J. Math. Math. Sci. (2025) nn-nnn

On meromorphic solution of linear difference - differential
equation via partially shared values of meromorphic
functions and their growth

Ha Tran Phuong (Thai Nguyen, Viet Nam)
Nguyen Van Thin* (Thai Nguyen, Viet Nam)

(Received Jan. 5, 2025)

Abstract. In this paper, we investigate shared value problems related to a
meromorphic function of hyper order less than one and its linear difference-
differential polynomial. In general, under certain conditions of sharing
values of the meromorphic functions and their difference-differential poly-
nomial, a given meromorphic function must satisfy a difference-differential
equation. Furthermore, we also study the order of meromorphic solutions
of some classes of difference-differential equations.

1. Introduction

We use standard notations from Nevanlinna theory. Denote by o(f) the
order of growth of a meromorphic function f on the complex plane C, and also
use the notation ¢(f) to denote the hyper order of f,

log T loglog T
o(f) = limsup ZELS) o py _ i sup 28108 T( F)
r—oo IOgT r—00 10g7"
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respectively, where T'(r, f) is the characteristic function of f.
A meromorphic function a is said to be small with respect to f if T'(r,a) =
o(T(r, f)), as r — 400 possibly outside a set of finite Lebesgue measure. We
denote S(f) by the set of small functions with respect to f and S(f) = S(f)U
{o0}. Let a be a small function with respect to f. The defect §(f,a) of f at a
is defined by
1 — 1
N(r, fi) N(r, fi)
6(a, f) =1—limsu 7—a7 O(a, f) =1—limsu —J-a
(@ 1) ey T(r, f) (@) el T(r, f)

We can define another defect as follows:

: N(r, f) . N(r, f)
O(c0, f) =1 llﬁs;ip T 1) d(o0, f) =1 llﬁsgp T )

The five-point theorem due to Nevanlinna states that if two non-constant
meromorphic functions f and g in C share five distinct values ignoring multi-
plicities (IM), then f = g. Recently, Halburd, Korhonen, and Tohge [7, 8, 10],
Chiang and Feng [3] extended the Nevanlinna theory for difference operator.
Difference Nevanlinna theory has emerged as a result of recent interest on value
distribution and growth of meromorphic solutions of difference equations [3, 9],
also uniqueness of meromorphic functions with difference polynomials.

Definition 1.1. [15] Let l be a non-negative integer or infinite. Denote by
Ei(a, f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m <1 and I + 1 times if m > 1. If Ej(a, f) = Ej(a,g), we say that
f and g share (a,l). It is easy to see that if f and g share (a,l), then f and g
share (a,p) for 0 < p <. Also we note that f and g share the value a - IM or
CM if and only if f and g share (a,0) or (a,00), respectively.

1
Let p be a positive integer and a € C U {oo}. We use N,)(r, fi) to
—a

denote the counting function of the zeros of f — a, whose multiplicities are not

greater than p, N, (7, ) to denote the counting function of the zeros of
a

f—a :
)

f — a whose multiplicities are not less than p 4+ 1, and we use Np)(r, m

fi) to denote their corresponding reduced counting functions
—a

(ignoring multiplicities) respectively. We use 7},)(0,, ) (F(p+1(a, f)) to denote
the set of zeros of f —a with multiplicities < p (> p+1) (ignoring multiplicity),

and N (41 (r,

respectively. We also denote N, (r, m) by
1 — 1 — 1
Ny(r, ——) = N(r, ——) + -+ - + N (r, ——).
p(""’f*a) <r7f7a)+ + (p(r’fia)
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Then we define the truncated deficiency as

1
NP(Tv a)

Opla, f)=1- linlsup Tff_)

Let f be a nonconstant meromorphic function with hyper-order less than
1, we denote L(f) by

k
L(f) = Zajf(z +¢5),

where a; # 0,5 =1,...,k, ¢; € C(j=1,...,k) are distinct complex numbers.

In 2015, Li, Korhonen and Yang [13] proved some results uniqueness for
entire function f and its linear difference polynomial L(f) which share partially
values, and under some conditions about defect values. In 2020, X. Qi and L.
Yang [18] investigated the uniqueness problem for derivative of transcendental
entire function of finite order f and f(z + ¢) share 0-CM and a-IM, where a
is a nonzero complex. In 2022, S. Chen and A. Xu [2] extended the results
of Qi-Yang [18] as follows: Let f be a non-constant meromorphic function
of hyper order ¢(f) < 1, ¢ be a non-zero finite complex number, and k be
a positive integer. If f*)(2) and f(z + ¢) share 0,00-CM and 1 — I M, then
f%)(2) = f(z + c). Motivate by the results of Li, Korhonen and Yang [13], in
this paper, we first prove a result for uniqueness of meromorphic function and
its linear difference-differential polynomial (L(f))™) as follows.

Theorem 1.1. Let k,n be positive integer numbers. Let f(z) be a non-constant
meromorphic function with hyper order less than 1, and assume that (L(f))™
is not a constant function. Suppose that f —1 and (L(f))™ — 1 share value
(0,1), f and (L(f))™ share oo — IM and

E(0, ) € Eu(0, (L()™) (i > 2).
Then
(1.1) (L™ =f

if one of the following assumptions holds:
(1)1 =0 (i.e. f—1 and (L(f))"™ — 1 share the value 0 IM) and

262(0, f)+30(0, f)+ ((2n+4)k+3)O(c0, f) +2(k —1)d(oc0, f) > (2n+6)k+5;

(2)1=1 and

205(0. 1) + 2000, )+ (n+ 2k + 2)O(0c, f) + (k —~1)d(oc, ) > (n-+ Bk +3;
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(3)1>2 and
252(0, f) + ((n 4+ 2)k +2)O(c0, f) + (k — 1)d(00, f) > (n+ 3)k + 2.

Remark 1.1. In Theorem 1.1, the condition E;(0, f) C E;(0, (L(f))™)
(i > 2) is weaker than condition f and (L(f))™ share 0 — CM. If (L(f))™
and f share 0— CM, then E(;(0, f) = E;(0, (L(f))™) (i > 1). Then Theorem
1.1 still holds when (L(f))™ and f share 0-CM.

From Theorem 1.1, when f is an entire function, we get the following result:

Corollary 1.1. Let k,n be positive integer numbers. Let f(z) be an noncon-
stant entire function with hyper order less than 1, and assume that (L(f))™
is not a constant function. Suppose that f —1 and (L(f))"™ — 1 share value
(0,1) and B B

E(0.f) € (0, (L(f)™) (i = 2).
Then

(L™ =f

if one of the following assumptions holds:
(1)1 =0 (i.e. f—1 and (L(f))"™ — 1 share the value 0 IM) and

262(0, f) +30(0, f) > 4;

(2)1=1 and

)

oW

25,(0,f) + 3600, f) >

(3) 1> 2 and 65(0, f) > %

The equation (L(f))™ = f implies also that f is a solution to a linear
difference-differential equation with constant coefficients. Therefore, in the
principle, we can give some properties of solutions by using the characteristic
equation for linear difference-differential equations. Motivate by the works of
X. Qi and L. Yang [18] and S. Chen and A. Xu [2], we prove the uniqueness
result for derivative of meromorphic function and its difference polynomial as
follows:

Theorem 1.2. Let k,n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that L(f) and
) are not constant functions. Suppose that ) —1 and L(f)—1 share value
(0,1), f™ and L(f) share co-IM, and
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Then

(1.2) L(f) = ™

if one of the following assumptions holds:
(1) 1 =0 (i.e. f™ —1 and L(f)—1 share the value 0 IM) and

+ 0420, f) > 6k + 2n + 6

(2)1=1 and
6ﬂmﬁ+&Hﬂ&ﬁ+%®mjj+@k+gﬁ@mfﬂﬁk—U&mjy>%+&

(3)1>2 and
(2k +2)O(o0, f) + (k — 1)d(00, f) 4+ 02(0, f) + 6n42(0, f) > 3k + 2.

Since f(™(z) and f(z+ c) share 0-CM implies that E;(0, f) C E(0, f(z+
¢)) (i > 2), then Theorem 1.2 still holds when f()(z) and f(z + ¢) share 0-CM
and L(f) = f(z + ¢),k = 1. The assumptions in Theorem 1.2 are weaker than
those in Theorem D. Namely, we consider that f(") and f(z+¢) share partially
value 0 and oco-IM, f and f(z 4 ¢) share (1,1). We note that the method
proving Theorem 1.2 is not the same to [2] and [18]. For more results about
uniqueness of meromorphic functions and their shift share partially value, we
recommend the readers to [4, 11, 12]. Outside that problem, the uniqueness of
difference-differential of meromorphic functions sharing values or small func-
tions which was considered by many authors, we refer the readers to [5, 17] for
more details. From Theorem 1.2, we get the following result:

Corollary 1.2. Let n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that f(z + ¢)
and ) are not constant functions, where ¢ is a nonzero complex number.
Suppose that f) —1 and f(z+c)—1 share value (0,1), f™ and f(z+c) share
oo-IM, and - -

Eq(0,f) € Eq(0, f(z+¢)) (i = 2).
Then

fz+e)="(2)

if one of the following assumptions holds:
(1) 1=0 (i.e. ™ —1 and L(f) —1 share the value 0 IM) and
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(2n + T)O(00, f) + 20(0, ) + 82(0, f) + 20,11(0, f)
4 6,40(0, f) > 20+ 12;

(2) =1 and
5200, ) + Buy2(0,1) + 5000, ) + 30(00, f) > 6;

(3)1>2 and
4@(00, )+ 52(0, )+ 6n+2(07 f) > 5.

From Theorem 1.2, when k =1 and L(f) = f(z + ¢), we get the following
result for entire functions:

Corollary 1.3. Let k,n be positive integer numbers. Let f(z) be a nonconstant
entire function with hyper order less than 1, and assume that f(z+c) and f
are not constant functions. Suppose that f™ —1 and f(z + ¢) — 1 share value
(0,1), and

Eu(0,f) C Eu(0, f(z+¢)) (i = 2).
Then

fz+0)=1"(2)

if one of the following assumptions holds:
(1)1 =0 (i.e. f™ —1 and f(z+c)— 1 share the value 0 IM) and

2@(07 f) + 52(07 f) + 25n+1(07 .f) + 6n+2(07 f) > 5;

(2)l=1 and

520, ) + 604200, £) + 3000,1) >

3

N w

(3)1>2 and
82(0, f) + 0n42(0, f) > 1.

Finally, we study the growth of solutions to equations (1.1) and (1.2).

Theorem 1.3. The order of all transcendental meromorphic solutions f of
equations (1.1) and (1.2) must satisfy o(f) > 1.
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Example 1.4. The function f(z) = sinz has order o(f) = 1 and f is a
solution of equation

() = =2f(z+m) + f(z = 3)-

Here L(f) = —2f(z+m) + f(z — g) We also have that f is a solution of

flz+m) = f(2),
where L(f) = f(z + m).

2. Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (Halburd-Korhonen-Tohge [10]). Let h : [0,4+00) — [0,+00) be a
non-decreasing continuous function, and let s € (0,400). If the hyper order of
h is strictly less than one, i.e.,

loglog h
lim sup 0g 10g h(r) =¢ <1,
r—00 10g7“
then hr)
r
h(r +s) = h(r) + o(rl_g_‘E ),

where € > 0 and r — oo outside of a set of finite logarithmic measure.

From Lemma 2.1, we get the following corollary.

Corollary 2.1. [1, 10] Let f be a non-constant meromorphic function with
(f)=¢<1,and ce C\ {0}. Then

N(r, f(z+¢)) < N(r, f) + S(r, f), N(r, f(z+¢)) < N(r, )+ S(r, f),
1 1 — 1 — 1

N(Ta f(Z+C)) SN(T,})‘FS(T,]E), N(T’W) SN(T,})‘FS(T,JC),

T(r,f(z+¢) =T(r, )+ S(r, [).

Lemma 2.2. [19] Let n be a postive integer number. Let f be a non-constant
meromorphic function such that ™ # 0. Then

N(r. 555) < T ) = Tlr. ) + N 5) + (0. )
NG, %) <nN(r,f)+ N(r, %) S f).
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Lemma 2.3. [21] Let p and k be two positive integers. Let f be a non-constant
meromorphic function such that f*) # 0. Then

N, (r, fi)) T(r, f®) - T(r, f>+Np+k<,§>+s<nf>;
N, (r, W) <N, f) + Npyalr, }) S(r, /).

Lemma 2.4. [20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a Z 0,00) be a small function of both f and g. If f and g share
(a(z),0), then one of the following three cases holds:

}) - No(r, g) + Na(r, ?
)+ N0 ) + (N (r, §> + N (r,9)) + S(r, 1) + 5(r, ),

(i) T(r, f) <No(r, f) + Na(r,
1
f
and the similar inequality holds for T(r,g);
(it) f=g;
(iii) fg = a’.
Lemma 2.5. [20] Let f and g be two non-constant meromorphic functions,

and let a(z) (a £ 0,00) be a small function of both f and g. If f and g share
(a(z),1), then one of the following three cases holds:

+2(N(r

%) + Ny(r, g) + No(r, ;)
+N

(r, f)) +5(r, )+ 5(r,9),

and the similar inequality holds for T(r,g);
(i) f =g
(iii) fg = a®
Lemma 2.6. [16, 20] Let f and g be two non-constant meromorphic functions,

and let a(z) (a £ 0,00) be a small function of both f and g. If f and g share
(a(2),1),1 > 2, then one of the following three cases holds:

(i) T(r ) <No(r, £) + Na(r, =) + Na(r,g) + Na(r, §> +8(r, f) + S(r,9)

f

and the similar inequality holds for T(r,g);
(i) f = g;

(ii1) fg = a®.
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Lemma 2.7. [158] Let f be a non-constant meromorphic function with hyper-
order less than 1, and L(f) # 0 be defined as in Theorem A. Then

N(r, —) < T(r, L(f)) = T, f) + N(r, =) + S(r, ),

L(f) f
1 1
N(r,m) S (k*1)N(7",f)+N(T‘,})+S(T,f)

From Lemma 2.7, we get the following result:

Lemma 2.8. Let n,p be integer numbers. Let f be a non-constant mero-
morphic function with hyper order less than 1 such that L(f) # 0. Suppose
(0, f) € B0, L(f)) (alli > p+1). Then

Ny(r. 25) € T LU = 70 f) + Nyl 1)+ S(r. ),
Ny 275) < (k= DN f) + Nyl 5) + S(0. ).
Proof. Apply to Lemma 2.7, we have
@1 N gr) STOLE) =T f) + N )+ S21).
‘We have
(2.2) N(r, ﬁ) N, L(lf)) + l:iHN(j(r, ﬁ)
and o
(2.3) N, %) —N,(r, %) £ N,

Jj=p+1
Hence, combining (2.1) to (2.3) and by the assumption
Eu(0,f) € Eu(0,L(f)) (alli > p + 1),

we get N ;(r, %) < N(r, ﬁ) for all j > p+ 1. Using Lemma 2.7 and (2.2),
we have
@4 Nz STELU =T = 3 N gr)

Jj=p+1

+N(r7%) + S0 f).
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Combine (2.3) and (2.4) to get

1 1
N (r, L(f)> <T(r, L(f)) = T(r, f) + Np(r, ?)
= 1 = 1
+j=zp;rlN(j(7“’}) —jzzp;rlN(j(T’m)‘f‘S(ﬁ f)

<T(r, L(f) = T(r, ) + Ny(r, %) + 50, f).

The remain inequality is similarly proved. For convenience to readers, we write
some steps as follows. From (2.1) and Lemma 2.7, we have

(2.5)
1 1 N 1
N, k—1)N(r, N(r,=) — N(r, S(r, f).
W ggg) < 6= DN+ N 3 = 3 Rt g5+ 50
Then second statement comes from (2.3) and (2.5). [ ]

Next, we prove some results as following;:

Lemma 2.9. Let n be a integer number. Let f be a non-constant meromorphic
function with hyper order less than 1 such that (L(f))™ # 0. Then

T 1 r )y —1(r r 1 r
NG i) < T LN = T )+ NG ) + (0.1,
1 — 1
N(T’W) <nkN(r,f)+ (k=1)N(r, f) +N(7"a?) S(r, f).
Proof. Apply Lemma 2.2, we have
20) Nl i) S T (LUN™) = T L) + N 7575) + S0 1)

By Lemma 2.7, from (2.6), we get

@7 N ) <T( L) — T(r f) + N, =) + 50, f).

L(f) f
Combine (2.6) and (2.7), we get the first inequality. Next, we show the second
inequality. By Lemma 2.2, we have

1

(2.8) NG )

<nN(r, L(f)) + N(r,

1
£+ S D
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Combining (2.8), Lemma 2.7 and Corollary 2.1, we obtain

N(r, ) <nkN(r, f)+ (k — 1)N(r, f)—l—N(r,%)—i—S(r,f).

_
(L)

From Lemma 2.9, we get the following result.

Corollary 2.2. Let n be a integer number. Let f be a non-constant entire
function with hyper order less than 1 such that (L(f))™ # 0. Then

ril r M)y —(r rl r

N(v(L(f))(n))ST(»(L(f)) ) T(vf)+N(7f)+S(7f)v
1 1

N(TvW)SN(T»?)+S(T7f)~

Lemma 2.10. Let n,p be integer numbers. Let f be a mon-constant meromor-
phic function with hyper order less than 1 such that (L(f)™ # 0. Suppose
E(0, f) € Bu(0,(L(f))™) (alli > p+1). Then

r 1 r )y —1(r T 1 T
1 — 1
Np(ra (L(f))(n)) S nkN(T', f) + (k - ]‘)N(Ta f) + Np(r, ?) + S(T, f)

Proof. Apply Lemma 2.9, we have

r 1 T ™)y —7(r T : r
(2.9) N( ,(L(f))(n)) <T(r, (L(f)™) = T(r, f) + N( ,f)+5( , f)-
‘We have
1 1 = 1
@100 N gy = ol )+ 2 Mot )
and
1 1 = 1
(2.11) N(r, ?) = Np(r,?) +j:zp;11v(j(r, ?).

Hence, combining (2.9) to (2.11) and by the assumption

Eu(0,£) C Eu(0,(L(£)™) (alli > p+ 1),
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we get
7“71 r M)y T (r rl
Np(,(L(f)>(n))§T(7(L(f)) ) T(,f)+Np(,f)
= 1 = 1
+j:§_1N(j(’/‘,?)—j:zp;lN(j(’/‘,W)—FS(’/‘,f)
<TG (L)) = T 1)+ Nyl 7) + 505

By Lemma 2.9, we have

1 — 1
(2.12)  N(r, W) <nkN(r,f)+ (k—1)N(r, f)+ N(r, ?) +S(r, f).
Hence, combining (2.9), (2.11) and (2.12), we obtain
1 — 1
Ny (r, W) < nkN(r, f) + (k= 1)N(r, f) + Np(r, ?)
— = 1 - 1
+j:§1N(j(""7?) *j%lN(j(ﬁW)Jrs(ﬁf)

< nkN(r, f) + (k= 1)N(r, f) + Ny (r, %) +S(r, f)

From Lemma 2.10, we get the following result.

Corollary 2.3. Let n,p be integer numbers. Let f be a mon-constant en-
tire function with hyper order less than 1 such that (L(f)™ # 0. Suppose
E(0, f) € Bu(0,(L(f)™) (alli > p+1). Then

r 1 T My —1(r T : r
N, ) < T (L)) = TG )+ Nyl )+ S0 ),
1 1
NP<T7 (L(f))(n)) < NP(T7 ?) + S<T7 f)

Lemma 2.11. Let ¢; and co be two arbitrary complex numbers, and let f be a
meromorphic function of finite order . Assume that € > 0, then there exists a
subset E C R with finite logarithmic measure so that for all |z| = r ¢ EU[0,1],
we have

e P LRt P

071+5)'
T fzte) T

exp(—r



On meromorphic solution of linear difference - differential equation via ... 13

Lemma 2.12. [6, Corollary 1] Assume that f is a transcendental meromorphic
function of finite order o = o(f). Let e > 0, k > j > 0 be two integers. Then
there exists a set E C [0,27) with linear measure zero, so that if p € [0,2m)\ E,
then there is a constant Rg = Ro(¢) > 0 so that for all z verifying argz = ¢
and |z| > Ry, we have

1)
F9(2)

Lemma 2.13. Assume that f is a transcendental meromorphic function of
finite order o = o(f). Let ¢; and ca be complex numbers and k is a positive
integer and € > 0. Then there is a subset E1 C R with finite logarithmic measure
and set E C [0,2m) with linear measure zero so that if z = re®, ¢ € [0,27)\ E,
we have that

< |Z|(k—j)(0—l+a).

< |Z|k(ofl+s) exp(,rcrflJrs)

’f(k)(ZJrCl)
f(z+c2)

holds for all |z| =7 > ro(p) > 1 and |z| € E;.
Proof. Since f has finite order, then by Corollary 2.1, we have

T(r, f(z+c1)) =T(r, f) + o(T(r, f))-

It implies that f(z 4 ¢;) has finite order and of(z + ¢1) = o(f). By Lemma
2.12 for g(z) = f(z + ¢1), there is a set E C [0,27) with linear measure zero,
so that if ¢ € [0,27) \ E, then there is a constant Ry = Ro(y) > 1 so that

(k)
(2.13) ’g (2) ’ < |Z‘k(0—1+s)
9(2)

holds for all z satisfying argz = ¢ and |z| > Ry > 1. Using Lemma 2.11, there
is a subset E C R with finite logarithmic measure so that for all r ¢ E; U0, 1],
we have

(2.14) exp(—r7~1+¢) < ‘; Ez +c1)

071+s).
z 4+ ¢2)

‘ < exp(r

Combine (2.13) and (2.13), we deduce that

’f(k)(ZJrCl)

< Zk(071+€)eX T0'71+€
S <[ p(r71+)

‘f(k)(2+01)f(2+01)
f(z+c1) flz+c2)

holds for all z : argz = ¢ and |z| > Ry > 1 and |2| & Ej. [ |
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3. Proof of Theorems

3.1. Proof of Theorem 1.1

Proof. From the conditions of Theorem 1.1, we know that f and (L(f))™
share (1,1). We consider three cases as following of [.

Case 1: [ = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

" n 1 1
T(r, (L(f))"™) < Na(r, (L(£))"™) + Na(r, W) + Na(r, f) + Na(r, ?)
(3.1)
_ 1 _ . _
+2(N(r, (L(f))(”)) + N (r (L) ™) + (N(r, 5) + N(r, £)) + S(r, f),
and

1
f

T(r, f) < Na(r, f) + Na(r, 5) + Na(r, (L())™) + Na(r,

(3.2)

+ 2 5) + N ) + (V0 gsg) + N (L)) + 50,

First, from Corollary 2.1, we have

(3.3)
No(r, (L(£))™) < 2N(r, (L(f))™) = 2N (r, L(f)) < 2kN(r, f) + S(r, f).

By Lemma 2.10, we know

1 — 1
(3.4) N2(7’7w) S”kN(T,f)+(k—1)N(7"7f)+N2(7"7?)+5(7”,f)7
_ 1 _ — 1
N(ﬁw) SnkN(T7f)+(k—1)N(T7f)+N(T,?)+S(7"f)-

Still using Lemma 2.10 and (3.1), (3.3)-(3.4), we get

T(r, (L(f)™) < T(r, (L(f)™) = T(r, f) + 2N (r,

+ (k(2n +4) + 3)N(r, f) +2(k — 1)N(r, f) + S(r, f).
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This implies
)+ (k(2n +4) + 3)N(r, f)
f)-

Similarly, from Lemma 2.10 and (3.2), we obtain

(3.5) T(r, f) < 2Na(r, %)+3N( %
+2(k = 1)N(r, f) + S(r,

(36)  T(rf) < 2No(r, =) + 3N (r, %) (k(2n +3) + 4N (r, )
+2(k = 1)N(r, f) + S(r, f)

)+ 3N(r,~) + (k(2n +4) + 3)N(r, f)

| =

1
§2N2(Ta ?
+2(k—1)N(r, f) + S(r, f).

~| =

Therefore, combining (3.5) and (3.6), we get

T(r, f) < 2(1 = 02(0, /)T (r, ) +3(1 = ©(0, /))T(r, f)
+ (k(2n+4) 4+ 3)(1 — O(o0, )T (1, )
This implies (K7 — ((2n + 6)k + 5))T(r, f) < S(r, f), where
K1 =202(0, f) +306(0, f) + ((2n + 4)k + 3)O(c0, f)
+2(k—1)0(c0, f) = ((2n+6)k+5) >0
262(0, f)+30(0, f)+ ((2n+4)k+3)O (oo, f) +2(k —1)d(00, f) > (2n+6)k+5.

This is a contradiction. Thus, by Lemma 2.4, we must have f = (L(f))™ or
(L) = 1. We consider the case f.(L(f))™ = 1. Since f and (L(f))™
share co— IM, then the case f.(L(f))"™ =1 is impossible. Hence, we obtain

f= (L™,

We have finished the proof of Theorem 1.1 in the case [ = 0.

Case 2: | = 1. Apply to Lemma 2.5, we may assume that two inequality below
hold:

T(r, (L(F)™) < Na(r, (L(F)™) + Na(r, )+ No(r, f) + Na(r, %)

I
(L(f))™
)+ N(r, (L(f))™)) + S(r, f),
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and

(38)  T(rf) < Na(r, f) + Na(r, §> + Nor, (L(£))™) + N(r,
1
3

™)

¥, %) LN ) + S f).

Combine Lemma 2.10 and (3.7), we get

+

T(r, (L(F))™) < T(r, (L(F))™) — T(r, f) + 2No(r, ) + SN (r, )

fro2 f
2k 2N )+ SN G )+ S ).
This implies
3:9) TS <2Malr )+ 5N ) + (D + 2N )
+ BN 1) + 50 )
Similarly, from Lemma 2.10, (3.3)-(3.4) and (3.8), we obtain
B10)  T(.) <2l 5) + GNO )+ (04 2k + HNG)

+ (k=1)N(r, f)+ S(r, f).

Since

((";5k+2)ﬁ(r, f)+%N(7ﬁf) < ((n+2)k+ gWO“afH(’“— DN ),

then, combining (3.9) and (3.10), we get

T(r, ) < 2(1 - 5300, )T(r, 1) + 51— 00, HT(r, )

+((n+2)k + g)(l — (00, /)T(r, f) + (k= 1)(1 = 6(c0, f))T(r, f) + S(r, f)-

This implies
(K2 = ((n+3)k +3))T(r, f) < S(r, f),

where

K = 260, /) + 50(0, ) + ((n + 2)k + 2)0(00, 1) + (5 — 1)3(c0, ).

This is a contradiction with

205(0. 1) + £0(0. )+ (n+ 2k + 2)O(0c, f) + (k —~1)3(o0, £) > (n-+ 8}k +3.



On meromorphic solution of linear difference - differential equation via ... 17

By an argument as Case 1, we have

f = (L.

Case 3: [ > 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

1

B T L)) < Nalr (L)) + Nl )
+ann+Aun§w+ﬂnﬂ,

and

(3.12)

1
@ym) D

Using Lemma 2.10, (3.3)-(3.4) and (3.11), (3.12) implies that

Tmﬁ<mmﬂ+mm#+mm@uww+mm

(3.13)
T(r, f) < 2Na(r, %) +((n+2k+2)N(r, f) + (k= 1)N(r, f) + S(r, f).

Indeed, (3.11) implies

T(va) < (2k+2)N(T7f)+2N2(T, )+S(T7f)

1
f

< 2Ny, %) T+ ((n+ 20k + NG, f) + (k= DN f) + S0, f).
Therefore, from (3.13) we deduce

T(r, f) <201 =020, /)T (r, f) + ((n + 2)k 4 2)(1 — ©(o0, f))T(r, f)
+ (k - 1)(1 - (5(007 f))T(Tv f) + S(’I“, f)

This implies (K3 — ((n + 3)k + 2))T(r, f) < S(r, f), where
K3 =25(0,f) + ((n+ 2)k +2)O(c0, f) + (k — 1)d(o0, f).
This is a contradiction with
202(0, f) + ((n+2)k +2)O (o0, f) + (k — 1)6(c0, f) > (n+ 3)k + 2.

By an argument as Case 1, we have f = (L(f))™. |
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3.2. Proof of Theorem 1.2

Proof. From the conditions of Theorem 1.2, we know that f(") and L(f) share
(1,1). We consider three cases as following of [.

Case 1: [ = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

(3.14)
T(r, L)) < Nalr L(F)) + Nalr, 77

1
7@)

—— )+ N(r, "))+ S(r, f),

)+ Na(r, f™) + Na(r

~

f(n)
and
(3.15)

n n 1
T(va( ))gNQ(va( ))+N2( 7%)
L)+ N L)) + S0 ).

) + Nl L) + Nt

7%H N, 7)) + (N(r,

From Corrollary 2.1 and (3.14), we have

+2(N(r

(3.16) T(r,L(f)) < (2k +2)N(r, f) + Na(r, ——
+ (2k+ 1)N(r, f) + 2N (r, ——

Using Lemma 2.2 and Lemma 2.8, (3.16) implies that

T(r, L(f)) < @k+ﬂ(rﬂ+T@LUD*ﬂnﬂ+an#

+nN@Jy+NMxn}> (2 + )N (r, f) + 2((k — YN(r, /)
+Nm%»+mwnﬁ+Nmmn§+smﬁ.

Hence, we deduce

(3.17) T(r,f) < (4k +2n+3)N(r, f) +2(k — 1)N(r, f) + 2N (r, ;)

,lwanun%+st»

+ Nao(r, %) + Npga(r 7
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From (3.15), using Lemma 2.2 and Lemma 2.8, we have

(3.18) T(r,f) < (2n+3k+4)N(r, f) +2(k — 1)N(r, f) + N(r, %)
+ No(r, %) 2N (1, %) + Noyalr, %)

< (4k +2n+3)N(r, f) +2(k — 1)N(r, f) + 2N (r, %)

P42 5) + Nasalr 5

From (3.17) and (3.18), we have K4T'(r, f) < S(r, f), where

+ Ny(r, )+ S(r, f).

Ky = (4k +2n + 3)0O(co, f) + 2(k — 1)d(o0, f) + 20(0, f) + d2(0, f)
+ 25n+1(0’ f) + 6n+2(07 f) - (6k +2n + 6)

It is a contradiction since

(4k +2n+ 3)9(007 f) + Q(k - 1)6(00’ f) + 26(()’ f) + (52(0’ f) + 26n+1 (O’ f)
6020, f) > (6K + 20 + 6).

Thus, by Lemma 2.4, we must have f(®) = L(f) or f(.L(f) = 1. The equality
fO.L(f) =1 cannot occur since f( and L(f) share oo-IM. Hence, we obtain
f= (L)),

We have finished the proof of Theorem 1.2 in the case [ = 0.

Case 2: [ = 1. Apply Lemma 2.5, we may assume that two inequalities below
hold:

1 1
(3.19) T(r, L(f)) < Na(r, L(f)) + Na(r, L(f)) + Na(r, f) + Na(r, 7)
1 — 1 _
+ §(N(’°7 m) + N(r, L(f))) + S(r, f),
and
n n 1 1
(3.20)  T(r, ) < Na(r, f™) + Naf(r, W) + Na(r, L(f)) + Na(r, L(f))

- 1
+ 5N ) + N ) + 5.



20 Ha Tran Phuong and Nguyen Van Thin

Combine Lemma 2.8 and (3.19), we get

T(r. L) < @k + 2N )+ T L) = Tl f) + 2000 7)
(k= DN G 1)+ Nl 5) + 5N )+ 50.5).

N =

+
It implies that

(3.21) T(r, f) < 2No(r, %) + %N(r, %
+ N )+ SN ) + S0 )
< No(r, %) + Npyo(r, %) + %N(r, %)

+ (2k + S)N(r, )+ (k=1)N(r, f)+ S(r, f).

)

Similarly, from Lemma 2.3, Lemma 2.8 and (3.20), we obtain
5 — 1
T(ﬁ f) < T(ﬁ f(n)) - T(ﬂ f) + (2k + §)N<’f', f) + (k - 1)N(T7f) + NQ(Ta })
§ Naga(r, ) + SN (r.3) +5(r. 1)
n+2\T, f 2 T, f T, .
Hence, we deduce

322 T(f) < k4 PN+ (k= DN ) +Nalr )

+ Nasalr )+ 5N )+ S0 ).

From (3.21) and (3.22), we get (K5 — ((3k + 3))T(r, f) < S(r, f), where
K = 65(0, 1)+ 6,2(0, ) + 3000, f) + 2k + 2)0(00, f) + (k — 1)5(o0, f).

It is a contradiction with

520, 1)+ 8152(0, 1) + 200, )+ (2K -+ 21000, 1) + (k — 100, f) > 3k +3.

By an argument as Case 1 of Theorem 1.1, we have



On meromorphic solution of linear difference - differential equation via ... 21

Case 3: [ > 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

(3.23) T(r L() < No(r () + Nalr. 775)
+ No(r, f) + Na(r, %) + S(r, f),
and
(3.24)
r, f) r, f) r L r r 1 r
T(af )gNQ(af )+N2(af(n))+N2(’L(f))+N2<7L(f))+S(af)

Combine Lemma 2.8 and (3.23), we get
T(r L)) < T LU)) = T+ )+ 2+ NG )+ 2Na(0 ) + (5, ).

This implies
(3.25)
T(r, f) < 2Na(r

,%) + 2k +2)N(r, f)+ S(r, f)

< Na(r, ) + Nuga(r, %) + (k= 1N(r, f) + 2k + 2)N(r, f) + S(r, f).

L
f
Using Lemma 2.3, Lemma 2.8 and (3.24), we deduce

_ 1 1
T(’I“,f(n)) < (Qk + 2)N(Ta f) + (k - 1)N(T,f) + N2(T7 ?) + Nn-‘rQ(Ta })

+ T(Taf(n)) - T(’I",f) + S(T7f)
It implies that
(3.26)

T(r, f) < 2k +2)N(r, f) + (k = 1)N(r, f) + Na(r, %) + Nt (r, %) +5(r, f)-

From (3.25) and (3.26), we get (K¢ — (3k +2))T'(r, f) < S(r, f), where
Ko = (2k +2)0(00, f) + (k= 1)d(00, f) + 62(0, f) + 6n+2(0, f)-
This is a contradiction with
(2k +2)O(00, f) + (k —1)d(o0, f) + 02(0, f) + 6,42(0, f) > 3k + 2.
By an argument as Case 1, we have

= L(f).
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3.3. Proof of Theorem 1.3

Proof. First, we assume that f is a transcendental meromorphic solution of
(1.1). It means that

k
(3.27) D aifz+e)™ =1

Jj=1

Assume that the solution of (3.27) has order o(f) < 1, then we can choose
e > 0 such that 0 < ¢ < 1 — 0. Apply Lemma 2.13, there is a subset F{ C R
with finite logarithmic measure and set E; C [0,27) with linear measure zero
so that if z = re™, ¢ € [0,27) \ E;, we have that

(3.28) < |z exp(roTItE) j =1, K,

‘f(”)(ZJer)
f(2)

hold for all [z| = 7 > r;(¢) > 1 and |z| ¢ Ei. We denote F; = U?ZlE{ and
E= U?ZlEj7 then F has measure zero in [0,27) and E; has finite logarithmic
measure. Denote ro = max;=1___7;(¢), then (3.28) holds for all j =1,...,k
and z = re’?, o € [0,2m) \ E and |z| > rg, |2| € E;i. Thus, from (3.27) and
(3.28), we get

k
(329) 1< Z ‘aj‘Tn(0_1+€)exp(7‘g_l+s).
j=1

Since 0 —1+4¢ < 0, let r — oo, r ¢ Eq in (3.29), the right side tends to zero and
we get a contradiction. Hence we get o(f) > 1. If f is a solution of (1.2), using
Lemma 2.13 and by arguments as previous computing, we obtain o(f) > 1.
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