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Abstract. In this survey paper we give an overview on some aspects
of singularities of algebraic plane curves over an algebraically closed field
of arbitrary characteristic. We review, in particular, classical results and
recent developments on invariants of plane curve singularities.

1. Introduction

The study of plane curve singularities started with fundamental work of
Heisuke Hironaka on the resolution of singularities ([20]1964), Oskar Zariski’s
studies in equisingularity ([30] 1965-1968), Michael Artin’s paper on isolated
rational singularities of surfaces ([4] 1966), and the work by René Thom,
Bernard Malgrange, John Mather,... on singularities of differentiable map-
pings. It culminated in the 1970ties and 1980ties with the work of John
Milnor and Pierre Deligne, who intorduced what is now called the Milnor fi-
bration, Milnor number and the Milnor’s formula ([23] 1968, [11] 1973), Eg-
bert Brieskorn’s discovery of exotic spheres as neighborhood boundaries of iso-
lated hypersurface singularities (1966) and the connection to Lie groups (1971),
Vladimir Arnold’s classification of singularities ([1, 2, 3] 1972-1976), and many
others, e.g. Andrei Gabrielov, Sabir Gusein-Zade, Ignaciao Luengo, Seiden-
berg, Walker, Antonio Campillo, C.T.C. Wall, A. Melle-Hernández, Johnatan
Wahl, Le Dung Trang, Bernard Teissier, Dierk Siersma, Joseph Steenbrink,
Gert-Martin Greuel, Yousra Boubakri, Thomas Markwig, Félix Delgado de la
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Mata, P. Cassou-Noguès, E. Garcıa Barroso, Arkadiusz Ploski, Hefez Abramo,
Olmedo Rodrigues, Rodrigo Salomão . . . (see [8, 9, 28, 27, 12, 29, 24, 10, 7, 13,
14, 18]). In this survey paper we give an overview on some aspects of singu-
larities of algebraic plane curves over an algebraically closed field of arbitrary
characteristic. We review, in particular, classical results and recent develop-
ments on invariants of plane curve singularities that should serve as a quick
guide to references.

In this note, by a plane curve singularity we mean a non-unit formal power
series in k[[x, y]]. Invariants of a plane curve singularity f will be quantities
(e.g. integers) associated to f which is stabe in right or contact equivalent
classes. Recall that two plane curve singularities f and g are right equivalent
if f = Φ(g) for some automorphism of local k-algebra k[[x, y]]. They are called
contact equivalent if f = u · Φ(g) for some automorphism of local k-algebra
k[[x, y]] and for some unit u ∈ k[[x, y]]. We denote by f ∼r g and by f ∼c g
respectively.

We study classical invariants of plane curve singularities such as multiplic-
ity, Milnor number (µ(f)), delta and kappa invariants (δ(f), κ(f)), semi-group
(S(f)) and their relations. Especially we are interested in studying the Milnor
formula in positive characteristic, which states, in characteristic zero, that for
any reduced plane curve singularity f

(1.1) µ(f) = 2δ(f)− r(f) + 1,

where r(f) denotes the number of branches of f . More precisely, we give some
partial answers to the following problem.

Problem 1. Is there at least a “reasonable” characterization of those plane
curve singularities such that Equation 1.1 holds?

2. Preliminaries

2.1. Resolution of singularities

Let 0 ̸= f ∈ m ⊂ k[[x, y]]. Then R := Rf = k[[x, y]]/(f) (or f) is called
a plane curve singularity. There is a unique (up to multiplication with units)
decomposition

f = fρ1

1 · . . . · fρr
r ,

with fi ∈ m irreducible in k[[x, y]] and ρi ≥ 1 for all i = 1, . . . , r. The series fi
resp. the rings Rfi are called the branches of f resp. of Rf . The plane curve
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singularity f is said reduced if ρi = 1 for i = 1, . . . , r. It is irreducible if it
reduced and r = 1. Recall that the multiplicity of f , denoted by mt(f), is the
minimal degree of the homogeneous part of f . So

f =
∑

k≥m:=mt(f)

fk(x, y),

where fk is is either zero or a homogeneous polynomial of degree k and fm ̸= 0.
Then fm is decomposed into linear factors,

fm =

s∏
i=1

(αix− βiy)
ri ,

with (βi : αi) ∈ P1 pairwise distinct. We call fm the tangent cone of f . The
points Pi := (βi : αi), i = 1, . . . , s, are the tangent directions or the infinitely
near points in the 1-st neighbourhood of 0 of f . For each i, the number ri is
called the multiplicity of Pi, and denoted by mPi . Note that m = r1+ . . .+ rs.

For each tangent direction P := (β : α) of f , we define a morphism
ιP : k[[x, y]] → k[[xP , yP ]] and a series fP ∈ k[[xP , yP ]] as follows

• if α ̸= 0 then

ιP (x) =
xP yP + βyP

α
, ιP (y) = yP , and ιP (f) = ymP fP

• if α = 0 then

ιP (x) = xP , ιP (y) =
αxP + xP yP

β
, and ιP (f) = xmP fP .

The series fP is called the local equation of the strict transform of f at P . For
each n ≥ 1, if P is an infinitely near points in the n-th neighbourhood of 0,
and if Q is a tangent direction of fP (xP , yP ), then Q is called an infinitely near

point in the (n+1)-th neighbourhood of 0, denoted by Q
n+1→ 0 or simply Q→ 0.

We also denote by fQ(xQ, yQ) the local equation of the strict transform of fP
at Q. Note that, by definition, if Q→ P then mt(fQ) ≤ mt(fP ). The following
lemma can be proved easily by using induction.

Lemma 2.1. Let f, g ∈ k[[x, y]] be plane curve singularities and let P be a
tangent direction of f of multiplicity r. Then

(i) If m = mt(f) = 1, then mt(fP ) = 1 for all P → 0.

(ii) We have mt(fP ) ≤ r ≤ m. In particular, if f has at least two tangent
directions, then mt(fP ) < m.
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(iii) Assume g is an irreducible component of f . Then if Q
n→ 0 for g then

Q
n→ 0 for f , and moreover, gQ is an irreducible component of fQ.

We denote by R(n) the ring

R(n) := R
(n)
f :=

⊕
Q

n→0

k[[xQ, yQ]]/fQ(xQ, yQ),

and call it the n-th strict transform of f . Then we have the following inclusions

R = R(0) ↪→ R(1) ↪→ . . . ↪→ R(n) → . . .(2.1)

defined inductively as

R = R(0) ↪→ R(1) =
⊕
P

1→0

k[[xP , yP ]]/fP (xP , yP ), g 7→ ⊕ιP (g).

Theorem 2.1. Let f ∈ k[[x, y]] be a reduced plane curve singularities. Then

(i) the sequence of injective morphisms (2.1) stabilizes. More precisely, there
exists k ≥ 1 such that

R(n) ∼=
r⊕

i=1

k[[t]],

for all n ≥ k;

(ii) the morphisms R(i) ↪→ R(i+1) are integral extensions in the quotient ring
Q(R) of R;

(iii) the ring

R(n) ∼=
r⊕

i=1

k[[t]],

for all n≫ 1 is the integral closure of R, is also called the normalization
of R and denoted by R̄.

Proposition 2.2. Any plane curve singularity f ∈ k[[x, y]] can be factorized as

f =
∏
P

1→0

f̄P

in k[[x, y]] such that f̄P has a unique tangent direction, and the f̄P are pairwise
coprime.

In particular, if f ∈ m ⊂ k[[x, y]] is irreducible, then f has a unique tangent
direction.
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2.2. Parametrization equivalence

Definition 2.1. Let 0 ̸= f ∈ m ⊂ k[[x, y]] be reduced and R ↪→ R̄ be its
normalization. A composition of the natural projection k[[x, y]] ↠ R, the nor-
malization R ↪→ R̄ and an isomorphism R̄ ∼=

⊕r
i=1 k[[t]],

ψ : k[[x, y]] ↠ R ↪→ R̄ ∼=
r⊕

i=1

k[[t]]

is called a (primitive) parametrization of f (or of R). More precisely,

(a) if f is irreducible, then a parametrization of f is given by a map

ψ : k[[x, y]] −→ k[[t]], (x, y) 7→ (x(t), y(t)) ,

(b) if f decomposes into several branches, then a parametrization of R is
given by a set of parametrizations of the branches. More precisely, if
f = f1 · . . . · fr is a decomposition of f into irreducible factors, then
R̄ ∼=

⊕r
i=1 k[[t]] is the normalization of R and a parametrization ψ of R

can be represented as a matrix of the form:

ψ(t) = (ψ1(t), . . . , ψr(t)) ,

where for i = 1, . . . , r, (ψi(t) = (xi(t), yi(t)) represents a parametrization
of the i-th branch.

A parametrization of a reduced plane curve singularity has the following
properties:

Proposition 2.3. Let 0 ̸= f ∈ m ⊂ k[[x, y]] be reduced and ψ : k[[x, y]] ↠ R ↪→
R̄ ∼=

⊕r
i=1 k[[t]] be its parametrization. Then

(i) ker(ψ) = (f),

(ii) ψ satisfies the following universal factorization property: Each ψ′ : k[[x, y]] →⊕r
i=1 k[[t]] such that ψ′(f) = 0, factorizes in a unique way through ψ, that

is there exists the unique morphism ϕ :
⊕r

i=1 k[[t]] →
⊕r

i=1 k[[t]] such that
ψ′ = ϕ ◦ ψ. Moreover, if ψ′ is also a parametrization of f , then ϕ is an
isomorphism.

Proposition 2.4. Let f ∈ k[[x, y]] be irreducible such that m := mt(f) =
ordf(0, y). Assume that m is not divisible by char(k), then f has a Puiseux
parametrization, i.e. a parametrization of the form

(x(t)|y(t)) := (tm|
∑
k≥m

ckt
k).
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Moreover, there exists a unit u ∈ k[[x, y]] such that

f = u ·
m∏
j=1

(y − y(ξjx1/m)),

where ξ is a primitive m-th root of unity.

Now we define the notion of parametrization equivalence.

Definition 2.2. Let ψ,ψ′ : k[[x, y]] → R̄ =
⊕r

i=1 k[[t]]. Then ψ is said to be
equivalent to ψ′, ψ ∼ ψ′, if there exist a reparametrization ϕ ∈ Autk(R̄) and a
coordinate change Φ ∈ Autk(k[[x, y]]) such that ψ′ ◦ Φ = ϕ ◦ ψ.

Let f, g ∈ k[[x, y]] be reduced. Then f is said to be parametrization equiva-
lent to g, f ∼p g, if there exist a parametrization ψ of f and a parametrization
ψ′ of g such that ψ ∼ ψ′.

Note that, if f ∼p g, then for any parametrization ψ (resp. ψ′) of f (resp.
g) we have ψ ∼ ψ′ by Proposition 2.3(ii).

Proposition 2.5. Let f, g be two given plane curve singularities. Then

f ∼p g ⇔ f ∼c g.

Proof.

cf. [25, Proposition 1.2.10]. ■

2.3. Intersection multiplicity and classical invariants

Definition 2.3. Let f ∈ k[[x, y]] be reduced and let ψ : k[[x, y]] ↠ R ↪→ R̄ ∼=⊕r
i=1 k[[t]] be a parametrization of f .

(a) We call δ(f) := dimkR̄/R the δ-invariant of f .

(b) We introduce the valuation map

v := (v1, ..., vr) : R→ (Z≥0 ∪∞)r, g 7→ ord(g(xi(t), yi(t)))i=1,...,r.

Its image Γ(R) := Γ(f) := v(R) is a semigroup, called the semigroup of values
of f .

(c) Let C := (R : R̄) := {u ∈ R | uR̄ ⊂ R} be the conductor ideal of R̄ in R
(cf. [31]). Then C is an ideal of both R and R̄. So one has C = (tc1)×· · ·×(tcr )
for some c := (c1, . . . , cr) ∈ Zr

≥0. We call c the conductor (exponent) of f . One
obviously has c+Zr

≥0 ⊂ S(f) and c is the minimum element in S(f) with this
property w.r.t. the product ordering on Zr

≥0, i.e. the partial ordering given by:
if α = (α1, . . . , αr), β = (β1, . . . , βr) ∈ Zr

≥0 the α ≤ β if and only if αi ≤ βi for
every i = 1, . . . , r.
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Definition 2.4. Let g ∈ k[[x, y]] be irreducible and (x(t), y(t)) its parametriza-
tion. Then the intersection multiplicity of any f ∈ k[[x, y]] with g is given
by

i0(f, g) := ordf(x(t), y(t)).

If u is a unit then we define i0(f, u) := 0.

The intersection multiplicity of f with a plane curve singularity g = g1 · . . . ·
gs, gi irreducible, is defined to be the sum

i(f, g) := i0(f, g1) + . . .+ i(f, gs).

The Milnor number µ(f) and kappa invariant κ(f) of f are defined respectively
as

µ(f) := i0(fx, fy); κ(f) := i0(f, αfx + βfy),

where (α : β) ∈ P1 is generic.

Proposition 2.6. Let f, g ∈ k[[x, y]]. Then

i0(f, g) = i0(g, f) = dim k[[x, y]]/(f, g).

Proof.

cf. [15, Proposition I.3.12] ■

Corollary 2.1. Let f ∈ k[[x, y]] be an irreducible plane curve singularity. A
couple (x(t), y(t)) of two power series is a parametrization of f if and only if

f (x(t), y(t)) = 0 and min{ordx(t), ordy(t)} = mt(f).

Proposition 2.7. Let f, g ∈ k[[x, y]] be two reduced power series which have
no factor in common. Then

δ(fg) = δ(f) + δ(g) + i0(f, g)

and
κ(fg) = κ(f) + κ(g) + i0(f, g).

Proof.

cf. [15, Proposition I.3.32, Corollary 3.39] ■

Proposition 2.8. Let f ∈ k[[x, y]] be a reduced plane curve singularity. Then

δ(f) =
∑
Q→0

mt(fQ) (mt(fQ)− 1)

2
.
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Proof.

cf. [15, Proposition I.3.34] ■

Proposition 2.9. Let f = f1 · . . . ·fr with fi irreducible and let c = (c1, . . . , cr)
its conductor. Then, for any i = 1, . . . , r one has

ci = 2δ(fi) +
∑
j ̸=i

i0(fi, fj))

= c(fi) +
∑
j ̸=i

i0(fi, fj)

and therefore 2δ(f) = c(f) := c1 + · · ·+ cr.

Proof.

cf. [19]. ■

Lemma 2.2 (Dedekind’s formula). Suppose that i0(f, x) = ord(f) ̸= 0 mod p.
Then

i0

(
f,
∂f

∂y

)
= c(f) + ord(f)− 1.

For more facts on the conductor see [15], [12], [19]. The following propo-
sition says that the δ-invariant, the conductor and the maximal contact mul-
tiplicity are invariant under contact equivalence, and by Proposition 2.5, they
are also invariant under parametrization equivalence.

Proposition 2.10. Let f, g ∈ k[[x, y]], let u, v ∈ k[[x, y]]∗ be unit and let Φ ∈
Autk(k[[x, y]]). Then i(f, g) = i(u · Φ(f), v · Φ(g)). Moreover, if f ∼c g, then

(i) δ(f) = δ(g).

(ii) κ(f) = κ(g).

(iii) c(f) = c(g) (up to a permutation of the indices {1, . . . , r}).

Proof.

cf. [25, Proposition 1.2.19]. ■

For reduced plane curve f = f1 · . . . · fr with fi irreducible we define

1. mt(f) := (mt(f1), . . . ,mt(fr)) ∈ Zr the multi-multiplicity of f ,

2. c(f) := (c(f1), . . . , c(fr)) = (2δ(f1), . . . , 2δ(fr)) ∈ Zr the multi-conductor
of f .

These tuples are invariant under parametrization and contact equivalence
as the following corollary shows.
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Corollary 2.2. If f ∼c g then mt(f) = mt(g) and c(f) = c(g) (up to a
permutation of the indices {1, . . . , r}).

Proof.

Follows from Proposition 2.10. ■

We recall that if f is a plane curve singularity then its Milnor number
µ(f) is dimk[[x, y]]/(fx, fy), where fx, fy be the partials of f . Proposition 2.6
yields that the Milnor number can be computed as an intersection multiplicity:
µ(f) = i(fx, fy).

2.4. Newton diagrams and Newton factorizations

Let us recall the definition of the Newton diagram of a plane curve singu-
larity. To each power series f =

∑
(α,β) cα,βx

αyβ ∈ k[[x, y]] we can associate its

Newton polyhedron Γ+(f) as the convex hull of the set⋃
α∈supp(f)

((α, β) + R2
≥0).

where supp(f) = {α|cα,β ̸= 0} denotes the support of f . This is an unbounded
polytope in Rn. We call the union Γ(f) of its compact faces the Newton diagram
of f . By Γ−(f) we denote the union of all line segments joining the origin to
a point on Γ(f). For each subset ∆ in R2

≥0 we denote

in∆(f) :=
∑

(α,β)∈∆

cα,βx
αyβ ∈ k[[x, y]].

The initial part of f is defined to be

fin := inΓ(f)(f).

Proposition 2.11. Let f ∈ m ⊂ k[[x, y]] be an irreducible plane curve singular-
ity such tha i0(f, x) = n and i0(f, x) = m. Let (x(t), y(t)) be parametrization
of f . Then

(i) ord(x(t)) = n and ord(y(t)) = m.

(ii) The Newton diagram of f is a straight line segment.

(iii) There exist ξ, λ ∈ k∗ such that

fin(x, y) = ξ · (xm/q − λyn/q)q,

where q = (m,n).
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Proof.

cf. [9, Lemma 3.4.3, 3.4.4, 3.4.5]. ■

Proposition 2.12. [8, Lemma 3] Let f ∈ k[[x, y]] and let Ei, i = 1, . . . , k be
the edges of its Newton diagram. Then there is a factorization of f :

f = monomial · f̄1 · . . . · f̄k

such that f̄i is convenient, and inEi
(f) = monomial × (f̄i)in. In particular, if

f is convenient then f = f̄1 · . . . · f̄k.

3. Milnor numbers and delta invariants

3.1. Milnor numbers

We first introduce the different notions of non-degeneracy originated by
Kouchnirenko and Wall. For this let

f =
∑
α

cαx
α ∈ m ⊂ k[[x]] := k[[x1, . . . , xn]]

be a power series, let P be a C-polytope, i.e. a compact rational polytope
P of dimension n − 1 in the positive orthant Rn

≥0 and the region above P
is convex and every ray in the positive orthant emanating from the origin
meets P in exactly one point. For each subset ∆ ⊂ Rn

≥0 we denote by f∆ :=
in∆(f) :=

∑
α∈∆ cαx

α the initial form or principal part of f along ∆. Following
Kouchnirenko we call f non-degenerate (ND) along ∆ if the Jacobian ideal∗

j(in∆(f)) has no zero in the torus (k∗)n. f is then said to be Newton non-
degenerate (NND) if f is non-degenerate along each face (of any dimension) of
the Newton diagram Γ(f). We do not require f to be convenient.

To define inner non-degeneracy we need to fix two more notions. The face
∆ is an inner face of P if it is not contained in any coordinate hyperplane. Each
point q ∈ kn determines a coordinate hyperspace Hq =

⋂
qi=0{xi = 0} ⊂ Rn

in Rn. We call f inner non-degenerate (IND) along ∆ if for each zero q of the
Jacobian ideal j(in∆(f)) the polytope ∆ contains no point on Hq. f is called
inner Newton non-degenerate (INND) w.r.t. a C-polytope P if no point of
supp(f) lies below P and f is IND along each inner face of P . We call f simply
inner Newton non-degenerate (INND) if it is INND w.r.t some C-polytope.

∗The Jacobian ideal j(f) denotes the ideal generated by all partials of f ∈ k[[x]].
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Finally, we call f weakly non-degenerate (WND) along ∆ if the Tjurina
ideal† tj(in∆(f)) has no zero in the torus (k∗)n, and f is called weakly Newton
non-degenerate (WNND) if f is weakly non-degenerate along each facet of Γ(f).
Note that NND implies WNND while NND does not imply INND. See [7,
Remark 3.1] for facts on and relations between the different types of non-
degeneracy.

For any compact polytope Q in Rn
≥0 we denote by Vk(Q) the sum of the k-

dimensional Euclidean volumes of the intersections of Q with the k-dimensional
coordinate subspaces of Rn and, following Kouchnirenko, we then call

µN (Q) =

n∑
k=0

(−1)n−kk!Vk(Q)

the Newton number of Q. For a power series f ∈ k[[x]] we define the Newton
number of f to be

µN (f) = sup{µN (Γ−(fm))|fm := f + xm1 + . . .+ xmn ,m ≥ 1}.

If f is convenient then
µN (f) = µN (Γ−(f)).

The following theorem was proved by Kouchnirenko in arbitrary characteristic.
We recall that µ(f) := dim k[[x]]/j(f) is the Milnor number of f .

Theorem 3.1. [21] For f ∈ k[[x]] we have µN (f) ≤ µ(f), and if f is NND
and convenient then µN (f) = µ(f) <∞.

Since Theorem 3.1 does not cover all semi-quasihomogeneous singularities,
Wall introduced the condition INND (denoted by NPND* in [29]). Using The-
orem 3.1, Wall proved the following theorem for k = C which was extended to
arbitrary k in [7].

Theorem 3.2. [29], [7] If f ∈ k[[x]] is INND, then

µ(f) = µN (f) = µN (Γ−(f)) <∞.

Kouchnirenko proved that the condition “convenient” is not necessary in
Theorem 3.1. In the planar case, the authors in [7] show that Kouchnirenko’s
result holds in arbitrary characteristic without the assumption that f is con-
venient (allowing µ(f) = ∞):

Proposition 3.3. [7, Proposition 4.5] Suppose that f ∈ k[[x, y]] is NND, then
µN (f) = µ(f).

†For f ∈ k[[x]] we call tj(f) = (f) + j(f) the Tjurina ideal of f .
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Theorem 3.4. Let f ∈ m ⊂ k[[x, y]]. Then the following are equivalent

(i) µ(f) = µN (f) <∞.

(ii) f is INND.

Proof.

The theorem follows from the following lemmas (for proofs, see [16]):

Lemma 3.1. Let f, g ∈ k[[x, y]] be convenient such that Γ−(f) ⊆ Γ−(g). Then

(i) µN (f) ≤ µN (g).

(ii) The equality holds if and only if Γ−(f) ∩ R2
≥1 = Γ−(g) ∩ R2

≥1, where

R2
≥1 = {(x, y) ∈ R2|x ≥ 1, y ≥ 1}.

Note that Part (i) of the lemma holds true in many variables by [6, Cor.
5.6]. Let us denote by Γ1(f) the cone joining the origin with Γ(f) ∩ R2

≥1. (cf.
Fig. 1).
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Lemma 3.2. Let f =
∑
cijx

iyj ∈ K[[x, y]] be convenient and let (0, n) (resp.
(m, 0)) be the vertex on the y-axis (resp. on the x-axis) of Γ(f). Assume that
m = n = 0 mod p then µ(f) > µN (f).

Lemma 3.3. Let f ∈ K[[x, y]] be convenient. If f is degenerate along some
edge or some inner vertex of Γ(f) then µ(f) > µN (f).

■

Corollary 3.1. Let f ∈ k[[x, y]] and let M ∈ N such that Γ(f) ⊂ Γ(fM ) with
fM := f + xM + yM . Then f is INND if and only if it is INND w.r.t. Γ(fm)
for some (equivalently for all) m > M .
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3.2. Delta-invariants

We consider now another important invariant of plane curve singularities,
the invariant δ and its combinatorial counterpart, the Newton invariant δN . We
show that both coincide iff f is weighted homogeneous Newton non-degenerate
(WHNND), a new non-degenerate condition introduced below.

Let E1, . . . , Ek be the edges of the Newton diagram of f . We denote by
l(Ei) the lattice length of Ei, i.e. the number of integral points on Ei minus one
and by s(inEi(f)) the number of non-monomial irreducible (reduced) factors
of inEi(f). We set

(a) If f is convenient, we define

δN (f) := V2(Γ−(f))−
V1(Γ−(f))

2
+

∑k
i=1 l(Ei)

2
,

and otherwise we set δN (f) := sup{δN (fm)|fm := f + xm + ym,m ∈ N} and
call it the Newton δ-invariant of f .

(b) rN (f) :=
∑k

i=1 l(Ei) + max{j|xj divides f}+max{l|yl divides f}.
(c) sN (f) :=

∑k
i=1 s(inEi(f))+max{j|xj divides f}+max{l|yl divides f}.

Note that all of these numbers depend on the Newton diagram of f and
hence are coordinate-dependent.

Proposition 3.5. For 0 ̸= f ∈ (x, y) we have r(f) ≤ rN (f), and if f is
WNND then r(f) = rN (f).

Proof.

cf. [7, Lemma 4.10] ■

Let E be an edge of the Newton diagram of f . Then we can write fE as
follows,

inE(f) =

s∏
i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, gcd(m0, n0) = 1.
It easy to see that

s = s(inE(f)) and l(E) =

s∑
i=1

ri.

This implies s(inE(f)) ≤ l(E) and hence sN (f) ≤ rN (f).

Let f = fwd +fwd+1+ . . . with f
w
d ̸= 0 be the (n0,m0)-weighted homogeneous

decomposition of f .
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Definition 3.1. We say that f is weighted homogeneous non-degenerate (WHND)
along E if either ri = 1 for all i = 1, . . . , s or (aix

m0 − biy
n0) does not divide

fwd+1 for each ri > 1.

f is called weighted homogeneous Newton non-degenerate (WHNND) if its
Newton diagram has no edge or if it is WHND along each edge of its Newton
diagram.

Remark 3.1. (a) In [22] the author introduced superisolated singularities
to study the µ-constant stratum. We recall that f ∈ k[[x, y]] is superisolated
if it becomes regular after only one blowing up. By ([22, Lemma 1]), this is
equivalent to: fm+1(βi, αi) ̸= 0 for all tangent directions (βi : αi) of f with
ri > 1, where f = fm + fm+1 + . . . is the homogeneous decomposition of f and

fm =

s∏
i=1

(αix− βiy)
ri .

Note that this condition concerns all factors of fm including monomials. For
WHNND singularities we require a similar condition, but for “all weights” and
without any condition on the monomial factors of the first term of the weighted
homogeneous decomposition of f .

(b) Since a plane curve singularity is superisolated iff it becomes regular
after only one blowing up, we have δ(f) = m(m − 1)/2 and hence δ(f) =
δN (f) = m(m− 1)/2, by Proposition 4.1. It follows from Theorem 4.3 that

(c) A superisolated plane curve singularity is WHNND.

(d) The plane curve singularity x2 + y5 is WHNND but not superisolated.

Proposition 3.6. With notations as above, f is WND along E if and only
if s(fE) = l(E) or, equivalently, iff ri = 1 for all i = 1, . . . , s. In particular,
WNND implies WHNND.

Proof.

cf. [16, Proposition 3.5] ■

Proposition 3.7. For 0 ̸= f ∈ (x, y) we have sN (f) ≤ r(f) and if f is
WHNND then sN (f) = r(f).

Proof.

cf. [16, Proposition 3.7] ■

Proposition 3.8. For 0 ̸= f ∈ (x, y) we have sN (f) ≤ r(f) ≤ rN (f), and both
equalities hold if and only if f is WNND.
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Proof.

The inequalities follow from Proposition 3.5 and Proposition 3.7. For each
edge E of Γ(f), by Proposition 3.6, f is WND along E iff s(fE) = l(E). This
implies that f is WNND if and only if sN (f) = rN (f) since s(fE) ≤ l(E) and
both sides are additive with respect to edges of Γ(f). ■

We investigate now the relations between ν(f), δN (f) and δ(f), which were
studied in [5] and [7].

Proposition 3.9. [7, Prop. 4.9] For 0 ̸= f ∈ (x, y) we have δN (f) ≤ δ(f),
and if f is WNND then δN (f) = δ(f).

Hence WNND is sufficient but, by the following example, not necessary for
δN (f) = δ(f).

Example 3.10. Let f(x, y) = (x+ y)2 + y3 ∈ k[[x, y]]. Then f is not WNND
but δN (f) = δ(f) = 1. This easy example shows also that WNND depends on
the coordinates since x2 + y3 is WNND. Note that f is WHNND.

Theorem 3.11. [16, Theorem 3.12] Let f ∈ k[[x, y]] be reduced. Then δ(f) =
δN (f) if and only if f is WHNND.

Proof.

Recall that, if E is an edge of the Newton diagram of f . Then we can write
fE as follows,

inE(f) =

s∏
i=1

(aix
m0 − biy

n0)ri ,

where ai, bi ∈ K∗, (ai : bi) pairwise distinct; m0, n0, ri ∈ N>0, gcd(m0, n0) = 1.
It easy to see that

s = s(inE(f)) and l(E) =

s∑
i=1

ri.

The theorem is then based on the following lemmas. We refer to [16] for detail
proofs.

Lemma 3.4. There exist an integer n and an infinitely near point P
n→ 0 in

the n-th neighbourhood of 0, such that

inEP
(fP )(u, v) = monomial ×

s∏
i=1

(aiu− biv)
ri ,

where fP is the local equation of the strict transform of f at P and EP is some
edge of its Newton diagram Γ(fP ). Moreover, f is WHND along E if and only
if fP is WHND along EP .
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Let us denote by Qi the points (ai : bi) and by mQi
the multiplicity of fQi

.
Then

Lemma 3.5. The following are equivalent

(i) f is WHND along E.

(ii) mQi = 1 for all i.

■

3.3. Milnor formula

We recall that if f is a plane curve singularity then its Milnor number µ(f)
is dim k[[x, y]]/(fx, fy), where fx, fy be the partials of f . Proposition 2.6 yields
that the Milnor number can be computed as the intersection multiplicity of fx
and fy: µ(f) = i(fx, fy). Moreover if k = C, the Milnor’s famous formula (see,
[23, Thm 10.5], or also [15, Prop. 3.35]) gives a relation between the Milnor
number, the δ-invariant:

µ(f) = 2δ(f)− r(f) + 1.

This also holds true in characteristic zero. But in positive characteristic, it is in
general not true as the following example shows: f = x3+x4+y6+y7 ∈ k[[x, y]]
with char(k) = 3. Then

r(f) = 1; µ(f) = 18; δ(f) = 6.

In positive characteristic the equality holds under certain conditions of the
Newton diagram, e.g. NND ([7, Thm. 9]) or INND ([16, Cor. 3.16]). How-
ever without the assumption of Newton non-degeneracy one has at least an
inequality as proven by Pierre Deligne [11], see also [24]:

µ(f) ≥ 2δ(f)− r(f) + 1.

The difference of the two sides is measured by the so called Swan character,
denoted by Sw(f), which counts wild vanishing cycles that can only occur in
positive characteristic.

However it still holds true if f is NND by [7, Thm. 4.13]. Using the general
inequality

µN (f) = 2δN (f)− rN (f) + 1 ≤ 2δ(f)− r(f) + 1 ≤ µ(f)

from [7], then Theorem 3.4, Proposition 3.5 and Proposition 4.2 imply.

Although we can compute the number of wild vanishing cycles, it seems
hard to understand them. In [16] we have posed the following problems.
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Problem 3.12. Is there any “geometric” way to understand the wild vanishing
cycles, distinguishing them from the ordinary vanishing cycles counted by 2δ−
r + 1? Is there at least a “reasonable” characterization of those singularities
without wild vanishing cycles?

Problem 3.13. Find an “elementary proof” for the inequality

µ(f) ≥ 2δ(f)− r(f) + 1.

We will discuss more carefully about this topic in the last two sections.

4. Gamma and kappa invariants

The results in this section are borrowed from [26].

4.1. Gamma invariants

Following [26, Section 2] we introduce and study new (gamma) invariants
γ, γ̃ of plane curve singularities which have not been considered before. In
characteristic zero, these invariants coincide and are equal to the Milnor number
(see Remark 4.1). So they may be considered as generalizations of the Milnor
number in positive characteristic and are believed to be useful in studying
classical invariants. In this section we use them to connect the delta and kappa
invariant. We will show, in Proposition 4.1, that

κ(f) ≥ γ(f) + mt(f)− 1

and in Theorem 4.4, that

γ(f) ≥ 2δ(f)− r(f) + 1

and obtain the inequality in the main result (Theorem 4.5) of the section:

κ(f) ≥ 2δ(f) + mt(f)− 1

with equalitity if and only if p is m-good for f (see, Definition 4.3 for the notion
of m-goodness).

Definition 4.1. Let f ∈ k[[x, y]] be reduced. The number γ̃x,y(f) (or γ̃(f), if
the coordinate {x, y} is fixed) of f , is defined as follows:
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(a) γ̃(x) := 0, γ̃(y) := 0.

(b) If f is irreducible and convenient (i.e. i0(f, x), i0(f, y) <∞), then

γ̃(f) := min{i0(f, fx)− i0(f, y) + 1, i0(f, fy)− i0(f, x) + 1}.

(c) If f = f1 · . . . · fr, then

γ̃(f) :=

r∑
i=1

(
γ̃(fi) +

∑
j ̸=i

i0(fi, fj)
)
− r + 1.

Definition 4.2. The gamma invariant of a reduced plane curve singularity f ,
denoted by γ(f), is the minimum of γ̃X,Y (f) for all coordinates X,Y .

Remark 4.1. (a) In characteristic zero, γ(f) = γ̃(f) = µ(f) due to Theo-
rems 4.3, 4.4 and the Milnor formula.

(b) In general we have, by definition, that γ(f) ≤ γ̃(f) (with equality if p
is im-good for f , see Definition 4.3 and Corollary 4.1) and that γ(f) = γ̃(g)
for some g right equivalent to f (f is called right equivalent to g, denoted by
f ∼r g, if there is an automorphism Φ ∈ Autk(k[[x, y]]) such that f = Φ(g)).

(c) The number γ̃ depends on the choice of coordinates, i.e. it is not invari-
ant under right equivalence. E.g. f = x3+x4+y5 and g = (x+y)3+(x+y)4+y5

in k[[x, y]] with char(k) = 3 and then f ∼r g, but γ̃(f) = 8, γ̃(g) = 10. However,
as we will see in Proposition 4.2, if the characteristic p is multiplicity good for
f then γ̃(f) = γ̃(g) for all g contact equivalent to f . Recall that f, g are contact
equivalent if there is an automorphism Φ ∈ Autk(k[[x, y]]) and a unit u ∈ k[[x, y]]
such that f = u · Φ(g), and we denote this by f ∼c g.

(d) It follows from the definition that γ̃(u) = 1 and γ̃(u ·f) = γ̃(f) for every
unit u and therefore γ is invariant under contact equivalence.

(e) The Milnor number µ is invariant under right equivalence. The numbers
δ, κ,mt, r, i are invariant under contact equivalence (see, for instance [25], Prop.
1.2.19 for the invariance of δ). This means that, if f ∼c g then

δ(f) = δ(g), κ(f) = κ(g), mt(f) = mt(g) and r(f) = r(g).

Moreover, for any Φ ∈ Autk (k[[x, y]]) and units u, v, one has

i0(f, h) = i0 (u · Φ(f), v · Φ(h)) .

Before studying in detail gamma invariants, we collect several facts on in-
variants of plane curve singularities which we use later. For proofs, we refer to
[15] and [25].
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Remark 4.2. (a) If f is irreducible, then

κ(f) = min{i0(f, fx), i0(f, fy)}.

Indeed, taking a parametrization (x(t), y(t)) of f we obtain that

κ(f) = ord (αfx(x(t), y(t)) + βfy(x(t), y(t))) ,

which equals to the minimum of i(f, fx) and i(f, fy) since (α : β) is generic.

(b) If f is convenient, then

γ̃(f) = i0(f, αxfx + βyfy)− i0(f, x)− i0(f, y) + 1,

where (α : β) ∈ P1 is generic.

Definition 4.3. Let char(k) = p ≥ 0 and let f = f1 · . . . · fr ∈ k[[x, y]] be
reduced with fi irreducible. The characteristic p is said to be

(a) multiplicity good (m-good) for f if the multiplicities mt(fi) ̸= 0 (mod p)
for all i = 1, . . . , r;

(b) intersection multiplicity good (im-good) for f if for all i = 1, . . . , r, either
i(fi, x) ̸= 0 (mod p) or i(fi, y) ̸= 0 (mod p);

(c) right intersection multiplicity good (right im-good) for f if it is im-good
for f after some change of coordinate. That is, it is im-good for some g
right equivalent to f .

Note that these notions are trivial in characteristic zero, i.e. if p = 0 then
it is always m-good, im-good and right im-good for f . In general we have

“m-good” =⇒ “im-good” =⇒ “right im-good”.

The following proposition gives us the first relations between the gamma in-
variants and classical invariants.

Proposition 4.1. Let f ∈ k[[x, y]] be reduced. Then

γ(f) ≤ γ̃(f) ≤ κ(f)−mt(f) + 1

with equality if p is m-good for f .

Proof.

cf. [26, Proposition 2.6 ]. ■

The following proposition says that the number γ̃ is invariant under contact
equivalence in the class of singularities for which p is m-good. It will be shown
in Corollary 4.1 that γ̃ is invariant under contact equivalence in the class of
singularities for which p is im-good.
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Proposition 4.2. Let f ∈ k[[x, y]] be reduced such that p is m-good for f and
let g ∼c f . Then γ̃(g) = γ̃(f). In particular, γ(f) = γ̃(f).

Proof.

This follows from Proposition 4.1 and Remark 4.1(e). See [25, Lemma 2.3.4]
for a direct proof. ■

Theorem 4.3. Let f ∈ k[[x, y]] be reduced. Then

γ̃(f) ≥ 2δ(f)− r(f) + 1.

Equality holds if and only if the characteristic p is im-good for f .

Proof.

cf. [26, Theorem 2.11 ]. ■

Corollary 4.1. Assume that p is im-good for f . Then

γ(f) = γ̃(f).

The following simple corollary should be useful in computation, since the
number in the left side is easily computed.

Corollary 4.2. Assume that p > mt(f). Then

µ(f)− γ̃(f) = Sw(f).

Theorem 4.4. Let f ∈ k[[x, y]] be reduced. Then

γ(f) ≥ 2δ(f)− r(f) + 1.

Equality holds if and only if the characteristic p is right im-good for f .

Proof.

Taking g right equivalent to f such that γ(f) = γ̃(g) and combining Theo-
rem 4.3 and Remark 4.1 we get

γ(f) = γ̃(g) ≥ 2δ(g)− r(g) + 1 = 2δ(f)− r(f) + 1

with equality if and only if p is im-good for g. It remains to show that if p is
right im-good for f , then

γ(f) = 2δ(f)− r(f) + 1.
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Indeed, by definition, p is im-good for some h right equivalent to f . Again
combining Theorem 4.3 and Remark 4.1 we get

γ(f) = γ(h) ≤ γ̃(h) = 2δ(h)− r(h) + 1 = 2δ(f)− r(f) + 1 ≤ γ(f).

This implies that
γ(f) = 2δ(f)− r(f) + 1,

which completes the theorem. ■

4.2. Kappa invariants and Plücker formulas

We prove in this section the main result (Theorem 4.5) and apply it to
Plücker formulas (Corollaries 4.4, 4.5). Furthermore we show, in Corollary 4.3
(resp. Corollary 4.5), that if p is “big” for f (resp. for a plane curve C), then
f (resp. C) has no wild vanishing cycle.

Theorem 4.5. Let f ∈ k[[x, y]] be reduced. One has

κ(f) ≥ 2δ(f) + mt(f)− r(f)

with equality if and only if p is m-good for f .

The following interesting corollary says that if the characteristic p is “big”
for f , then f has no wild vanishing cycle.

Corollary 4.3. Assume that p > κ(f). Then f has no wild vanishing cycle,
i.e. Sw(f) = 0. Moreover one has

κ(f) = 2δ(f) + mt(f)− r(f)

= µ(f) + mt(f)− 1.

Let C be a irreducible curve of degree d in P2 defined by a homogeneous
polynomial F ∈ k[x, y, z]. Let Sing(C) resp. C∗ := C \ Sing(C) the singular
resp. smooth locus of C, and let s(C) := ♯Sing(C) the number of singular
points. Let ρ : C∗ → P̌2, P = (x : y : z) 7→ (Fx(P ) : Fy(P ) : Fz(P )) the dual
(Gauss) map and deg(ρ) its degree. We call the closure of the image of ρ in P̌2

the dual curve of C denoted by Č. We denote by ď the degree of Č. For each
singular point P ∈ Sing(C) take a local equation fP = 0 of C at P , and define

δ(C) :=
∑
δ(fP ), mt(C) :=

∑
mt(fP ),

µ(C) :=
∑
µ(fP ), r(C) :=

∑
r(fP ),

Sw(C) :=
∑

Sw(fP ).

where all the sums are taken over P ∈ Sing(C).
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Corollary 4.4. Using the above notions, we have

deg(ρ) · ď ≤ d(d− 1)− 2δ(C) + r(C)−mt(C)

= d(d− 1)− µ(C)−mt(C) + s(C) + Sw(C),

with equality if and only if p is multiplicity good (m-good) for C, i.e. p is
m-good for all the fP .

Combining Corollaries 4.3 and 4.3 we obtain

Corollary 4.5. With the above notions, assume that

max
P∈Sing(C)

{κ(fP )} < p,

(for example, d(d−1) < p). Then C has no wild vanishing cycle, i.e. Sw(C) =
0. Moreover one has

deg(ρ) · ď = d(d− 1)− 2δ(C) + r(C)−mt(C)

= d(d− 1)− µ(C)−mt(C) + s(C).

5. Semigroup of a plane algebroid branch

In this section we study the semigroup of a given irreducible plane curve
singularity and apply it to study Problem 3.12 proposed in Section 3. The
proofs can be found in [13, 14].

5.1. Semigroups

We say that a subset G of N is a semigroup if it contains 0 and if it is
closed under addition. Let n > 0 be an integer. A sequence of positive in-
tegers (v0, . . . , vh) is said to be a Seidenberg n-characteristic sequence or n-
characteristic sequence if v0 = n and it satisfies the following two axioms

(a) Set di = gcd(v0, . . . , vi) for 0 ≤ i ≤ h and ni =
di−1

di
for 1 ≤ i ≤ h. Then

dh = 1 and ni > 1 for 1 ≤ i ≤ h.

(b) ni−1vi−1 < vi for 2 ≤ i ≤ h.

Note that condition (b) implies that the sequence (v1, . . . , vh) is strictly increas-
ing. If n > 1 then h ≥ 1. If h = 1 then the sequence (v0, v1) is a Seidenberg
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n-characteristic sequence if and only if v0 = n and gcd(v0, v1) = 1. There is
exactly one 1-sequence which is (1).

Let G be a nonzero semigroup and let n ∈ G, n > 0. Then there exists (cf.
[17], Chapter 6, Proposition 6.1) a unique sequence v0, . . . , vh such that v0 = n,
vk = min(G\v0N + · · · + vk−1N) for k ∈ {1, . . . , h} and G = v0N + · · · + vhN.
We call the sequence (v0, . . . , vh) the n-minimal system of generators of G. If
n = min(G\{0}) then we say that (v0, . . . , vh) is the minimal set of generators
of G. We will study semigroups generated by n-characteristic sequences.

Proposition 5.1. Let G = v0N+· · ·+vhN where (v0, . . . , vh) is an n-characteristic
sequence. Then

(i) The sequence (v0, . . . , vh) is the n-minimal system of generators of G.

(ii) min(G\{0}) = min(v0, v1).

(iii) The minimal system of generators of G is (v0, v1, . . . , vh) if v0 < v1,
(v1, v0, . . . , vh) if v1 < v0 and v0 ̸≡ 0 (mod v1) and (v1, v2, . . . , vh) if
v0 ≡ 0 (mod v1). Moreover, the minimal system of generators of G is a
min(G\{0})-characteristic sequence.

(iv) Let c =
∑h

k=1(nk−1)vk−v0+1. Then for every a, b ∈ Z: if a+ b = c−1
then exactly one element of the pair (a, b) belongs to G. Consequently c
is the smallest element of G such that all integers bigger than or equal to
it are in G.

(v) c is an even number and ♯(N\G) = c

2
.

The number c is called the conductor of the semigroup G.

5.2. Polar factorization theorems

The aim of this section is to study the structure of the semigroup associated
with a plane branch and its relation to the factorization theorems.

Let f = f(x, y) ∈ k[[x, y]] be an irreducible power series and let S(f) be the
semigroup associated with the branch {f = 0}. Suppose that {f = 0} ≠ {x =
0} and put n = i0(f, x). That is,

S(f) = {i(f, g) | g ∈ k[[x, y]] \ (f)k[[x, y]]}.

Let (b̄0, . . . , b̄h), b̄0 = n be the n-minimal system of generators of S(f). We
define

e0 = n, ek = gcd(ek−1, b̄k) and nk =
ek−1

ek
for k ∈ {1, . . . , h}.
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Lemma 5.1. We have eh = 1.

Proof.

It follows from Theorem 2.1 that π : k[[x, y]]/(f) → k[[t]] is the normalization,
and hence

Q (k[[x, y]]/(f)) ∼= k((t)).

This implies that, there exist p, q ∈ k[[x, y]]/(f) such that

p (x(t), y(t))

q (x(t), y(t))
= t,

where x(t) = π(x) and y(t) = π(y). Taking order of both sides we get

ord p (x(t), y(t))− ord q (x(t), y(t)) = 1.

Since ord p (x(t), y(t)) and ord q (x(t), y(t)) are elements in S(f), it follows that
gcd(S(f)) = 1 and hence eh = 1. ■

Corollary 5.1 (Conductor formula). One has

c(f) =

h∑
k=1

(nk − 1)b̄k − b̄0 + 1.

Theorem 5.2 (Semigroup Theorem). Let {f = 0} be a branch such that {f =
0} ≠ {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the n-minimal system of
generators of the semigroup S(f). There exists a sequence of monic polynomials
f0, f1, . . . , fh−1 ∈ k[[x]][y] such that for k ∈ {1, . . . , h}:

(ak) degy(fk−1) =
n

ek−1
,

(bk) i0(f, fk−1) = b̄k for k ∈ {1, . . . , h},

(ck) if k > 1 then nk−1b̄k−1 < b̄k.

Moreover nk > 1 for all k ∈ {1, . . . , h}.

Theorem 5.3 (Merle-Granja’s Factorization Theorem). Let {f = 0} be a
branch such that {f = 0} ̸= {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the
n-minimal system of generators of the semigroup S(f). Fix k, 1 ≤ k ≤ h. Let
g = g(x, y) ∈ k[[x, y]] be a power series such that

(i) i0(g, x) =
n
ek

− 1,

(ii) i0(f, g) =
∑k

i=1(ni − 1)b̄i.
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Then there is a factorization g = g1 · · · gk ∈ k[[x, y]] such that

1. i0(gi, x) =
n
ei

− n
ei−1

for i ∈ {1, . . . , k},

2. if ϕ ∈ k[[x, y]] is an irreducible factor of gi, i ∈ {1, . . . , k} then

(a) i0(f,ϕ)
i0(ϕ,x)

= ei−1b̄i
n ,

(b) i0(ϕ, x) ≡ 0 mod n
ei−1

.

Theorem 5.4 (Merle’s factorization theorem). Let {f = 0} be a branch such
that {f = 0} ≠ {x = 0}. Set n = i0(f, x) and let b̄0, . . . , b̄h be the n-minimal
system of generators of the semigroup S(f). Suppose that n > 1 and n ̸≡ 0
mod (char k). Then ∂f

∂y = g1 · · · gh in k[[x, y]], where

(i) i0(gi, x) =
n
ei

− n
ei−1

for i ∈ {1, . . . , h}.

(ii) If ϕ ∈ k[[x, y]] is an irreducible factor of gi, i ∈ {1, . . . , h}, then

i0(f, ϕ)

i0(ϕ, x)
=
ei−1b̄i
n

and i0(ϕ, x) ≡ 0 mod
n

ei−1
.

Proof. Since n ̸≡ 0 (mod char k) we have i0
(

∂f
∂y , x

)
= n−1. By the Dedekind

formula and the Conductor formula we have i0

(
f, ∂f∂y

)
= c(f) + n − 1 =∑h

k=1(nk − 1)b̄k. The theorem is then proved by applying Theorem 5.3 to the

series g = ∂f
∂y . ■

5.3. Garćıa Barroso-Ploski’s theorem

In this section, we give a proof of the following theorem.

Theorem 5.5. [14, Theorem 1.1] Let f ∈ k[[x, y]] be an irreducible singularity
and let (b̄0, . . . , b̄h) be the minimal system of generators of S(f). Suppose that
p = chark > ordf . Then the following two conditions are equivalent:

(i) b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , h};

(ii) µ(f) = c(f).

Proof. Since p > ordf , it follows from Dedekind’s formula (Lemma 2.2) that

i0(f,
∂f

∂y
) = c(f) + ordf − 1.
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It remains to prove that

i0(f,
∂f

∂y
) = µ(f) + ordf − 1

if and only if b̄k ̸≡ 0 (modp) for k ∈ {1, . . . , h}.
In fact, let ϕ be an irreducible factor of ∂f

∂y and let (x(t), y(t)) be a parametriza-
tion of ϕ = 0. Then

ordx(t) = i0(x, ϕ) = ordϕ < ordf < p

and, consequently, ord x(t) ̸≡ 0(modp), which implies ord x′(t) = ordx(t)− 1.
We have

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))x′(t).

This yields

ord f(x(t), y(t))− 1 ≤ ord
∂f

∂x
(x(t), y(t)) + ordx(t)− 1

with equality if and only if i0(f, ϕ) = ordf(x(t), y(t)) ̸≡ 0 mod p. Taking the
sum over all irreducible factors ∂f

∂y gives us

(5.1) i0(f,
∂f

∂y
) ≤ i0(

∂f

∂x
,
∂f

∂y
) + ordf − 1 = µ(f) + ordf − 1

with equality if and only if i0(f, ϕ) ̸≡ 0 mod p for all ϕ.

Let ∂f
∂y = g1 · · · gh be the Merle factorization of the polar ∂f

∂y and assume
that ϕ is an irreducible factor of gk. Then by Theorem 5.4, we can write
ord ϕ = mk

n
ek−1

, where mk ⩾ 1 is an integer. Since ordϕ < p, it yields that

mk < p and therefore mk ̸≡ 0 mod p. Again, by Theorem 5.4

i0(f, ϕ) =
ek−1b̄k
n

ord ϕ = mk b̄k.

Therefore, i(f, ϕ) ̸≡ 0 (modp) if and only if b̄k ̸≡ 0 (modp). The theorem
hence follows from (5.1). ■

Remark 5.1. If p < ord f , then the proof of Theorem 5.5 fails, even if
ord f ̸≡ 0 (mod p). Take f = xp+2 + yp+1 + xp+1y.

Conjecture 5.6. Let f ∈ k[[x, y]] be an irreducible singularity and let b̄0, . . . , b̄g
be the minimal system of generators of S(f). Then the following two conditions
are equivalent:

(i) b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , g};
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(ii) µ(f) = c(f).

The conjecture is true if S(f) is generated by b̄0 and b̄1. Recently, Hefez,
Rodrigues and Salomao in [18] have proved that (i) implies (ii).

Theorem 5.7 (Hefez, Rodrigues and Salomao). Let f ∈ k[[x, y]] be an irre-
ducible singularity and let b̄0, . . . , b̄g be the minimal system of generators of
S(f). If b̄k ̸≡ 0 mod p, for k ∈ {1, . . . , g} then µ(f) = c(f).
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[13] E. Garćıa Barroso and A. Ploski, An approach to plane algebroid

branches, Rev. Mat. Complut. 28 (2015), no. 1, 227–252.
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