ya(xb − xa)
∣∣∣ ≤ (1− 21−

1
p− 1

q )−1 |||y|||q−var,[a,b] |||x|||p−var,[a,b] .

Fractional Brownian motions
Am-dimensional fractional Brownian motion index H, BH = (BH

t ), t ∈ R, is a
vector consists of m independent one dimensional fractional Brownian motions
index H which are centered continuous Gaussian processes with covariance
function

RH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H), s, t ∈ R.

For each p ≥ 1 denote by C0,p−var([a, b],Rm) the closure of set of smooth paths
in Cp−var([a, b],Rm) and Ω the spaces of all continuous functions ω : R → Rm

vanish at 0 such that the restriction of ω on [a, b] is in C0,p−var([a, b],Rm) for
all [a, b]. Then Ω is a separable metric space with the metric (see [2])

(2.1) d(ω1, ω2) :=

∞∑

n=1

2−n ∥ω1 − ω2∥p-var,[−n,n]

1 + ∥ω1 − ω2∥p-var,[−n,n]
.

Follow [13], one can construct a canonical space for BH on Ω for some
p > 1/H with Borel σ−algebra F and the law P of BH . It is proved in [13]
that together with Wiener shift (θt) defined as

θt(ω)(·) := ω(t+ ·)− ω(t), ω ∈ Ω,



80 Phan Thanh Hong

the space (Ω,F ,P, (θt)) forms an ergodic dynamical system. From now on, we
always work on the canonical space of BH . We keep the old notation BH and
identify BH

· (ω) = ω(·), ω ∈ Ω. Moreover, since we consider the case H > 1/2,
p can be choosen in (1/H, 2), the integral w.r.t. BH can be defined by Young
sense [24].

Finally, recall from [15, Proposition 2.1] that there exists random variable

ξ(ω) and κ > 0 satisfying Eeκξ2 <∞ such that for some constant D, for almost
all ω

∣∣∣∣∣∣BH
· (ω)

∣∣∣∣∣∣
p−var,[0,1]

≤ Dξ(ω).

It follows that for all k > 0, E
∣∣∣∣∣∣BH

· (ω)
∣∣∣∣∣∣k
p−var,[0,1]

<∞.

3. Generation of random dynamical system

3.1. Bebutov flow

In this section we show that (1.1) generates a random dynamical system
(RDS) in an extended space. A RDS on Rd over a metric dynamical system
(see for instant [1]) (Ω∗,F∗,P∗, (θ∗t )) is a measurable mapping

φ : R+ × Rd × Ω∗ → Rd, (t, x, ω) 7→ φ(t, ω)x

satisfying
(i) φ(0, ω) = Id for all ω ∈ Ω∗,

(ii) φ(t+ s, ω) = φ(t, θ∗sω) ◦ φ(s, ω) for all s, t ∈ R+, ω ∈ Ω∗.

If, in addition, x 7→ φ(t, ω)x is continuous for all t, ω then φ is called
continuous.

Recall from [22] that on C := C(R×Rd,Rd) the shift mapping S = (St)t∈R
is defined as

Sth = S(t, h) =: ht, ∀h ∈ C,

ht is called a translate of h given by ht(s, x) = h(t+ s, x), (s, x) ∈ R× Rd.

Observe that if y is a solution to

(3.1) dyt = f(t, yt)dt+ g(t, yt)dωt, t ∈ R, y0 ∈ Rd,
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where ω is a realization of BH , then

ys+t(3.2)

=

∫ s+t

0

f(u, yu)du+

∫ s+t

0

g(u, yu)dωu

=

∫ s

0

f(u, yu)du+

∫ s

0

g(u, yu)dωu +

∫ s+t

s

f(u, yu)du+

∫ s+t

s

g(u, yu)dωu

= ys +

∫ t

0

Ssf(u, ys+u)du+

∫ t

0

Ssg(u, ys+u)dθsωu.

Then ys+· is the solution of (3.1) with coefficients Ssf, Ssg. This suggested
using Krylov-Bogoliubov theorem [18, Chapter VI, §9] to construct probability
structures on hull of f and g in appropriate metric spaces. To do this we
consider (1.1) under the conditions as follows.

Assumptions

(H1) f(t, x) is uniformly continuous on R ×K for each K compact in Rd,
and there exists Cf , f0 > 0 such that for all x, y ∈ Rd, s, t ∈ R{

(i) |f(t, x)− f(t, y)| ≤ Cf |x− y|,
(ii) |f(t, 0)| ≤ f0.

(H2) g(t, x) is bounded by ∥g∥∞ and differentiable in x with ∂xg being
locally Lipschitz in x uniformly in t. Moreover, there exists Cg > 0 and β ∈
(1− 1/p, 1) such that the following properties hold for all x, y ∈ Rd, s, t ∈ R{

(i) |g(t, x)− g(t, y)| ≤ Cg|x− y|,
(ii) |g(t, x)− g(s, x)|+ ∥∂xg(t, x)− ∂xg(s, x)∥ ≤ Cg|t− s|β .

Under these conditions, system (1.1) possesses a unique solution yt =
y(t, x0, ω), t ∈ R for each realization ω of BH . Moreover, for all [a, b] ⊂ R,

∥y∥p−var,[a,b] ≤M(b− a) [|ya|+ 1]Λ(ω, [a, b])(3.3)

where M is a constant depend on b − a and Λ(ω, [a, b]) is a polynomial of
|||ω|||p−var,[a,b] (see [4],[8]).

3.1.1. Hull of f

In a similar manner of (2.1), define the metric d0 in C - space of all continu-
ous functions on R by replacing the p−variation norm ∥·∥p−var,[a,b] by supreme

norm ∥ · ∥∞,[a,b]. For given f , the hull of f , denoted by Hf
d0

the closure of the
sets {Sτf |τ ∈ R} in (C, d0),

Hf
d0

:= {Sτf |τ ∈ R} (C,d0)
.
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According to [22, Theorem 1, 14] S defines a dynamical system on C. Moreover,
by the assumptions, f is bounded and uniformly continuous on R×K for each
K compact in Rd, Hf

d0
is compact in C. We derive required properties for Hf

d0
.

Note that, similar results apply for C1,0 = (C1,0(R×Rd,Rd), ρ)-the space of
continuous functions h with ∂xh ∈ C with metric

(3.4) ρ(h, k) = d0(h, k) + d0(∂xh, ∂xk).

3.1.2. Hull of g

Next, we construct similar space for g. Firstly, consider the subspace
Cα;1,0(R × Rd,Rd×m) ⊂ C1,0(R × Rd,Rd×m) containing functions h which is
of local α−Hölder w.r.t. t for each x ∈ Rd and moreover for each compact set
K in Rd

sup
x∈K

|||h(·, x)|||α−Hol,[a,b] <∞, ∀[a, b] ⊂ Rd.

We consider the following metric on Cα;1,0(R×Rd,Rd×m) which is denoted by
d1

(3.5) d1(h
1, h2) :=

∞∑

n=1

1

2n
∥h1 − h2∥α,1,0;Kn

1 + ∥h1 − h2∥α,1,0;Kn

,

where

∥h1 − h2∥α,1,0;K1×K2 := ∥h1 − h2∥1,0;K1×K2 +
∣∣∣∣∣∣h1 − h2

∣∣∣∣∣∣
α,K1×K2

∥h1 − h2∥1,0;K1×K2 := sup
K1×K2

|h1 − h2|+ sup
K1×K2

∥∂xh1 − ∂xh
2∥

∣∣∣∣∣∣h1 − h2
∣∣∣∣∣∣
α,K1×K2 := sup

x∈K2

∣∣∣∣∣∣h1(·, x)− h2(·, x)
∣∣∣∣∣∣
α−Hol,K1

with K1,K2 are compact sets in R, Rd respectively.

Proposition 3.1. (Cα;1,0(R× Rd,Rd×m), d1) is a complete metric space.

Proof. See in the Appendix.

Next, we fix 1− 1
p < β0 < β, denoted by (Cβ0;1,0, d1) the space (Cβ0;1,0(R×

Rd,Rd×m), d1). Put Hg
d1

the closure of {Sτg|τ ∈ R} in Cβ0;1,0, i.e.

Hg
d1

:= {Sτg|τ ∈ R} (Cβ0;1,0,d1)
.

The similar results hold for hull of g as stated below.

Lemma 3.1. All g∗ ∈ Hg
d1

satisfies (H2) and moreover, Hg
d1

is a compact set

in (Cβ0;1,0, d1).
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Proof. See in the Appendix.

Since Cβ0;1,0 is not separable, in the following we directly prove that S
defines a dynamical system on Hg

d1
.

Lemma 3.2. S defines a dynamical system on Hg
d1

.

Proof. Due to [22, Theorem 12], S defined a dynamical system on C1,0(R ×
Rd,Rd×m). We just need to check that for fixed (t0, h

0) ∈ R×Hg
d1
, if t ∈ R, h ∈

Hg
d1

such that |t−t0|, d1(h, h0) → 0 then
∣∣∣∣∣∣ht(·, x)− h0t0(·, x)

∣∣∣∣∣∣
β0−Hol,[a,b]×K

→ 0

for each a, b, each K compact in Rd. Namely, by choosing appropriate [a′, b′]
we have

∣∣∣∣∣∣ht − h0t0
∣∣∣∣∣∣
β0−Hol,[a,b]×K

≤
∣∣∣∣∣∣ht − h0t

∣∣∣∣∣∣
β0−Hol,[a,b]×K

+
∣∣∣∣∣∣h0t − h0t0

∣∣∣∣∣∣
β0−Hol,[a,b]×K

≤
∣∣∣∣∣∣h− h0

∣∣∣∣∣∣
β0−Hol,[a′,b′]×K

+ 2
∣∣∣∣∣∣h0

∣∣∣∣∣∣β0/β

β−Hol,[a′,b′]×K
.∥h0t − h0t0∥

1−β0/β
∞,[a,b]×K

→ 0, as |t− t0| → 0, d1(h, h
0) → 0.

This shows the continuity of S on Hg
d1
. Since Hg

d1
is compact, S is measurable

w.r.t. the σ−algebra generated by d1. The proof is completed.

■

3.2. Generation of RDS

SinceHf
d0
,Hg

d1
are compact sets with appropriate metrics constructed above,

we deduce from Krylov-Bogoliubov theorem [18, Chapter VI, §9] that there

are probability measures Pf ,Pg on measurable space (Hf
d0
,Bf ), (Hg

d1
,Bg) with

Borel σ−algebras Bf ,Bg, that are invariant under the shifts mapping S. De-
note by Ω̄ the Catersian product Hf

d0
×Hg

d1
×Ω with the product Borel σ−field

denoted by B̄ and the product measure P̄ = Pf × Pg × P and consider the
product dynamical system θ̄ : R× Ω̄ → Ω̄ given by

θ̄(t, f̃ , g̃, ω) = (Stf̃ , Stg̃, θtω), (f̃ , g̃, ω) ∈ Ω̄.

It is evident that (Ω̄, B̄, P̄, θ̄) forms a metric dynamical system.

Proposition 3.2. For each ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, equation

(3.6) dyt = f̄(t, yt)dt+ ḡ(t, yt)dωt, y0 ∈ Rd, t ∈ R+

possesses a unique solution y(t, y0, ω̄). The solution is continuous w.r.t. the
initial condition y0 and satisfies (3.3).
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Proof. It is easy to check that all elements in Hf
d0

satisfies (H1). As stated in
Lemma 3.1, ḡ satisfies (H2). The statement is evident due to [4].

■

Theorem 3.3. System

(3.7) dyt = f(t, yt)dt+ g(t, yt)dB
H
t

generates a continuous random dynamical system over (Ω̄, B̄, P̄ , θ̄).

Proof. For each ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, consider (3.6). Define

Φ∗ : R+ × Rd × Ω̄ → Rd

where Φ∗(t, ω̄)y0 is the value of the of the solution of (3.6) at the time t ∈ R+

with the initial time s = 0 and initial value y0, i.e. y(t, y0, ω̄). From (3.2), Φ∗

satisfies cocycle property

Φ∗(t+ s, ω̄)y0 = Φ∗(t, θ̄sω̄) ◦ Φ∗(s, ω̄)y0.

Next, to complete the proof we prove that the solution is continuous w.r.t.
ω̄ as an element in the product of separable metric spaces Hf

d0
,Hg

d1
,Ω. The

measurability of the solution is obtained thank to [3, Lemma III. 14]. Namely,
we fix t, x0 and [0, T ] contains t and consider ω̄1 = (f1, g1, ω1), ω̄2 = (f2, g2, ω2)
in Ω̄. Put y1t := y(t, y0, ω̄

1), y2t := y(t, y0, ω̄
2) then we have

y1t = x0 +

∫ t

0

f1(s, y1s)ds+

∫ t

0

g1(s, y1s)dω
1
s ,

y2t = x0 +

∫ t

0

f2(s, y2s)ds+

∫ t

0

g2(s, y2s)dω
2
s .

Therefore, zt := y1t − y2t satisfies the equation

zt = y1t − y2t

=

∫ t

0

[f1(s, y1s)− f2(s, y2s)]ds+

∫ t

0

[g1(s, y1s)dω
1
s −

∫ t

0

g2(s, y2s)]dω
2
s

+

∫ t

0

[f2(s, y1s)− f2(s, y2s)]ds+

∫ t

0

[f1(s, y1s)− f2(s, y1s)]ds

+

∫ t

0

g1(s, y1s)d(ω
1
s − ω2

s) +

∫ t

0

[g1(s, y1s)− g2(s, y1s)]dω
2
s

+

∫ t

0

[g2(s, y1s)− g2(s, y2s)]dω
2
s .
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Fixing ω̄1, due to (3.3) one can findR depends on ω̄1 such that ∥y(·, y0, ω̄)∥p−var,[0,T ]

≤ R for all ω̄ lies in the neighbor of ω̄1 of radius 1. We choose a upper bound
for the norms of f i, gi, ωi on K̄ := [0, T ]× B̄(0, R) and reuse the notation R for
convenient. We will show that z is near 0 when ∥f1 − f2∥∞,K̄ , ∥g1 − g2∥∞,K̄ ,

∥∂xg1 − ∂xg
2∥∞,K̄ , and

∣∣∣∣∣∣g1 − g2
∣∣∣∣∣∣
β0,K̄

less than ε small enough.

For 0 ≤ u < v ∈ [0, T ] and q := 1/β

|zu − zv| =

∣∣∣∣
∫ v

u

[f2(s, y1s)− f2(s, y2s)]ds

∣∣∣∣+
∣∣∣∣
∫ v

u

[f1(s, y1s)− f2(s, y1s)]ds

∣∣∣∣

+

∣∣∣∣
∫ v

u

[g2(s, y1s)− g2(s, y2s)]dω
2
s

∣∣∣∣+
∣∣∣∣
∫ v

u

g1(s, y1s)d(ω
1
s − ω2

s)

∣∣∣∣

+

∣∣∣∣
∫ v

u

[g1(s, y1s)− g2(s, y1s)]dω
2
s

∣∣∣∣

in which
∣∣∣∣
∫ v

u

[f2(s, y1s)− f2(s, y2s)]ds

∣∣∣∣ ≤ Cf

∫ v

u

|zs|ds,
∣∣∣∣
∫ v

u

[g2(s, y1s)− g2(s, y2s)]dω
2
s

∣∣∣∣ ≤ DCg(1 +
∣∣∣∣∣∣y1

∣∣∣∣∣∣
p−var,[u,v]

+
∣∣∣∣∣∣y2

∣∣∣∣∣∣
p−var,[u,v]

)×

×
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

∥z∥q−var,[u,v]

where the final estimate due to [4]. And
∣∣∣∣
∫ v

u

[f1(s, y1s)− f2(s, y1s)]ds

∣∣∣∣ ≤ ∥f1 − f2∥∞,K̄(v − u),

∣∣∣∣
∫ v

u

g1(s, y1s)d(ω
1
s − ω2

s)

∣∣∣∣ ≤ D
∣∣∣∣∣∣ω1 − ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥y1∥q−var,[u,v] + (v − u)β + 1

]
,

∣∣∣∣
∫ v

u

[g1(s, y1s)− g2(s, y1s)]dω
2
s

∣∣∣∣ ≤ D
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥g1 − g2∥∞,K̄ +

∣∣∣∣∣∣g1 − g2
∣∣∣∣∣∣
q−var,[u,v]

]
,

≤ D
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥g1 − g2∥∞,K̄

+
∣∣∣∣∣∣g1 − g2

∣∣∣∣∣∣
β0,K̄

(v − u)β + ∥∂xg1 − ∂xg
2∥∞,K̄

∣∣∣∣∣∣y1
∣∣∣∣∣∣
p−var,[u,v]

]
.

In the final estimate we use the mean value theorem namely for s, t ∈ [u, v]

|g1(t, y1t )− g2(t, y1t )− g1(s, y1s) + g2(s, y1s)|
≤ |(g1 − g2)(t, y1t )− |(g1 − g2)(s, y1t )|+ |(g1 − g2)(s, y1t )− |(g1 − g2)(s, y1s)|
≤
∣∣∣∣∣∣g1 − g2

∣∣∣∣∣∣
β0,K̄

(t− s)β0 + ∥∂xg1 − ∂xg
2∥∞,K̄ |y1t − y1s |.

Therefore

|||z|||q−var,[u,v] ≤ D

(∫ v

u

|zs|ds+ ∥z∥q,[u,v] +A1/q
u,v

)
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where D is a constant depending on R and A is a control function defined by

A1/q
u,v := ε(v − u) +

∣∣∣∣∣∣ω1 − ω2
∣∣∣∣∣∣
p−var,[u,v]

+ ε
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

.

Apply Lemma 4.1, since z0 = 0 we obtain

∥z∥q−var,[0,T ] ≤ D(∥z0∥+ ε) = Dε→ 0 as ε→ 0.

This completes the proof. ■

4. Random attractors

In what follows we recall the notion of the (global) random attractor. For
a probability space (Ω∗,F∗,P∗), a set M ⊂ Rd × Ω∗ with closed ω−section
M(ω) = {x ∈ Rd|(ω, x) ∈ M} is called random set if the map ω 7→ d(x,M(ω))
is measurable for every x ∈ Rd, where d is the Hausdorff semi-distance.

We work with the universe D̂- the family of tempered random sets D̂(ω), i.e
D̂(ω) is contained in a ball B(0, r(ω)) a.s., where the radius r(ω) is a tempered
random variable, namely satisfies

(4.1) lim
t→±∞

1

t
log+ r(θ∗tω) = 0, a.s.

Let φ be a continuous random dynamical system on Rd over a metric dynamical
system (Ω∗,F∗,P∗, (θ∗t )). A random subset A is called invariant, if

φ(t, ω)A(ω) = A(θ∗tω) ∀t ∈ R+, a.s ω ∈ Ω∗.

It is called a pullback random attractor in D̂ if it is compact, invariant and
attracts any D̂ ∈ D̂ in the pullback sense, i.e.

(4.2) lim
t→∞

d(φ(t, θ∗−tω)D̂(θ∗−tω)|A(ω)) = 0, ∀D̂ ∈ D̂, a.s. ω ∈ Ω∗.

A random set B ∈ D̂ is called pullback absorbing in the universe D̂ if B
absorbs all sets in D̂, i.e. for any D̂ ∈ D̂, there exists a time t0 = t0(ω, D̂) such
that

(4.3) φ(t, θ∗−tω)D̂(θ∗−tω) ⊂ B(ω), for all t ≥ t0.

If there exists pullback absorbing set for φ, then it is proved that

(4.4) A(ω) =
⋂

s≥0

⋃

t≥s

φ(t, θ∗−tω)B(θ∗−tω).
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is the random pullback attractor of φ. Moreover, it is unique in D̂ ([21]).

In the following, we assume that f is uniform dissipative ([6]), i.e. there
exist c, d > 0 such that for all t ∈ R, x ∈ Rd

(4.5) ⟨x, f(t, x)⟩ ≤ c− d∥x∥2.

We will prove that the RDS generated by (3.7) possesses a random attractor.
The technique is followed from [8]. Here we sketch some main details.

Theorem 4.1. In addition to (H1), (H2) if f satisfies (4.5), then RDS gen-
erated by system (3.7) possesses a random pullback attractor almost sure.

Proof. Step 1: First, fix ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, [a, b] ⊂ R+. We consider the
corresponding ordinary differential equation

(4.6) µ̇t = f̄(t, µt), t ∈ [a, b], µa = ya.

where y is a solution of (3.6) on [a, b].

Since f is dissipative,

∥µ∥∞,[a,b] ≤ |µa|+ L,

|||µ|||p−var,[a,b] ≤ L (|µa|+ 1) (b− a)

where L is a constant.

Define kt = yt − µt, t ∈ [a, b]. Since k satisfies the equation

dkt = d(yt − µt) = [f̄(t, µt + kt)− f̄(t, µt)]dt+ ḡ(t, µt + kt)dωt

we have

kt − ks =

∫ t

s

[
f̄(u, ku + µu)− f̄(u, µu)

]
du+

∫ t

s

ḡ(u, ku + µu)dωu.

It follows from (H2) and the boundedness of g that

|kt − ks| ≤
∫ t

s

Cf |ku|du+ ∥ḡ∥∞ |||ω|||p−var,[s,t](4.7)

+K |||ω|||p−var,[s,t] |||ḡ(·, k· + µ·)|||q−var,[s,t] ,

where q = 1/β, K = (1− 21−1/p−1/q)−1. Since

|ḡ(t, kt + µt)− ḡ(s, ks + µs)|
≤ |ḡ(t, kt + µt)− ḡ(t, ks + µs)|+ |ḡ(t, ks + µs)− ḡ(s, ks + µs)|
≤ Cg|kt − ks|+ Cg|µt − µs|+ Cg(t− s)β

≤ Cg|kt − ks|+M(1 + |µa|β)(t− s)β , ∀a ≤ s < t ≤ b
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where M =M(r) depends on r = b− a, we have

|||ḡ(·, k· + µ·)|||q−var,[s,t] ≤ Cg |||k|||p−var,[s,t] +M(1 + |µa|β)(t− s)β ,

with a note that qβ ≥ 1 and q ≥ p. Then

|kt − ks| ≤
[
∥g∥∞ +KM(1 + |µa|β)

]
|||ω|||p−var,[s,t] +

∫ t

s

Cf |ku|du

+KCg |||ω|||p−var,[s,t] |||k|||p−var,[s,t] .

Using Lemma 4.1 and Young inequality for product

∥k∥∞,[a,b] ≤ e2Cfr
[
|ka|+M(1 + |µa|β) |||ω|||p−var,[a,b] (1 + |||ω|||pp−var,[a,b])

]

≤ M(1 + |µa|β) |||ω|||p−var,[a,b] (1 + |||ω|||pp−var,[a,b])

≤ ε|ya|+ Λ(ω, [a, b]),(4.8)

where ε > 0 is chosen later and Λ(ω, [a, b]) is a general polynomial of |||ω|||p−var,[a,b].

Step 2: Next, we estimate the solution of (3.6) by discretization.

By assumption of f , it can be seen that all f̃ ∈ Hf
d0

satisfy (4.5). For each
n, consider(4.6) with [a, b] is replaced by [n − 1, n]. By known result of (4.6)
under condition (4.5), there exists η ∈ (0, 1), L > 0 such that

|µn| ≤ η∗|yn|+ L.

Now in (4.8), we choose 0 < ε < 1− η∗ and η = η∗ + ε ∈ (0, 1). Then,

|yn| ≤ |kn|+ |µn|
≤ η|yn−1|+ Λ(ω, [n− 1, n]).

Therefore,

|yn| ≤ η|yn−1|+ Λ(ω, [n− 1, n])

≤ ηn|y0|+
n∑

j=1

ηjΛ(ω, [n− 1− j, n− j]).(4.9)

Define R(ω̄) :=
∑

j≥0 η
jΛ(ω, [−j,−j + 1]), then as n large enough

|y(n, y0, θ−nω̄)| ≤ 1 +R(ω̄).

Step 3: Finally, we prove the existence of an absorbing set.

Using (3.3) the value of solution at arbitrary time is evaluated similarly.
Namely, there exists a tempered random variable R̃(ω̄) (see [8]) such that

|y(t, y0, θ̄−tω̄)| ≤ 1 + R̃(ω̄)



RDSs generated by nonautonomous SDEs driven by fBms 89

as t large enough. It shows the existence of the absorbing set B(ω̄) = B̄(0, R̃(ω̄)).
The proof of this step relies on the ergodicity of canonical space (Ω,F ,P, θ)
and ergodic Birkhoff theorem.

Note that E
∣∣∣∣∣∣BH

∣∣∣∣∣∣m
p−var,[0,1]

< ∞ for all m ∈ N. This deduces that Λ(ω)

and then R̃(ω) is also integrable. Moreover, in (4.9), one can evaluate |yn|m
for any m > 0 and choose R̃ to be integrable at arbitrary order m.

The existence of random pullback attractor A(ω̄) for Φ∗ is proved.

■

Theorem 4.2. If we assume f satisfies uniform one-sided dissipative condition

⟨x− y, f(t, x)− f(t, y)⟩ ≤ −L|x− y|2, ∀t, x, y

for some L > 0. Then there exists ϵ > 0 such that if Cg < ϵ the attractor is
singleton.

Proof. Let y1, y2 be two solutions of (3.6) where the initial conditions lie in
B̄(0, R). Put ȳ = y2 − y1 then

dȳt = [f̄(t, ȳt + y1t )− f̄(t, y1t )]dt+ [ḡ(t, y2t )− ḡ(t, y1t )]dωt.

Once again, we consider the pure dt equation

dµ̄t = [f̄(t, µ̄t + y1t )− f̄(t, y1t )]dt, µ̄0 = ȳ0.

By assumption of f , there exists η ∈ (0, 1) such that

|µ̄1| ≤ η|µ̄0|.

Now, put z = ȳ − µ̄, we have

dzt = [f̄(t, ȳt + y1t )− f̄(t, µ̄t)]dt+ [ḡ(t, y2t )− ḡ(t, y1t )]dωt.

Computation leads to
(4.10)

|zt−zs| ≤
∫ t

s

Cf |zu|du+DCg |||ω|||p−var,[s,t] .∥z+µ̄∥p−var,[s,t](1+
∣∣∣∣∣∣y1

∣∣∣∣∣∣
p−var,[s,t]

).

By (3.3), for all s, t ∈ [0, 1]

|zt − zs| ≤
∫ t

s

Cf |zu|du+DRCg |||ω|||p−var,[s,t] Λ(ω, [0, 1]).∥z + µ̄∥p−var,[s,t],

then using Lemma 4.1,

∥z∥p−var,[0,1] ≤ DR|ȳ0|Cge
RCgΛ(ω,[0,1]),
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where Λ(ω, [a, b]) is a general polynomial of |||ω|||p−var,[a,b]. We arrive at

(4.11) |ȳ1| ≤ η|ȳ0|
[
1 +DRCge

RCgΛ(ω,[0,1])
]
.

The rest of the proof is followed step by step to [8, Theorem 3.11].

■

Appendix

Proof of Proposition 3.1

Proof. That d1 is a metric on Cα;1,0(R × Rd,Rd × m) is evident due to the
seminorm properties of the Hölder norm. We only need to prove the com-
pleteness. Let hn be a Cauchy sequence in Cα;1,0(R × Rd,Rd×m). Since
(C1,0(R × Rd,Rd × m), ρ) is complete, there exists a subsequence, which we
still use the notation hn, converges to h in C1,0(R× Rd,Rd×m), i.e.

lim
n→∞

ρ(hn, h) = 0.

We will prove that for each K1,K2 compact sets in R,Rd, |||hn − h|||α,K1×K2 →
0 as n → ∞. Fix K ⊂ Rd compact, we have for each [a, b] ⊂ R there exist a
constant M such that

sup
n

sup
x∈K

|||hn(·, x)|||α−Hol,[a,b] ≤M.

For each x ∈ K

|h(t, x)− h(s, x)| = lim
n→∞

|hn(t, x)− hn(s, x)| ≤M |t− s|α,

this implies that supx∈K |||h(·, x)|||α−Hol,[a,b] <∞ or h ∈ Cα;1,0(R× Rd,Rd×m).

Now to complete the proof we show that hn converges to h, in α−Hölder
norm on each K compact in Rd. For each s < t ∈ [a, b], x ∈ K

|(hn − h)(t, x)− (hn − h)(s, x)|
|t− s|α = lim

m→∞
|(hn − hm)(t, x)− (hn − hm)(s, x)|

|t− s|α

≤ lim
m→∞

sup
x∈K

sup
a≤v<u≤b

|(hn − hm)(u, x)− (hn − hm)(v, x)|
|u− v|α

≤ lim
m→∞

|||hn − hm|||α,[a,b]×K ,
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which implies

|||hn − h|||α,[a,b]×K ≤ lim
m→∞

|||hn − hm|||α,[a,b]×K → 0, as n→ ∞.

The proof is completed.

Proof of Lemma 3.1

Proof.

It can be seen from the assumptions of g that g together with ∂xg satisfies
the condition boundedness and equicontinuous on R×K for each K compact
in Rd.

Due to [22, Theorem 16] Hg
d1

is compact in (C1,0(R×Rd,Rd×m), ρ). Hence,
for g∗ ∈ Hg

d1
, ∂xg

∗ exists and is continuous. Moreover, and there exists tn such
that lim

n→∞
d1(g

∗, gtn) = 0.

It is evident that g∗ is bounded by ∥g∥∞, and

|g∗(t, x)− g∗(t, y)| = lim
n→∞

|gtn(t, x)− gtn(t, y)|
= lim

n→∞
|g(tn + t, x)− g(tn + t, y)| ≤ Cg|x− y|,

|g∗(t, x)− g∗(s, x)|+ ∥∂xg∗(t, x)− ∂xg
∗(s, x)∥

= lim
n→∞

|gtn(t, x)− gtn(s, x)|+ ∥∂xgtn(t, x)− ∂xgtn(s, x)∥

≤ Cg|t− s|β .
That ∂xg

∗(t, x) is local Lipschitz in x uniformly in t is also obvious. The first
statement is proved.

For the second one, since Hg
d1

is compact in C1,0, from a sequence hn ∈
Hg

d1
there exists a subsequence hnk that converges (in ρ) to h ∈ C1,0(R ×

Rd,Rd×m). One may choose the subsequence in the form gtn . Applying the
above arguments for g∗ = h and the sequence gtn we have h ∈ Cβ;1,0(R ×
Rd,Rd×m). Moreover, |||hnk |||β,K1×K2 , |||h|||β,K1×K2 are less than Cg for K1,K2

are compact sets in R,Rd respectively.

Finally, put hk = hnk − h. Since β0 < β, for s, t ∈ K1, x ∈ K2

|hk(t, x)− hk(s, x)|
|t− s|β0

=

( |hk(t, x)− hk(s, x)|
|t− s|β

) β0
β

.|hk(t, x)− hk(s, x)|1−
β0
β

≤ |||hk|||
β0
β

β,K1×K2 (|hk(t, x)|+ |hk(s, x)|)1−
β0
β , hence

|||hk|||β0,K1×K2 ≤ 4C
β0
β

g ∥hk∥
1− β0

β

∞,K1×K2 → 0 as k → ∞.

To sum up, hnk converges to h in d1. The proof is completed.

■
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Lemma 4.1 (Gronwall-type Lemma). For q ≥ p so that 1
p+

1
q > 1, if y satisfies

the following condition

|yt − ys| ≤ Â
1/q
s,t + a1

∫ t

s

|yu|du+ |||ω|||p,[s,t] (a2|ys|+ a3 |||y|||q−var,[s,t])

for all s ≤ t ∈ [a, b], where a1, a2, a3 are positive real constants, Â is a control
function on {(s, t)|a ≤ s ≤ t ≤ b}, then

∥y∥p,[a,b] ≤
[
|ya|+ 2Â

1/q
a,bN[a,b]

]
e2a1(b−a)+κN[a,b]N

p−1
p

[a,b] (ω)

with κ = log a3/a2+2
a3/a2+1 , and

N[a,b] ≤ D(1 + |||ω|||pp,[a,b])

for D depends on ai. If a2 = 0 one may take κ = 0.

Proof. See [8, Theorem 2.4].

■
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Abstract. This article is an attempt to investigate the possibility to
be injective of the Singer transfer TrM

s : F2 ⊗GLs P (H∗Vs ⊗ M∗) →
Exts

A (Σ−sM,F2) for M being the A -modules F2 = H̃∗S0 or H̃∗RP∞.
The existence of a positive stem critical element of Exts,t

A (H̃∗RP∞,F2) in
the image of the transfer TrRP∞

s is equivalent to the existence of a posi-
tive stem critical element of Exts+1,t+1

A (F2,F2) in the image of the transfer
Trs+1. If the existences happen, then TrRP∞

s and Trs+1 are not injective.
We show that the critical element P̂ h2 is not in the image of the fourth
transfer, TrRP∞

4 : F2 ⊗GL4 P (H∗V4 ⊗ H̃∗RP∞)t−4 → Ext4,t
A (H̃∗RP∞,F2).

Singer’s conjecture is still open, as we have not known any critical element,
which is in the image of the transfer.

1. Recollections on the Singer transfers and related topics

We sketch briefly the Singer transfer, which is the subject of this article.

Let A be the mod 2 Steenrod algebra. Singer defined in [10] the algebraic
transfer for an A -module M :

TrM
s : F2 ⊗GLs

P (H∗Vs ⊗ M∗) → Exts
A (Σ−sM,F2),

Key words and phrases: Steenrod algebra, Adams spectral sequences, Singer transfer, Invari-
ant theory.
2020 Mathematics Subject Classification: Primary 55T15, 55Q45, 55S10, 55P47.
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where Vs denotes an elementary abelian 2-group of rank s, and H∗Vs is the
mod 2 homology of a classifying space BVs of Vs, while M∗ is the dual of the
A -module M , and P (H∗Vs ⊗ M∗) denotes the primitive part of H∗Vs ⊗ M∗
under the action of A . The Singer transfer is a useful tool in the study of
Exts

A (M,F2) by means of the Peterson hit problem and invariant theory.

Let M = H̃∗X be the reduced cohomology of X. Here X is a pointed
CW-complex, whose mod 2 homology H∗X is finitely generated in each degree.
Then the Singer transfer for H̃∗X is also called the Singer transfer for X, that is
TrX

s := TrH̃∗X
s . It is a remarkable tool to study Exts

A (H̃∗X,F2). The interest in
studying Exts

A (H̃∗X,F2) is that this forms the E2-page of the Adams spectral
sequence converging to the 2-completion of the stable homotopy groups πS

∗ (X).

Let t : RP∞ → S0 be any map that induces an isomorphism in the first sta-
ble homotopy group πS

1 . The so-called algebraic Kahn-Priddy homomorphism
t∗ : Exts

A (H̃∗RP∞,F2) → Exts+1
A (F2,F2) is its “coboundary” one. This is an

useful manner to attack the cohomology of the Steenrod algebra A . The reason
why the Kahn-Priddy map and particularly the infinite real projective space
are taken into account is that this homomorphism is an epimorphism in positive
stems and further it lowers the cohomology degree by relating Exts+1

A (F2,F2)
to Exts

A (H̃∗RP∞,F2).
It should be noted that the Singer map

Exti,j
A (H∗Vs,F2) → Exti+s,j+s

A (F2,F2),

which becomes the Singer transfer for i = 0, is absolutely not the Kahn-Priddy
map even for s = 1. The subtlety comes from the fact that the Kahn-Priddy
map works with reduced cohomology, while the Singer map works with coho-
mology.

In this article, we follow all the notations of our preceding paper [4].

J. P. May proved in [8] that: As A is a cocommutative Hopf algebra, if
M is a coalgebra in the category of A -modules and N is an algebra in this
category, then there exist Steenrod operations

Sqi : Exts,t
A (M, N) → Exts+i,2t

A (M, N).

In particular, for i = 0, Sq0 : Exts,t
A (M, N) → Exts,2t

A (M, N).
By checking on bi-grading, Sq0 : Exts,t

A (H̃∗RP∞,F2) → Exts,2t
A (H̃∗RP∞,F2)

and Sq0 : Exts,t
A (F2,F2) → Exts,2t

A (F2,F2) can not commute with each other
through the algebraic Kahn-Priddy homomorphism

t∗ : Exts,t
A (H̃∗RP∞,F2) → Exts+1,t+1

A (F2,F2).
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Indeed, on the one hand t∗Sq0 sends the bi-degree (s, t) to (s + 1, 2t + 1), on
the other hand Sq0t∗ sends the bi-degree (s, t) to (s + 1, 2(t + 1)).

Similarly, Sq0 : Exts,t
A (H̃∗RP∞,F2) → Exts,2t

A (H̃∗RP∞,F2) and the Kameko
one Sq0 : F2⊗GLsP (H∗Vs⊗H̃∗RP∞)t−s → F2⊗GLsP (H∗Vs⊗H̃∗RP∞)2(t−s)+s+1
can not commute with each other through the Singer transfer TrRP

∞

s : F2 ⊗GLs

P (H∗Vs ⊗ H̃∗RP∞)t−s → Exts,t
A (H̃∗RP∞,F2) because of bi-grading reason.

W. H. Lin defined in [7, p. 469] a map which is also denoted

Sq0 : Exts,t
A (H̃∗RP∞,F2) → Exts,2t+1

A (H̃∗RP∞,F2)

by ambiguity of notation. Remarkably, this Sq0 commutes with the classical
squaring operation Sq0 : Exts,t

A (F2,F2) → Exts,2t
A (F2,F2) through the algebraic

Kahn-Priddy morphism, and also commutes with the Kameko one through the
Singer transfer TrRP

∞

s (see [4, Prop. 4.1] or Proposition 1.1 below).
The operation Sq0 defined by Lin on Ext∗

A (H̃∗RP∞,F2) should have been
called Lin’s Sq0. Note that, Lin’s Sq0 is not May’s Sq0. In the article we only use
Lin’s Sq0 on Ext∗

A (H̃∗RP∞,F2). So, this is simply called Sq0 for abbreviation.

We start with a commutative diagram and the concept of critical elements
given in [2] and [4].

In the following diagram, the horizontal arrows are the Singer transfers, the
two vertical right arrows are the squaring operations and the two vertical left
arrows are the Kameko squaring ones, while t∗ denotes the algebraic Kahn-
Priddy morphism, and ι∗ is the homomorphism induced from the canonical
inclusion.

Proposition 1.1. ([4, Prop. 4.1]) The diagram

F2 ⊗GLs P (H∗Vs ⊗ H̃∗RP∞)t−s Exts,t
A (H̃∗RP∞,F2)

F2 ⊗GLs+1 P (H∗Vs+1)t−s Exts+1,t+1
A (F2,F2)

F2 ⊗GLs
P (H∗Vs ⊗ H̃∗RP∞)2(t−s)+s+1 Exts,2t+1

A (H̃∗RP∞,F2)

F2 ⊗GLs+1 P (H∗Vs+1)2(t−s)+s+1 Exts+1,2(t+1)
A (F2,F2)

Sq0 Sq0

TrRP
∞

s

TrRP
∞

s

Sq0
Sq0

Trs+1

Trs+1

ι∗ t∗

ι∗ t∗

is commutative.
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We created the concept of critical elements (in [2], [3], [4]) in order to show
that, in general, at most of homological degrees, the Singer transfers Trs and
TrRP

∞

s are not an isomorphism in infinitely many internal degrees. However,
Singer’s conjecture, which predicts that the Singer transfers is injective, is still
open.

In particular, we defined on [2, page 2] the notion of s-spike as follows: An
s-spike number is an one that can be written as (2n1 − 1) + · · · + (2ns − 1), but
cannot be written as a sum of less than s terms of the form (2n − 1).

Definition 1.1. ([2, Def. 5.2]) A nonzero element z ∈ Exts
A (F2,F2) is called

critical if

(a) Sq0(z) = 0,

(b) 2Stem(z) + s is an s-spike.

By [2, Lemma 3.5], if Stem(z) is an s-spike, then so is 2Stem(z) + s.

Note that Ph1 ∈ Ext5,14
A (F2,F2) is not a critical element, since 2Stem(Ph1)+

5 = 23 is a 3-spike but not 5-spike. Actually, 23 = (16 − 1) + (8 − 1) + (2 − 1),
and it is easy to see that 23 cannot be written as a sum of less than 3 terms of
the form (2n − 1).

However, Ph2 ∈ Ext5,16
A (F2,F2) is critical (see [2, Prop. 5.5]). Indeed,

(a) Sq0(Ph2) = 0, as is well known Ext5,32
A (F2,F2) = 0 (see e.g. Tangora [11]),

(b) 27 = 2Stem(Ph2) + 5 is a 5-spike (see [2, Lemma 3.3]).

Definition 1.2. ([4, Def. 6.3]) A nonzero element ẑ ∈ Exts
A (H̃∗RP∞,F2) is

called critical if

(a) Sq0(ẑ) = 0,

(b) 2Stem(ẑ) + (s + 1) is an (s + 1)-spike,

(c) t∗(ẑ) ̸= 0, where t∗ : Exts
A (H̃∗RP∞,F2) → Exts+1

A (F2,F2) is the Kahn-
Priddy homomorphism.
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2. Results

The motivation for us to be interested in Proposition 2.3 is that the following
theorem would probably give a negative answer to Singer’s conjecture [10] on
the transfer monomorphism. More precisely, we have

Theorem 2.1. (i) If a critical element z ∈ Exts,t
A (F2,F2) is in the image of

the transfer Trs : F2 ⊗GLs P (H∗Vs)t−s → Exts,t
A (F2,F2), then Trs is not

a monomorphism.

(ii) If a critical element ẑ ∈ Exts,t
A (H̃∗RP∞,F2) is in the image of the transfer

TrRP
∞

s : F2 ⊗GLs
P (H∗Vs ⊗ H̃∗RP∞)t−s → Exts,t

A (H̃∗RP∞,F2), then
TrRP

∞

s is not a monomorphism.

Proof. (i) See Case 2 of [2, Thm. 5.6] and [2, Thm. 5.9].
(ii) We are using the notation of Proposition 1.1.
We prove the following fact: If ẑ ∈ Exts,t

A (H̃∗RP∞,F2) is a critical element,
which is in the image of the transfer TrRP

∞

s : F2 ⊗GLs
P (H∗Vs ⊗H̃∗RP∞)t−s →

Exts,t
A (H̃∗RP∞,F2), then z = t∗(ẑ) ∈ Exts+1,t+1

A (F2,F2) is also a critical ele-
ment, which is in the image of the transfer Trs+1 : F2 ⊗GLs+1 P (H∗Vs+1)t−s →
Exts+1,t+1

A (F2,F2). See Case 2 in Part (ii) of [4, Thm. 6.7].
Indeed, there is an element ŷ ∈ F2 ⊗GLs

P (H∗Vs ⊗ H̃∗RP∞)t−s such that
TrRP

∞

s (ŷ) = ẑ. Then z = t∗(ẑ) ∈ Exts+1,t+1
A (F2,F2) is nonzero (by (c) of

Definition 1.2) and it is a critical element, which is in the image of the transfer
Trs+1 : F2 ⊗GLs+1 P (H∗Vs+1)t−s → Exts+1,t+1

A (F2,F2). (It should be noted
that z satisfies Definition 1.1 with the number s+1 taken into account, instead
of s.) Actually, we get

(a) Sq0(z) = Sq0t∗(ẑ) = t∗Sq0(ẑ) = t∗(0) = 0,

(b) 2Stem(z) + (s + 1) = 2Stem(ẑ) + (s + 1) is an (s + 1)-spike.

Denoting y = ι∗(ŷ), we have Trs+1(y) = Trs+1ι∗(ŷ) = t∗TrRP
∞

s (ŷ) = t∗(ẑ) = z.
That is, z is in the image of the transfer Trs+1. As z is nonzero and z =
Trs+1(y), it implies that y is nonzero.

Note that, as Trs+1(y) = z, by definition of the Singer transfer, it implies
deg(y) = Stem(z). From (b) of Definition 1.2, it concludes that 2 deg(y)+(s+1)
is an (s + 1)-spike. So, according to Kameko [5] (see also [2, Cor. 3.8]),

Sq0 : F2 ⊗GLs+1 P (H∗(Vs+1)t−s → F2 ⊗GLs+1 P (H∗(Vs+1)2(t−s)+s+1
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is an isomorphism. In particular, from y ̸= 0 it implies Sq0(y) ̸= 0. By the
commutativity in Proposition 1.1, we have

ι∗Sq0(ŷ) = Sq0ι∗(ŷ) = Sq0(y) ̸= 0.

Therefore Sq0(ŷ) ̸= 0. Also, by the commutativity in Proposition 1.1,

TrRP
∞

s Sq0(ŷ) = Sq0TrRP
∞

s (ŷ) = Sq0(ẑ) = 0,

(by (a) of Definition 1.2). That is, TrRP
∞

s sends a nonzero element to zero, so
it is not a monomorphism.

The theorem is completely proved. ■

Theorem 2.2. The existence of a positive stem critical element

ẑ ∈ Exts,t
A (H̃∗RP∞,F2)

in the image of the transfer TrRP
∞

s is equivalent to the existence of a positive
stem critical element z ∈ Exts+1,t+1

A (F2,F2) in the image of the transfer Trs+1.

If the existences happen, then both TrRP
∞

s and Trs+1 are not injective.

Proof. From the beginning of the proof for Theorem 2.1, if there exists a critical
element ẑ ∈ Exts,t

A (H̃∗RP∞,F2), which is in the image of the transfer TrRP
∞

s :
F2 ⊗GLs P (H∗Vs ⊗H̃∗RP∞)t−s → Exts,t

A (H̃∗RP∞,F2), then, by Definitions 1.1
and 1.2, z = ẑ is a critical element, which is in the image of the transfer
Trs+1 : F2 ⊗GLs+1 P (H∗Vs+1)t−s → Exts+1,t+1

A (F2,F2).
Conversely, suppose there exists a positive stem critical element

z ∈ Exts+1,t+1
A (F2,F2),

which is in the image of the transfer

Trs+1 : F2 ⊗GLs+1 P (H∗Vs+1)t−s → Exts+1,t+1
A (F2,F2).

From [4, Thm. 1.1], the algebraic Kahn-Priddy homomorphism

t∗ : Exts,t
A (H̃∗RP∞,F2) → Exts+1,t+1

A (F2,F2)

is an epimorphism from ImTrRP
∞

∗ onto ImTr∗ in stem t − s > 0. So there exists
ẑ ∈ Exts,t

A (H̃∗RP∞,F2) with t∗(ẑ) = z, which is in the image of the transfer
TrRP

∞

s : F2⊗GLs P (H∗Vs⊗H̃∗RP∞)t−s → Exts,t
A (H̃∗RP∞,F2). By combination

of Definitions 1.1 and 1.2, ẑ is also a critical element.
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According to Theorem 2.1, if the existences happen, then both TrRP
∞

s and
Trs+1 are not injective. The theorem is proved. ■

The following shows that Theorem 2.1(ii) can not be applied to P̂ h2. There-
fore, Singer’s conjecture is still open, as we have not known any critical element,
which is in the image of the transfer.

Proposition 2.3. The elements P̂ h1 and P̂ h2 are not in the image of the
fourth transfer for RP∞: TrRP

∞

4 : F2⊗GL4P (H∗V4⊗H̃∗RP∞)t−4 → Ext4,t
A (H̃∗RP∞,F2).

Proof. According to Singer [10, Prop. 13.3],

(F2 ⊗A H∗(V5))GL5
9 = 0.

By duality, Ph1 is not in the image of the fifth transfer for S0:

Tr5 : F2 ⊗GL5 P (H∗V5)9 → Ext5,14
A (F2,F2),

as the domain is zero in degree 9.
From Quỳnh [9, Prop. 1.3],

(F2 ⊗A H∗(V5))GL5
11 = 0.

Passing to the duality, Ph2 is not in the image of the fifth transfer for S0:

Tr5 : F2 ⊗GL5 P (H∗V5)11 → Ext5,16
A (F2,F2),

as the domain is zero in degree 11.
Lin [7] and Chen [1] constructed elements P̂ h1 and P̂ h2 in Ext4,t

A (H̃∗RP∞,F2)
for respectively t = 14 and t = 16, whose behaviors are given by the algebraic
Kahn-Priddy homomorphism

t∗(P̂ hi) = Phi, (i = 1, 2).

Now we show that P̂ hi are not in the image of the fourth transfer for RP∞

TrRP
∞

4 : F2 ⊗GL4 P (H∗Vs ⊗ H̃∗RP∞)t−4 → Ext4,t
A (H̃∗RP∞,F2),

for respectively t = 13 and t = 15. Suppose the contrary that P̂ hi is in the
image of the transfer. That is, there exists ẑi ∈ P (H∗Vs ⊗ H̃∗RP∞)t−4 such
that TrRP

∞

4 (ẑi) = P̂ hi Since the commutativity of the diagram in [4, Lemma
4.6], we have

Tr5ι∗(ẑi) = t∗TrRP
∞

4 (ẑi)
= t∗(P̂ hi) = Phi.
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So, it concludes that Phi is in the image of the fifth transfer for S0. This
contradicts to the result by Singer for i = 1 or by Quỳnh for i = 2. This
contradiction rejects the contrary hypothesis. The proposition is proved. ■

Remark 2.4. In [4, Prop. 6.5], we actually prove that the set {hn1 · · · hnk
P̂ h2}

contains infinitely many critical elements, where hn denotes the well-known
Adams element. However, so far we have not known whether there is any ele-
ment of the form hn1 · · · hnk

P̂ h2, which is in the image of the transfer TrRP
∞

s .
Therefore, Singer’s conjecture on the injectivity of TrRP

∞

s and Trs+1 is still
open.
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Abstract. Accurate credit risk assessment is crucial for the stability and
growth of peer-to-peer (P2P) lending platforms. This study investigates
the effectiveness of machine learning models in predicting loan defaults us-
ing historical Lending Club data. We evaluate logistic regression, decision
tree, and random forest, employing feature engineering techniques like one-
hot and weight of evidence encoding. Model performance is assessed using
K-fold cross-validation and metrics such as accuracy and AUC. To enhance
model interpretability, we utilize explainable AI techniques like LIME and
SHAP, enabling lenders and borrowers to understand the factors driving
loan defaults. Our findings demonstrate that while complex models offer
higher predictive accuracy, simpler models like logistic regression with WoE
encoding provide a suitable balance between accuracy and interpretability,
fostering trust and responsible lending within the P2P lending ecosystem.

1. Introduction

The emergence of financial technology (Fintech) is widely recognized as
one of the most significant innovations in the financial sector, reshaping the
delivery and consumption of financial services at an unprecedented pace [1].
Broadly, Fintech solutions fall into two categories: those designed for individual
consumers such as personal financial management, investment, and lending

Key words and phrases: Peer-to-Peer Lending, Credit Risk Assessment, Logistic Regression,
Random Forest, Weight of Evidence Encodings, Explainable AI, LIME, SHAP, Model Inter-
pretability, Lending Club
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and those developed for financial institutions, offering solutions like customer
identification and credit scoring (ISB, 2025).

Among consumer-facing Fintech innovations, Peer-to-Peer (P2P) lending
has gained considerable traction as a disruptive force in traditional lending
markets. In this model, individual lenders provide unsecured loans directly
to borrowers through online platforms, bypassing conventional financial inter-
mediaries. P2P lending platforms operate similarly to marketplace disruptors
like Uber and Grab, facilitating connections between lenders and borrowers at
scale.

Since the launch of the first P2P platform, Zopa, in the UK in 2005, the
industry has grown rapidly across the globe [2]. The Credit Committee on
the Global Financial System and the Financial Stability Board have identified
China, the United States, and the United Kingdom as the largest P2P markets,
with outstanding P2P credit in China reaching USD 99.7 billion, followed by
USD 34.3 billion in the U.S. and USD 4.1 billion in the UK.

Several factors have contributed to this surge. The aftermath of the 2008
global financial crisis led to stricter regulatory capital requirements and con-
strained lending by traditional banks [3]. Simultaneously, declining interest
rates on savings accounts pushed investors to seek higher-yield alternatives.
P2P lending has also appealed to underserved segments, such as small and
medium enterprises (SMEs) and rural populations who are often excluded from
formal banking channels. In addition, the proliferation of mobile technology
and the internet has created an infrastructure that supports the scalability of
digital lending platforms.

Despite its rapid growth, the P2P lending industry faces significant chal-
lenges, particularly in ensuring robust credit risk assessment to maintain plat-
form stability and protect stakeholders. The motivation for this study stems
from the critical need to develop accurate and interpretable credit risk models
that can effectively predict loan defaults while meeting regulatory and ethical
standards. In P2P lending, where individual investors bear the financial risk of
borrower defaults, inaccurate credit assessments can lead to substantial losses,
erode investor confidence, and undermine the sustainability of lending plat-
forms. Moreover, the lack of transparency in credit decision-making processes
can exacerbate issues of trust and fairness, particularly for borrowers who may
be denied loans without clear justifications. These challenges are compounded
by the increasing complexity of modern credit datasets, which include diverse
borrower attributes and require sophisticated analytical approaches to uncover
meaningful patterns.

Traditional credit scoring methods, such as logistic regression and statistical
scoring models, have long been valued for their simplicity and interpretability,
making them suitable for regulatory compliance and stakeholder communica-
tion. However, these methods often struggle to capture the non-linear rela-
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tionships and high-dimensional interactions present in large-scale P2P lending
datasets. In contrast, machine learning (ML) techniques, such as decision trees
and random forests, excel at modeling complex patterns and improving predic-
tive accuracy, but their ”black-box” nature poses challenges in regulated finan-
cial environments where explainability is paramount. For instance, regulations
like the Fair Credit Reporting Act (1970) in the United States and the General
Data Protection Regulation (GDPR) (2018) in the European Union mandate
that lenders provide clear explanations for credit decisions, a requirement that
complex ML models struggle to meet without additional interpretability tools.
The integration of machine learning and mathematical models offers a promis-
ing solution to address these dual objectives of accuracy and interpretability.
By combining the predictive power of advanced ML algorithms with the trans-
parency of traditional mathematical frameworks, such as logistic regression
with Weight of Evidence (WoE) encoding, this study aims to develop credit
risk models that are both highly accurate and easily interpretable. Further-
more, the incorporation of explainable AI (XAI) techniques, such as Local
Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive ex-
Planations (SHAP), allows us to bridge the interpretability gap for complex ML
models, enabling lenders to understand and communicate the factors driving
credit decisions.

This study makes several key contributions to the field of credit risk as-
sessment in P2P lending. First, we provide a comprehensive evaluation of ma-
chine learning models (logistic regression, decision trees, and random forests)
under two preprocessing strategies-Weight of Evidence (WoE) encoding and
one-hot encoding with min-max scaling-using a real-world dataset from Lend-
ing Club. This analysis identifies optimal modeling approaches that balance
predictive accuracy with interpretability, offering practical guidance for P2P
lending platforms. Second, we demonstrate the effectiveness of integrating
traditional mathematical models with advanced ML techniques, showing that
logistic regression with WoE encoding achieves a desirable trade-off between
performance and transparency, while random forests enhanced with XAI tools
deliver superior accuracy with actionable explanations. Third, we apply LIME
and SHAP to interpret complex ML models, providing both local and global
insights into the factors driving credit decisions, which supports regulatory
compliance and enhances stakeholder trust. Finally, our findings contribute
to the responsible deployment of ML in P2P lending by proposing a frame-
work that aligns with regulatory expectations, promotes fair lending practices,
and fosters transparency in credit scoring, thereby supporting the sustainable
growth of the P2P lending ecosystem.

However, the growth of P2P lending raises concerns around regulatory over-
sight, consumer protection, and systemic risk. Countries like China and the
U.S. have implemented regulatory safeguards-such as prohibiting platforms
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from holding client funds or disbursing loans directly in order to reduce risks
such as fraud, mismanagement, and financial exclusion. Legal risks, includ-
ing Ponzi-like schemes and investor discrimination, remain ongoing challenges,
and concerns about transparency, liquidity, and platform viability persist [4] [5].
These developments underscore the need for robust credit risk models that can
assess borrower quality and support the responsible expansion of P2P lending.

Given the scale and risks involved in digital lending ecosystems, credit de-
fault prediction has become an essential task in modern financial services.
Building reliable models that can identify borrowers likely to default is cru-
cial for mitigating financial loss, maintaining investor trust, and complying
with regulatory standards. This paper focuses on building and interpreting
machine learning models for predicting credit default risk using a real-world
dataset from Lending Club, one of the largest P2P lending platforms in the
United States.

2. Literature Review

Credit risk modeling has long been central to financial decision-making,
with early work relying on traditional statistical techniques [6]. As credit mar-
kets expanded and digital lending platforms emerged, machine learning (ML)
approaches have increasingly been used to enhance prediction accuracy and
scale model deployment. Among these, logistic regression, decision trees, and
random forests remain some of the most widely applied methods in consumer
credit risk, including in peer-to-peer (P2P) lending [7] [8], mortgage default [9]
[10], and credit card repayment modeling [11].

The rapid growth of digital lending platforms, particularly peer-to-peer
(P2P) lending, has spurred research into advanced machine learning (ML) tech-
niques for credit risk assessment, with a shared goal of improving predictive
accuracy while addressing interpretability challenges in regulated financial en-
vironments. Ma et al. (2018) [7] made a significant contribution by addressing
the critical problem of predicting loan defaults in P2P lending networks, aiming
to enhance risk assessment for online platforms. They employed gradient boost-
ing algorithms, specifically LightGBM and XGBoost, on a high-dimensional
dataset from a Chinese P2P lending platform, incorporating borrower demo-
graphics, credit history, and transaction records, with preprocessing to handle
missing values and outliers. Their results demonstrated superior performance,
with LightGBM achieving an AUC of 0.85, underscoring the power of gradi-
ent boosting to capture complex, non-linear patterns in P2P lending data and
setting a benchmark for predictive modeling in this domain, which directly
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informs our study’s exploration of ML in P2P credit scoring.

Similarly, Duan (2019) [8] tackled credit default prediction across various
lending contexts, focusing on modeling financial system risk. The study uti-
lized deep neural networks (DNNs) on a proprietary consumer loan dataset,
including features like credit scores, debt-to-income ratios, and payment his-
tories. The DNNs achieved an accuracy of 0.82, surpassing logistic regression,
but their complexity highlighted the need for interpretability in regulated set-
tings, a challenge that aligns with our emphasis on explainable models for P2P
lending.

In the mortgage sector, Sirignano et al. (2016) [9] addressed the problem of
predicting default risk, a priority following the 2008 financial crisis. They ap-
plied recurrent neural networks (RNNs) to a large U.S. mortgage loan dataset,
incorporating time-series data on payment behavior and macroeconomic indi-
cators. Their model achieved an AUC of 0.78, demonstrating the ability of deep
learning to model temporal dependencies, though the lack of interpretability
posed limitations, reinforcing the need for explainable AI (XAI) methods in
our work.

Kvamme et al. (2018) [10] also focused on mortgage default prediction, aim-
ing to improve risk assessment for financial institutions. Using convolutional
neural networks (CNNs) on a Norwegian mortgage dataset with borrower fi-
nancials and loan characteristics, they achieved a recall of 0.71, outperforming
traditional models. However, the black-box nature of CNNs underscored the
importance of interpretability, a concern central to our study’s use of XAI
techniques like LIME and SHAP.

Butaru et al. (2016) [11] investigated credit card repayment risk, seeking
to identify delinquency drivers in consumer credit. They applied logistic re-
gression and random forests to a large dataset from a U.S. credit card issuer,
including transaction and payment data. The random forest model yielded
an AUC of 0.80, outperforming logistic regression, but regulatory demands for
transparency favored the interpretable logistic regression, a finding that shapes
our model selection strategy for balancing accuracy and explainability in P2P
lending. These studies collectively highlight the potential of advanced ML to
enhance credit risk prediction across diverse lending contexts, with Ma et al.
(2018) [7] providing a particularly relevant framework for P2P lending through
their high-performing gradient boosting approach. However, the recurring chal-
lenge of model interpretability, especially for complex models, underscores the
need for integrating predictive power with transparency, a core objective of our
study.

Logistic regression continues to be popular in the financial industry due to
its simplicity and transparency. The model’s coefficients can be directly inter-
preted as indicators of a feature’s effect on the likelihood of default, making
it highly suitable in regulated environments. Decision trees also offer trans-
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parency through their rule-based structure but are prone to instability when
faced with noisy or imbalanced data. To improve predictive performance, many
studies and industry applications turn to random forests, which aggregate pre-
dictions from multiple decision trees trained on randomized subsets of the data
and features [12]. Although random forests generally outperform simpler mod-
els, they are less transparent, making them difficult to interpret a key concern
in finance.

This lack of interpretability presents serious challenges in regulated credit
environments. In the United States, the Fair Credit Reporting Act (1970)
requires lenders to disclose the main reasons behind a loan rejection. In the
European Union, the General Data Protection Regulation (GDPR) (2018) pro-
vides individuals with a ”right to explanation” for algorithmic decisions [13].
In Vietnam, the regulatory landscape for digital lending is still evolving, but
the State Bank of Vietnam’s Fintech Sandbox Draft Decree (2021) has empha-
sized that platforms must provide clear disclosure of loan terms and decision
criteria. However, there are no standardized guidelines yet for how credit risk
scores should be calculated, especially when ML models are involved. This cre-
ates growing pressure on lenders to ensure their models are not only accurate
but also explainable. To address these challenges, researchers have increasingly
focused on interpretable machine learning. Traditional models such as logis-
tic regression and decision trees are naturally interpretable, but may lack the
flexibility to capture complex relationships in the data. In contrast, ensemble
methods like random forests offer improved performance, but are considered
black-box models. To bridge this gap, post hoc interpretability methods have
been developed—most notably, LIME (Local Interpretable Model-Agnostic Ex-
planations) and SHAP (SHapley Additive exPlanations). LIME approximates
a complex model locally using a linear surrogate [14], while SHAP attributes a
model’s prediction to individual features using cooperative game theory princi-
ples [15]. These methods have been applied to credit risk modeling, including
work on Lending Club data [16], [17], [18].

In this study, we focus specifically on the lender’s perspective, recognizing
their need for both high-performing models and clear justifications for credit
decisions. Using loan-level data from Lending Club, we evaluate the perfor-
mance of logistic regression (with L1 and L2 regularization) and tree-based
models (decision trees and random forests) under two different preprocessing
strategies: (i) weight of evidence (WoE) and (ii) one-hot encoding with min-
max scaling. Our results identify two models of interest: a logistic regression
model using WoE, which is inherently interpretable, and a random forest model
trained on one-hot encoded, scaled data, which achieves high accuracy but re-
quires additional explanation tools. Therefore, we analyze the logistic model
using standard coefficient interpretation, and apply LIME and SHAP exclu-
sively to the random forest model to uncover the drivers behind its predictions.
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By balancing predictive power with interpretability tailored for lenders, this
work contributes to the responsible deployment of machine learning in P2P
credit scoring, helping loan providers meet regulatory expectations while mak-
ing informed, transparent lending decisions.

3. Methodology

3.1. Reviewing data

For this study, we utilized historical loan data from Lending Club, a leading
U.S. peer-to-peer (P2P) lending platform, covering loans issued in 2018. The
dataset is publicly available through Kaggle, specifically the ”Lending Club
Loan Data” dataset, which includes loans from 2007 to 2018 [23], licensed
under CC0 1.0 Universal (Public Domain Dedication). This dataset contains
hundreds of features per loan, including key financial attributes such as loan
amount, interest rate, monthly installment, and borrower-related variables like
homeownership type, annual income, monthly FICO score, debt-to-income ra-
tio, and the number of open credit lines. The data represents loans actually
funded through the platform, not loan applications, ensuring that the analysis
reflects real lending outcomes.

To provide clarity on the dataset’s structure, Table 1 presents an example
of the training dataset, showcasing a subset of five loan records with selected
features and their corresponding labels. This example illustrates the types of
variables used and the binary classification labels derived for modeling.

Table 1. Example of Training Dataset from Lending Club 2018 Data
loan amnt annual inc fico range low dti home ownership loan status

10000 60000 700 15.2 RENT Fully Paid
15000 45000 665 22.5 MORTGAGE Charged Off
20000 80000 720 18.7 OWN Fully Paid
8000 35000 680 25.3 RENT Default
12000 55000 695 20.1 MORTGAGE Fully Paid

Note: loan amnt (loan amount in USD), annual inc (annual income in
USD), fico range low (lower bound of FICO score), dti (debt-to-income ratio
in %), home ownership (borrower’s homeownership status), loan status (loan
outcome).

Loan status serves as the outcome variable and reflects the borrower’s re-
payment behavior. A loan is marked as ”Current” if it is being repaid on time,
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”Late” if payment is between 16 and 120 days overdue, and ”Default” if the de-
lay exceeds 121 days. If Lending Club determines that a loan will not be repaid,
it is labeled as ”Charged-Off.” To streamline the classification task, we limited
our analysis to loans that were either Fully Paid, Default, or Charged-Off. We
categorized Fully Paid loans as creditworthy, and those labeled as Default or
Charged-Off as non-creditworthy. After filtering, the dataset comprised 8,323
non-creditworthy records and 47,384 creditworthy ones.

Following the definition of the classification labels, we examined the fea-
tures available in the dataset. These features fall into three broad categories:
borrower characteristics (such as FICO score, employment status, and annual
income), platform-driven decisions (such as loan grade and interest rate), and
loan performance outcomes (such as total payment). Because our objective is
to develop a model that can be applied in real-world settings, we prioritized
features that would be available to an investor at the time of loan issuance.
This approach ensures that the model’s predictions are not only accurate but
also practical and actionable.

In doing so, we addressed two major concerns: data leakage and the use
of platform-derived variables. Data leakage arises when a model incorporates
information that would not be accessible at the time a prediction is made,
especially when such information is strongly correlated with the target variable.
For example, the total payment feature is highly predictive of loan outcome-
loans that default or are paid off early typically have lower total payments.
While including this variable may boost model performance during training, it
undermines the model’s applicability in real-time investment decisions, where
such information is unavailable in advance.

Another concern involves variables that are not direct borrower attributes
but instead are generated by Lending Club’s internal risk models. The loan
grade variable is a clear example, and features such as interest rate and in-
stallment amount are closely tied to this grade. Since these variables reflect
Lending Club’s proprietary assessment mechanisms rather than fundamental
borrower characteristics, we excluded them from our analysis to ensure the
model remains independent of platform-specific decisions and can generalize to
other lending contexts.

3.2. Prediction models

The fundamental objective of credit scoring is to assess the creditworthiness
of individual applicants, which is essentially a binary classification problem. A
creditworthy applicant is expected to fulfill their financial obligations, whereas
a non-creditworthy applicant is likely to default. Accordingly, we frame the
consumer credit risk prediction task as estimating the probability of default for
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a borrower, based on a set of observed features.

Let xi = (xi1, xi2, . . . , xik) denote the feature vector for borrower i, which
captures information such as credit history, income, debt-to-income ratio, and
prior delinquencies. The target variable yi ∈ {0, 1} represents whether the
borrower defaulted, where yi = 1 indicates default and yi = 0 indicates no
default. The modeling tasks is then to estimate:

(1) ŷi = Pr(yi = 1 | xi).

We apply two categories of machine learning models to this task: linear
models-specifically L1- and L2-regularized logistic regression and tree-based
models including decision trees and random forests.

3.2.1. Logistic Regression

Logistic regression is a statistical classification method that models the
probability of a binary outcome as a function of a linear combination of input
features. It was formally introduced in the context of binary response modeling
by Cox (1958). The method models the log-odds of the probability of default
as follows:

(2) log

(
1− Pr(yi = 1)

Pr(yi = 1)

)
= β0 + β1xi1 + · · ·+ βkxik.

The parameters β = (β0, β1, . . . , βk) are estimated by maximizing the like-
lihood function. To improve generalization and prevent overfitting, regulariza-
tion is commonly applied.

L1-regularized logistic regression, also known as Lasso logistic regression,
introduces a penalty term proportional to the absolute value of the coefficients:

(3) LL = −
n∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] + λ
k∑

j=1

|βj |.

This regularization induces sparsity, effectively performing feature selection by
shrinking some coefficients to zero.

In contrast, L2-regularized logistic regression, or Ridge logistic regression,
penalizes the squared magnitudes of the coefficients:

(4) LL = −
n∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] + λ
k∑

j=1

β2
j .

This penalty shrinks coefficients toward zero without eliminating them, which
can be beneficial in the presence of multicollinearity.
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3.2.2. Decision Tree

A decision tree is a non-parametric, supervised learning algorithm that pre-
dicts outcomes by recursively partitioning the input space based on feature
thresholds. The Classification and Regression Tree (CART) algorithm, intro-
duced by [12], constructs the tree by selecting feature-value splits that minimize
an impurity criterion, typically Gini impurity:

(5) Gini(t) = 1−
C∑

c=1

p(c | t)2

where p(c | t) is the proportion of class c in node t. This recursive partitioning
continues until a stopping criterion is met (e.g., maximum depth or minimum
node size), resulting in a tree structure where each leaf node represents a final
prediction.

3.2.3. Random Forests

Random forest is an ensemble learning technique that aggregates predic-
tions from multiple decision trees to improve classification performance and
robustness [20]. Each decision tree in the ensemble is trained on a different
bootstrap sample of the training data, and feature selection at each node is
randomized. This combination of bootstrap aggregation (bagging) and ran-
dom feature selection helps ensure low correlation among trees, which in turn
reduces model variance.

To classify a new observation, each decision tree provides a prediction, and
the random forest outputs the majority vote across all trees. While individual
trees are relatively interpretable, the ensemble nature of random forests makes
the model difficult to interpret as a whole. As such, random forests are often
considered black-box models, despite their strong predictive performance and
robustness to overfitting.

3.3. Preprocessing data

To prepare the dataset for modeling, we experimented with two distinct pre-
processing strategies: weight of evidence (WoE) encoding and min-max scaling.
Each strategy was applied independently, as WoE produces features that are
already normalized, thereby eliminating the need for further scaling, while min-
max scaling operates directly on the original continuous variables and does not
require binning or WoE transformation.

Weight of evidence encoding is a widely used technique in credit risk mod-
eling [21], particularly suitable for datasets containing special values, missing
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data, or outliers. We began by discretizing continuous features into bins, which
allows special values to be grouped into separate categories and helps mitigate
the influence of extreme values. WoE assigns each bin a numerical value based
on the distribution of creditworthy and non-creditworthy borrowers. For bin i,
the WoE value is defined as:

(6) WoEi = ln




Ngood,i

Ngood

Nbad,i

Nbad




where Ngood,i and Nbad,i are the numbers of creditworthy and non-creditworthy
observations in bin i, and Ngood and Nbad are the total numbers of creditworthy
and non-creditworthy observations in the dataset.

One advantage of WoE is that it standardizes feature values on a log-odds
scale, which is especially useful for linear models like logistic regression. It also
handles missing values and outliers effectively by assigning them to dedicated
bins. However, because WoE relies on binning, it may introduce some loss of
granularity and is less interpretable outside of credit modeling contexts.

As an alternative, we apply min-max scaling to the original continuous
features without discretization. This method normalizes each feature x to a
value x′ in the range [0, 1], according to the formula:

(7) x′ =
x−min(x)

max(x)−min(x)
.

This transformation ensures that all features are on a comparable scale,
which can help improve numerical stability and convergence in gradient-based
models. While tree-based models such as decision trees and random forests are
typically invariant to monotonic transformations, scaling can still be beneficial
in controlling feature dominance and improving performance, especially when
the features span very different numeric ranges.

Because we use both linear and non-linear models, our preprocessing strat-
egy is designed to test which approach better supports each model type. In
particular, we expect WoE to be more effective for linear models, where en-
coding categorical and binned variables in terms of log-odds enhances model
interpretability and alignment with assumptions. For tree-based models, which
naturally handle non-linear splits, we test whether simple min-max scaling pro-
vides sufficient normalization without the need for more domain-specific trans-
formations like WoE.
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3.4. Interpretability methods

In high-stakes domains such as credit scoring, interpretability is a key re-
quirement for model adoption and trustworthiness. While complex models
like random forests often deliver superior predictive performance, they are fre-
quently criticized for their black-box nature. In this section, we explore three
interpretability methods: coefficient analysis using Weight of Evidence (WoE),
Local Interpretable Model-Agnostic Explanations (LIME), and SHapley Ad-
ditive exPlanations (SHAP). Each method provides a different lens through
which to understand model behavior and explain individual predictions.

3.4.1. Coefficient for WoE

When logistic regression is trained using features encoded with Weight of
Evidence (WoE), model interpretability is naturally preserved. Since WoE
transforms each variable into a continuous value representing the log-odds of
creditworthiness, the estimated coefficients in the logistic regression model can
be interpreted directly as the marginal effect of each feature on the log-odds of
default. A positive coefficient indicates that an increase in the WoE-encoded
feature increases the likelihood of default (i.e., reduces creditworthiness), while
a negative coefficient implies the opposite.

This approach is particularly appealing for credit risk applications because
it aligns with long-standing industry practices and produces additive, transpar-
ent risk contributions across features. Moreover, when features are pre-binned
and monotonic WoE encodings are applied, the signs and magnitudes of the
coefficients tend to be more stable and easier to interpret.

3.4.2. Local Interpretable Model-Agnostic Explanations (LIME)

LIME is a post hoc model-agnostic technique that provides local inter-
pretability by approximating the decision boundary of any black-box model
around a specific data point with a linear model [14]. This linear approxima-
tion is trained by sampling perturbed versions of the original input and fitting
a locally weighted linear regression model. The weights are assigned based
on the proximity of the perturbed samples to the original instance, typically
measured using a kernel function.

The coefficients of the resulting local surrogate model serve as feature im-
portance scores, highlighting how each input feature contributes to the model’s
prediction for that particular instance. The strength of LIME lies in its flexibil-
ity—it can be applied to any model and any type of data. However, its reliance
on sampling introduces randomness, and explanations can vary slightly across
different runs. Furthermore, the local linear approximation may not faithfully
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represent highly non-linear decision boundaries.

3.4.3. SHapley Additive exPlanations (SHAP)

SHAP is an explainable AI method based on cooperative game theory. It
attributes a model’s prediction for a specific data point to the contributions of
each feature using the concept of Shapley values, originally developed to fairly
distribute payouts among players in a coalition [22]. SHAP satisfies several
desirable properties for interpretability, including local accuracy (the sum of
the attributions equals the model output), missingness (features not present
receive zero contribution), and consistency (if a feature’s contribution increases
in a model, its Shapley value will not decrease).

We employ the Kernel SHAP implementation introduced by [15], which
approximates Shapley values using a weighted least squares regression. To
explain a data point xi , Kernel SHAP constructs a dataset of feature subsets
sampled from xi, with the remaining features replaced by background values
from the training data. Each subset receives a weight based on the size of the
subset, with smaller subsets (closer to the marginal contribution of a single
feature) weighted more heavily. The regression solution yields the estimated
Shapley values.

Despite its theoretical appeal, Kernel SHAP suffers from poor scalability:
computing exact Shapley values requires evaluating all 2k feature subsets, which
becomes computationally infeasible for high-dimensional datasets. Approxi-
mate methods and sampling strategies are used in practice, but the method
remains relatively expensive compared to alternatives like LIME.

3.4.4. Comparative Discussion

Both LIME and SHAP provide complementary perspectives for model in-
terpretability. LIME excels in computational efficiency and model-agnostic
flexibility, offering quick local approximations that are especially useful when
working with large feature sets or real-time explanations. However, LIME may
lack fidelity in capturing true feature interactions and does not guarantee con-
sistency or local accuracy.

SHAP, on the other hand, offers theoretically grounded explanations that
reflect both individual feature contributions and their interactions. It provides
robust, additive attributions that sum to the model’s prediction, but it is com-
putationally more intensive and may be less suitable for real-time applications.

In practice, the choice between LIME and SHAP should be guided by the
specific use case. For instance, when interpretability is paramount for au-
ditability or regulatory compliance, SHAP may be more appropriate despite
its computational cost. In contrast, when speed is essential and the model
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is used in a dynamic setting with frequent queries, LIME may offer a more
practical solution. By applying both techniques judiciously, practitioners can
better understand and validate complex machine learning models, particularly
in sensitive domains like credit risk assessment.

4. Results

4.1. Model performance

In this section, we evaluate the performance of various machine learning
models under two different preprocessing strategies: Weight of Evidence (WoE)
encoding and one-hot encoding with min-max scaling. The models under con-
sideration include L1- and L2-regularized logistic regression, decision tree, and
random forest classifiers.

We employ 5-fold cross-validation to assess the generalization performance
of each model. In this setup, the dataset is randomly partitioned into five equal
subsets. In each fold, one subset is held out as the test set, while the remaining
four subsets are used for training. Thus, in each iteration, the training set
consists of 80% of the data and the test set comprises the remaining 20%.
Performance metrics are computed on the test set and then averaged across all
five folds to ensure robustness.

We utilized a dataset of 55,707 records (8,323 non-creditworthy and 47,384
creditworthy) and applied a 5-fold cross-validation approach, which inherently
combines training and testing phases without a separate validation set. Specif-
ically, in each fold, the dataset was split into a training set of approximately
44,566 records (80% of the data) and a test set of 11,141 records (20%), to-
taling 38,994 records for training and 16,713 for testing across all folds, as
derived from the provided split (38,994 training + 16,713 test = 55,707). We
did not use a distinct validation set because the 5-fold cross-validation process
effectively validates the model by rotating the test set across folds, optimizing
performance metrics like recall for the non-creditworthy class, as detailed in
our hyperparameter tuning with GridSearchCV. This approach ensures that
the model is evaluated on multiple subsets, providing a robust estimate of
generalization performance without requiring a separate validation set.

To address the class imbalance in our dataset, we implemented a combina-
tion of Synthetic Minority Oversampling Technique (SMOTE), class weighting,
and a recall-focused scoring metric to enhance the performance of our machine
learning models, particularly for the non-creditworthy class. SMOTE was ap-
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plied to the training data within each fold of our 5-fold cross-validation to
generate synthetic non-creditworthy samples, balancing the class distribution
while preserving the original test set for realistic evaluation. Additionally,
we incorporated class weighting (e.g., balanced or a 1:5 ratio favoring non-
creditworthy) in our logistic regression and random forest models to penalize
misclassifications of the minority class more heavily. By using recall as the
primary scoring metric in hyperparameter tuning via GridSearchCV, we prior-
itized the identification of non-creditworthy loans, minimizing false negatives
critical to credit risk assessment. These strategies collectively mitigated the
risk of overfitting and improved the models’ ability to accurately classify non-
creditworthy records, as evidenced by enhanced recall scores in our results.

To evaluate classification performance, we use accuracy, area under the
receiver operating characteristic curve (AUC), and recall, with particular em-
phasis on recall due to the cost-sensitive nature of credit risk. Since our goal is
to minimize the number of high-risk borrowers who are incorrectly classified as
low-risk (i.e., false negatives), recall-defined as the proportion of true default-
ers correctly identified is of primary importance. The AUC reflects the model’s
ability to distinguish between creditworthy and non-creditworthy applicants,
while accuracy captures the overall proportion of correctly classified samples.
Given that our dataset is relatively balanced, accuracy remains a meaningful
metric alongside AUC and recall. For all models, the predicted probability of
default is converted to a binary classification using a threshold of 0.5.

Tables 1 and 2 summarize the results of the 5-fold cross-validation for the
two preprocessing pipelines. Among the models trained on WoE-encoded data,
logistic regression models perform best in terms of both AUC and recall. Specif-
ically, L2-penalized logistic regression achieves an accuracy of 0.66, an AUC of
0.71, and a recall of 0.67. Although the random forest achieves the highest
accuracy (0.71), its recall is considerably lower (0.50), which limits its effec-
tiveness for detecting defaulters. This supports the view that WoE encoding,
when combined with interpretable linear models, offers strong predictive per-
formance while maintaining transparency.

Table 2. 5-fold cross-validation performance of ML models using WoE encoding
Model Accuracy AUC Recall
L1 Logistic Regression 0.65 0.70 0.65
L2 Logistic Regression 0.66 0.71 0.67
Decision Tree 0.61 0.67 0.61
Random Forest 0.71 0.69 0.50

In contrast, when models are trained on min-max scaled data with one-hot
encoding, the random forest outperforms the other models across all metrics.
It achieves an accuracy of 0.78, an AUC of 0.69, and a recall of 0.38. However,
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its recall remains relatively low, suggesting that even with higher accuracy, it
may not be optimal for identifying risky applicants. Meanwhile, L1-penalized
logistic regression achieves a competitive recall of 0.66, though its accuracy
(0.59) and AUC (0.67) are lower than those of the random forest.

Table 3. 5-fold cross-validation performance of ML models using min-max
scaling

Model Accuracy AUC Recall
L1 Logistic Regression 0.59 0.67 0.66
L2 Logistic Regression 0.71 0.65 0.45
Decision Tree 0.57 0.66 0.67
Random Forest 0.78 0.69 0.38

From a practical standpoint, logistic regression trained with WoE features
presents an attractive option for credit scoring applications. It offers inter-
pretable coefficients that align with industry standards and regulatory require-
ments. However, implementing WoE encoding requires feature binning, mono-
tonicity constraints, and careful calibration, which increases preprocessing com-
plexity.

On the other hand, random forests, though superior in raw predictive power
when trained on scaled features, suffer from limited interpretability. The en-
semble nature of the model, which aggregates hundreds of decision paths, makes
it difficult to explain individual predictions—an issue particularly relevant in
regulated domains like consumer finance.

In the context of peer-to-peer lending, both types of misclassification-false
negatives (defaulters misclassified as creditworthy) and false positives (credit-
worthy applicants denied loans)-have important business implications. Misclas-
sifying defaulters results in financial losses, while rejecting potentially reliable
borrowers leads to lost revenue. Given the scale of the lending industry, even
small gains in recall or precision can translate into substantial economic im-
pact. Despite this, regulatory constraints and the need for explainability often
prevent lenders from adopting more complex but opaque models. This trade-
off motivates our deeper investigation into model interpretability in the next
section.

4.2. Explaining model results

In this section, we analyze the interpretability of the models to support their
practical adoption in loan decision-making systems. Machine learning models
are increasingly used by lending institutions to assess the creditworthiness of
borrowers. However, regulatory frameworks such as the Equal Credit Oppor-
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tunity Act (ECOA) and the Fair Credit Reporting Act (FCRA) in the United
States require that lenders provide specific reasons for loan denial. This has
created a strong demand for interpretable models and reliable post hoc expla-
nation techniques.

Interpretability is not only essential for regulatory compliance but also for
building trust with applicants and improving internal risk assessment proce-
dures. In this context, lenders seek to identify the key factors driving credit-
worthiness and to generate understandable explanations for individual decisions
made by the model. Transparent models also allow companies to identify rep-
resentative historical borrowers whose profiles are similar to new applicants,
thus supporting a case-based reasoning approach.

4.2.1. WoE Coefficients for Logistic Regression

One effective approach to achieving model interpretability is through the use
of logistic regression trained on Weight of Evidence (WoE)-encoded features. In
this setting, each feature represents the log-odds of being creditworthy within
a given bin, and the coefficients of the logistic regression model quantify the
contribution of each feature to the log-odds of default.

The intercept of the trained L2-penalized logistic regression model is –1.713,
and the coefficients for each WoE-transformed feature are presented in Table
3. A positive coefficient implies that higher values of the corresponding WoE
feature (i.e., riskier bins) increase the likelihood of default, while negative coef-
ficients imply the opposite. Because WoE encoding aligns feature values with
the probability of default, the resulting coefficients can be directly interpreted
as directional indicators of credit risk.

As shown in the table, the loan amount (loan amnt woe) is the most in-
fluential variable in determining creditworthiness, with a coefficient of 1.247.
This suggests that larger loan amounts are associated with a higher prob-
ability of default. Other important predictors include recent credit inquiries
(inq last 6mths woe, 0.971), annual income (annual inc woe, 0.908), and FICO
score range (fico range low woe, 0.725). These features align well with common
industry understanding of credit risk factors.

The simplicity and transparency of this model make it particularly suitable
for lending environments where interpretability and regulatory reporting are as
important as predictive accuracy. In contrast to complex models such as ran-
dom forests, logistic regression with WoE encoding provides clear justifications
for both individual and population-level decisions.
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Table 4. Coefficients of L2-Penalized Logistic Regression (WoE Model)
Feature Coefficient
loan amnt woe 1.247
inq last 6mths woe 0.971
annual inc woe 0.908
fico range low woe 0.725
verification status woe 0.677
home ownership woe 0.637
num il tl woe 0.487
revol util woe 0.473
mort acc woe 0.423
mths since rcnt il woe 0.315
mo sin old rev tl op woe 0.255

4.2.2. Local Interpretable Model-Agnostic Explanations (LIME) for
Random Forest

LIME (Local Interpretable Model-Agnostic Explanations) is a post hoc in-
terpretability technique that approximates complex models by training a local,
interpretable surrogate model around a prediction of interest [14]. In our case,
LIME is used to interpret predictions made by the random forest model trained
on one-hot encoded features with min-max scaling.

For each individual data point, LIME perturbs the instance to generate a
synthetic neighborhood and fits a locally weighted linear regression to approx-
imate the black-box model’s behavior in that region. The coefficients of this
surrogate model represent the impact of each feature on the prediction and can
be interpreted as the change in the predicted probability resulting from a unit
change in the feature value, holding other features constant.

Figure 1 shows a LIME explanation for a single borrower. The model assigns
a 91% predicted probability of default, indicating high credit risk. The bar
charts in the figure break down this prediction by feature contribution. Features
shown in red increase the probability of default (Class 1), while those in green
support a prediction of no default (Class 0).

In this example, the most influential features increasing the likelihood of de-
fault are verification status Verified = 0.00, indicating unverified income, which
contributes approximately +0.05 to the prediction; application type Joint App
= 0.00, adding +0.04; and both home ownership MORTGAGE = 0.00 and
home ownership RENT= 0.00, each contributing +0.03. Additionally, fico range
low = 0.35 and mort acc = 0.25 fall into intervals that the model associates
with higher risk, each contributing approximately +0.02 to the probability of
default.
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These features push the prediction strongly toward the ”Default” class. On
the other hand, features such as loan amnt = 0.49, num actv bc tl = 0.17,
and inq last 12m = 0.01 slightly counterbalance the default risk, with negative
contributions shown in green. However, the mitigating effect of these features
is not sufficient to override the cumulative positive influence of the others,
resulting in a high default prediction.

LIME’s local explanation highlights which features the model relied on for
this specific decision and allows decision-makers to trace the rationale behind
a prediction. While LIME does not guarantee global consistency or faithful-
ness to the underlying model, it is computationally efficient and flexible across
model types and data structures. In production environments where trans-
parency is critical for instance, when rejecting a loan application LIME can
help generate individualized explanations in real time. These explanations sat-
isfy regulatory requirements and help build trust with customers by providing
a human-understandable rationale for each prediction.

4.2.3. SHapley Additive exPlanations (SHAP) for Random Forest

To interpret the predictions of the random forest model trained on one-hot
encoded features with min-max scaling, we apply SHapley Additive exPlana-
tions (SHAP). SHAP is an explainability technique rooted in cooperative game
theory that decomposes a model’s prediction into the contributions of each in-
put feature [22]. For this task, we use the Tree SHAP algorithm, which is
optimized for ensemble models such as random forests [15].

SHAP provides global explanations by measuring the average magnitude
of each feature’s contribution across all instances in the dataset. These values
represent how much each feature, on average, influences the model’s prediction
toward either class: ”Default” (Class 1) or ”No Default” (Class 0). Figure 2
presents the SHAP summary plot based on mean absolute SHAP values, with
red bars representing contributions toward predicting default, and blue bars
representing contributions toward predicting no default.

The results highlight loan amnt, fico range low, and verification status Veri
-fied as the most influential predictors in the model’s decision-making. This
aligns well with financial intuition: larger loan amounts and lower FICO scores
are commonly associated with higher credit risk, while income verification sta-
tus reflects the reliability of the reported income, which can strongly influ-
ence repayment behavior. Other important features include mort acc (num-
ber of mortgage accounts), home ownership MORTGAGE, and inq last 6mths
(number of credit inquiries in the last six months), all of which are standard
indicators in credit risk evaluation.

Unlike the WoE-based logistic regression model described in Section 4.2.1,
which offers interpretability through linear coefficients aligned with log-odds,
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Figure 1. LIME explanation for one borrower classified as ”Default” by the
random forest model (predicted probability = 0.91). Red bars indicate features
contributing to the ”Default” prediction, while green bars indicate features
supporting ”No Default.”

the random forest model requires post hoc interpretability tools like SHAP due
to its non-linear and ensemble nature. While the random forest model achieves
higher accuracy, its lack of transparency can be a barrier to deployment in
regulated financial contexts. SHAP mitigates this by revealing how each feature
contributes to predictions at both the global and individual levels.

Despite its advantages, SHAP also has limitations. While Tree SHAP is
computationally efficient compared to the original Shapley value formulation,
it can still be resource-intensive for very large models or datasets. Moreover,
SHAP’s explanations, while grounded in strong theory, may still be difficult to
communicate to non-technical stakeholders, particularly when many features
are involved.

Nonetheless, SHAP serves as a powerful bridge between predictive perfor-
mance and interpretability. It allows stakeholders to audit the behavior of
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complex models like random forests and to gain trust in model predictions by
understanding the most influential drivers of credit decisions.

We compare the interpretability results of our Random Forest model (min-
max scaling) in Figures 1 and 2 with similar existing works to assess their
quality. Our SHAP analysis (Figure 2) identifies loan amount, FICO score,
and verification status as top predictors, aligning closely with [16] and [17],
who also highlight FICO score and loan amount using SHAP on Lending Club
data, and [18], who emphasize credit history on a Colombian P2P dataset. Sim-
ilarly, our LIME explanation (Figure 1) provides detailed contributions (e.g.,
unverified income: +0.05, FICO score: +0.02) for a borrower predicted as
”Default” (probability 0.91), offering more granularity than LIME results in
Hadji Misheva et al. and Ariza-Garzón et al., enhancing individual decision
explanations. We argue that these results are ”good enough” for P2P lend-
ing credit risk assessment, as they provide actionable local (LIME) and global
(SHAP) insights, meeting regulatory requirements for transparency and align-
ing with traditional risk factors like FICO score and loan amount. Despite the
Random Forest’s lower recall (0.38) compared to L2 Logistic Regression (0.67),
the interpretability results are sufficiently detailed and relevant, supporting
stakeholder trust and responsible lending practices though future work could
improve predictive performance for non-creditworthy detection.

5. Conclusion

This study investigated the trade-off between predictive performance and
model interpretability in the context of credit risk assessment for peer-to-peer
(P2P) lending. Using historical data from Lending Club, we compared the
effectiveness of logistic regression, decision tree, and random forest models
under two preprocessing pipelines: Weight of Evidence (WoE) encoding and
one-hot encoding with min-max scaling. Our results show that while random
forest models trained on scaled one-hot features achieve the highest accuracy,
logistic regression models using WoE encoding strike a more desirable balance
between predictive power and interoperability.

From a practical perspective, the choice of model should reflect the priorities
of the lending platform. When the primary objective is regulatory compliance
and transparency, as is often the case in highly regulated environments, logistic
regression with WoE encoding offers a clear advantage. This approach enables
lenders to trace the contribution of each feature to the predicted probability
of default, making the model easier to audit and justify. On the other hand,
when prediction accuracy is paramount, especially in settings where regulatory
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Figure 2. SHAP summary plot showing the global feature importance for the
random forest model trained using one-hot encoding and min-max scaling. Red
bars indicate contributions toward predicting ”Default” (Class 1), while blue
bars indicate contributions toward predicting ”No Default” (Class 0).
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constraints are less strict, random forests can provide superior performance.

To address the opacity of ensemble models, we employed two post hoc
explainability techniques-LIME and SHAP-to interpret the predictions of the
random forest. These tools revealed that key drivers of credit decisions include
loan amount, FICO score, verification status, and the number of mortgage
accounts factors that are consistent with traditional credit risk evaluation. The
application of LIME enabled localized, instance-specific explanations, which are
useful for generating individualized decision justifications. SHAP, in contrast,
offered a global perspective on feature importance, contributing to broader
model understanding and policy refinement.

Ultimately, our findings highlight that interpretability and accuracy need
not be mutually exclusive. By selecting modeling techniques and explanation
methods aligned with institutional goals and regulatory expectations, lenders
can build trustworthy, effective credit scoring systems. As the P2P lending
industry continues to evolve, integrating transparent machine learning models
will be essential for promoting responsible lending practices, enhancing bor-
rower trust, and maintaining regulatory compliance.
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