
J. Math. Math. Sci. (2025) nn–nnn

On meromorphic solution of linear difference - differential
equation via partially shared values of meromorphic

functions and their growth

Ha Tran Phuong (Thai Nguyen, Viet Nam)

Nguyen Van Thin∗ (Thai Nguyen, Viet Nam)

(Received Jan. 5, 2025)

Abstract. In this paper, we investigate shared value problems related to a
meromorphic function of hyper order less than one and its linear difference-
differential polynomial. In general, under certain conditions of sharing
values of the meromorphic functions and their difference-differential poly-
nomial, a given meromorphic function must satisfy a difference-differential
equation. Furthermore, we also study the order of meromorphic solutions
of some classes of difference-differential equations.

1. Introduction

We use standard notations from Nevanlinna theory. Denote by σ(f) the
order of growth of a meromorphic function f on the complex plane C, and also
use the notation ς(f) to denote the hyper order of f ,

σ(f) = lim sup
r→∞

log T (r, f)

log r
, ς(f) = lim sup

r→∞

log log T (r, f)

log r
,
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respectively, where T (r, f) is the characteristic function of f.
A meromorphic function a is said to be small with respect to f if T (r, a) =
o(T (r, f)), as r → +∞ possibly outside a set of finite Lebesgue measure. We

denote S(f) by the set of small functions with respect to f and Ŝ(f) = S(f)∪
{∞}. Let a be a small function with respect to f. The defect δ(f, a) of f at a
is defined by

δ(a, f) = 1− lim sup
r→∞

N(r,
1

f − a
)

T (r, f)
, Θ(a, f) = 1− lim sup

r→∞

N(r,
1

f − a
)

T (r, f)
.

We can define another defect as follows:

Θ(∞, f) = 1− lim sup
r→∞

N(r, f)

T (r, f)
, δ(∞, f) = 1− lim sup

r→∞

N(r, f)

T (r, f)
.

The five-point theorem due to Nevanlinna states that if two non-constant
meromorphic functions f and g in C share five distinct values ignoring multi-
plicities (IM), then f ≡ g. Recently, Halburd, Korhonen, and Tohge [7, 8, 10],
Chiang and Feng [3] extended the Nevanlinna theory for difference operator.
Difference Nevanlinna theory has emerged as a result of recent interest on value
distribution and growth of meromorphic solutions of difference equations [3, 9],
also uniqueness of meromorphic functions with difference polynomials.

Definition 1.1. [15] Let l be a non-negative integer or infinite. Denote by
El(a, f) the set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ l and l + 1 times if m > l. If El(a, f) = El(a, g), we say that
f and g share (a, l). It is easy to see that if f and g share (a, l), then f and g
share (a, p) for 0 ≤ p ≤ l. Also we note that f and g share the value a - IM or
CM if and only if f and g share (a, 0) or (a,∞), respectively.

Let p be a positive integer and a ∈ C ∪ {∞}. We use Np)(r,
1

f − a
) to

denote the counting function of the zeros of f − a, whose multiplicities are not

greater than p, N(p+1(r,
1

f − a
) to denote the counting function of the zeros of

f − a whose multiplicities are not less than p + 1, and we use Np)(r,
1

f − a
)

and N (p+1(r,
1

f − a
) to denote their corresponding reduced counting functions

(ignoring multiplicities) respectively. We use Ep)(a, f) (E(p+1(a, f)) to denote
the set of zeros of f−a with multiplicities ≤ p (≥ p+1) (ignoring multiplicity),

respectively. We also denote Np(r,
1

f − a
) by

Np(r,
1

f − a
) = N(r,

1

f − a
) + · · ·+N (p(r,

1

f − a
).
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Then we define the truncated deficiency as

δp(a, f) = 1− lim sup
r→∞

Np(r,
1

f − a
)

T (r, f)
.

Let f be a nonconstant meromorphic function with hyper-order less than
1, we denote L(f) by

L(f) :=

k∑
j=1

ajf(z + cj),

where aj ̸= 0, j = 1, . . . , k, cj ∈ C (j = 1, . . . , k) are distinct complex numbers.

In 2015, Li, Korhonen and Yang [13] proved some results uniqueness for
entire function f and its linear difference polynomial L(f) which share partially
values, and under some conditions about defect values. In 2020, X. Qi and L.
Yang [18] investigated the uniqueness problem for derivative of transcendental
entire function of finite order f and f(z + c) share 0-CM and a-IM, where a
is a nonzero complex. In 2022, S. Chen and A. Xu [2] extended the results
of Qi-Yang [18] as follows: Let f be a non-constant meromorphic function
of hyper order ς(f) < 1, c be a non-zero finite complex number, and k be
a positive integer. If f (k)(z) and f(z + c) share 0,∞-CM and 1 − IM, then
f (k)(z) ≡ f(z + c). Motivate by the results of Li, Korhonen and Yang [13], in
this paper, we first prove a result for uniqueness of meromorphic function and
its linear difference-differential polynomial (L(f))(n) as follows.

Theorem 1.1. Let k, n be positive integer numbers. Let f(z) be a non-constant
meromorphic function with hyper order less than 1, and assume that (L(f))(n)

is not a constant function. Suppose that f − 1 and (L(f))(n) − 1 share value
(0, l), f and (L(f))(n) share ∞− IM and

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (i ≥ 2).

Then

(L(f))(n) ≡ f(1.1)

if one of the following assumptions holds:

(1) l = 0 (i.e. f − 1 and (L(f))(n) − 1 share the value 0 IM) and

2δ2(0, f)+3Θ(0, f)+((2n+4)k+3)Θ(∞, f)+2(k−1)δ(∞, f) > (2n+6)k+5;

(2) l = 1 and

2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > (n+ 3)k+ 3;
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(3) l ≥ 2 and

2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f) > (n+ 3)k + 2.

Remark 1.1. In Theorem 1.1, the condition E(i(0, f) ⊂ E(i(0, (L(f))
(n))

(i ≥ 2) is weaker than condition f and (L(f))(n) share 0 − CM. If (L(f))(n)

and f share 0−CM, then E(i(0, f) = E(i(0, (L(f))
(n)) (i ≥ 1). Then Theorem

1.1 still holds when (L(f))(n) and f share 0-CM.

From Theorem 1.1, when f is an entire function, we get the following result:

Corollary 1.1. Let k, n be positive integer numbers. Let f(z) be an noncon-
stant entire function with hyper order less than 1, and assume that (L(f))(n)

is not a constant function. Suppose that f − 1 and (L(f))(n) − 1 share value
(0, l) and

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (i ≥ 2).

Then
(L(f))(n) ≡ f

if one of the following assumptions holds:

(1) l = 0 (i.e. f − 1 and (L(f))(n) − 1 share the value 0 IM) and

2δ2(0, f) + 3Θ(0, f) > 4;

(2) l = 1 and

2δ2(0, f) +
1

2
Θ(0, f) >

3

2
;

(3) l ≥ 2 and δ2(0, f) >
1

2
.

The equation (L(f))(n) ≡ f implies also that f is a solution to a linear
difference-differential equation with constant coefficients. Therefore, in the
principle, we can give some properties of solutions by using the characteristic
equation for linear difference-differential equations. Motivate by the works of
X. Qi and L. Yang [18] and S. Chen and A. Xu [2], we prove the uniqueness
result for derivative of meromorphic function and its difference polynomial as
follows:

Theorem 1.2. Let k, n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that L(f) and
f (n) are not constant functions. Suppose that f (n)−1 and L(f)−1 share value
(0, l), f (n) and L(f) share ∞-IM, and

E(i(0, f) ⊂ E(i(0, L(f)) (i ≥ 2).
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Then

L(f) ≡ f (n)(1.2)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and L(f)− 1 share the value 0 IM) and

(4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > 6k + 2n+ 6;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + (2k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f) > 3k + 3;

(3) l ≥ 2 and

(2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f) > 3k + 2.

Since f (n)(z) and f(z+ c) share 0-CM implies that E(i(0, f) ⊂ E(i(0, f(z+

c)) (i ≥ 2), then Theorem 1.2 still holds when f (n)(z) and f(z+ c) share 0-CM
and L(f) = f(z + c), k = 1. The assumptions in Theorem 1.2 are weaker than
those in Theorem D. Namely, we consider that f (n) and f(z+c) share partially
value 0 and ∞-IM, f (n) and f(z + c) share (1, l). We note that the method
proving Theorem 1.2 is not the same to [2] and [18]. For more results about
uniqueness of meromorphic functions and their shift share partially value, we
recommend the readers to [4, 11, 12]. Outside that problem, the uniqueness of
difference-differential of meromorphic functions sharing values or small func-
tions which was considered by many authors, we refer the readers to [5, 17] for
more details. From Theorem 1.2, we get the following result:

Corollary 1.2. Let n be positive integer numbers. Let f(z) be a nonconstant
meromorphic function with hyper order less than 1, and assume that f(z + c)
and f (n) are not constant functions, where c is a nonzero complex number.
Suppose that f (n)−1 and f(z+c)−1 share value (0, l), f (n) and f(z+c) share
∞-IM, and

E(i(0, f) ⊂ E(i(0, f(z + c)) (i ≥ 2).

Then
f(z + c) ≡ f (n)(z)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and L(f)− 1 share the value 0 IM) and
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(2n+ 7)Θ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > 2n+ 12;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) +

9

2
Θ(∞, f) > 6;

(3) l ≥ 2 and

4Θ(∞, f) + δ2(0, f) + δn+2(0, f) > 5.

From Theorem 1.2, when k = 1 and L(f) = f(z + c), we get the following
result for entire functions:

Corollary 1.3. Let k, n be positive integer numbers. Let f(z) be a nonconstant
entire function with hyper order less than 1, and assume that f(z+ c) and f (n)

are not constant functions. Suppose that f (n) − 1 and f(z + c)− 1 share value
(0, l), and

E(i(0, f) ⊂ E(i(0, f(z + c)) (i ≥ 2).

Then

f(z + c) ≡ f (n)(z)

if one of the following assumptions holds:

(1) l = 0 (i.e. f (n) − 1 and f(z + c)− 1 share the value 0 IM) and

2Θ(0, f) + δ2(0, f) + 2δn+1(0, f) + δn+2(0, f) > 5;

(2) l = 1 and

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) >

3

2
;

(3) l ≥ 2 and

δ2(0, f) + δn+2(0, f) > 1.

Finally, we study the growth of solutions to equations (1.1) and (1.2).

Theorem 1.3. The order of all transcendental meromorphic solutions f of
equations (1.1) and (1.2) must satisfy σ(f) ≥ 1.
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Example 1.4. The function f(z) = sin z has order σ(f) = 1 and f is a
solution of equation

f ′(z) = −2f(z + π) + f(z − π

2
).

Here L(f) = −2f(z + π) + f(z − π

2
). We also have that f is a solution of

f ′(z + π) = f(z),

where L(f) = f(z + π).

2. Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (Halburd-Korhonen-Tohge [10]). Let h : [0,+∞) → [0,+∞) be a
non-decreasing continuous function, and let s ∈ (0,+∞). If the hyper order of
h is strictly less than one, i.e.,

lim sup
r→∞

log log h(r)

log r
= ς < 1,

then

h(r + s) = h(r) + o(
h(r)

r1−ς−ε
),

where ε > 0 and r → ∞ outside of a set of finite logarithmic measure.

From Lemma 2.1, we get the following corollary.

Corollary 2.1. [1, 10] Let f be a non-constant meromorphic function with
ς(f) = ς < 1, and c ∈ C \ {0}. Then

N(r, f(z + c)) ≤ N(r, f) + S(r, f), N(r, f(z + c)) ≤ N(r, f) + S(r, f),

N(r,
1

f(z + c)
) ≤ N(r,

1

f
) + S(r, f), N(r,

1

f(z + c)
) ≤ N(r,

1

f
) + S(r, f),

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2. [19] Let n be a postive integer number. Let f be a non-constant
meromorphic function such that f (n) ̸≡ 0. Then

N(r,
1

f (n)
) ⩽ T (r, f (n))− T (r, f) +N(r,

1

f
) + S(r, f);

N(r,
1

f (n)
) ⩽ nN(r, f) +N(r,

1

f
) + S(r, f).
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Lemma 2.3. [21] Let p and k be two positive integers. Let f be a non-constant
meromorphic function such that f (k) ̸≡ 0. Then

Np(r,
1

f (k)
) ⩽ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f);

Np(r,
1

f (k)
) ⩽ kN(r, f) +Np+k(r,

1

f
) + S(r, f).

Lemma 2.4. [20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), 0), then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+ 2(N(r,
1

f
) +N(r, f)) + (N(r,

1

g
) +N(r, g)) + S(r, f) + S(r, g),

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.

Lemma 2.5. [20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), 1), then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f) + S(r, g),

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.

Lemma 2.6. [16, 20] Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
(a(z), l), l ≥ 2, then one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
) + S(r, f) + S(r, g)

and the similar inequality holds for T(r,g);

(ii) f ≡ g;

(iii) fg ≡ a2.
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Lemma 2.7. [13] Let f be a non-constant meromorphic function with hyper-
order less than 1, and L(f) ̸≡ 0 be defined as in Theorem A. Then

N(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

L(f)
) ≤ (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

From Lemma 2.7, we get the following result:

Lemma 2.8. Let n, p be integer numbers. Let f be a non-constant mero-
morphic function with hyper order less than 1 such that L(f) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, L(f)) (all i ≥ p+ 1). Then

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

L(f)
) ≤ (k − 1)N(r, f) +Np(r,

1

f
) + S(r, f).

Proof. Apply to Lemma 2.7, we have

N(r,
1

L(f)
) ⩽ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f).(2.1)

We have

N(r,
1

L(f)
) = Np(r,

1

L(f)
) +

∞∑
j=p+1

N (j(r,
1

L(f)
)(2.2)

and

N(r,
1

f
) = Np(r,

1

f
) +

∞∑
j=p+1

N (j(r,
1

f
).(2.3)

Hence, combining (2.1) to (2.3) and by the assumption

E(i(0, f) ⊂ E(i(0, L(f)) (all i ≥ p+ 1),

we get N (j(r,
1

f
) ≤ N (j(r,

1

L(f)
) for all j ≥ p+ 1. Using Lemma 2.7 and (2.2),

we have

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f)−

∞∑
j=p+1

N (j(r,
1

L(f)
)(2.4)

+N(r,
1

f
) + S(r, f).
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Combine (2.3) and (2.4) to get

Np(r,
1

L(f)
) ≤ T (r, L(f))− T (r, f) +Np(r,

1

f
)

+

∞∑
j=p+1

N (j(r,
1

f
)−

∞∑
j=p+1

N (j(r,
1

L(f)
) + S(r, f)

≤ T (r, L(f))− T (r, f) +Np(r,
1

f
) + S(r, f).

The remain inequality is similarly proved. For convenience to readers, we write
some steps as follows. From (2.1) and Lemma 2.7, we have

Np(r,
1

L(f)
) ≤ (k − 1)N(r, f) +N(r,

1

f
)−

∞∑
j=p+1

N (j(r,
1

L(f)
) + S(r, f).

(2.5)

Then second statement comes from (2.3) and (2.5). ■

Next, we prove some results as following:

Lemma 2.9. Let n be a integer number. Let f be a non-constant meromorphic
function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Then

N(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

Proof. Apply Lemma 2.2, we have

N(r,
1

(L(f))(n)
) ⩽ T (r, (L(f))(n))− T (r, L(f)) +N(r,

1

L(f)
) + S(r, f).(2.6)

By Lemma 2.7, from (2.6), we get

N(r,
1

L(f)
) ⩽ T (r, L(f))− T (r, f) +N(r,

1

f
) + S(r, f).(2.7)

Combine (2.6) and (2.7), we get the first inequality. Next, we show the second
inequality. By Lemma 2.2, we have

N(r,
1

(L(f))(n)
) ⩽ nN(r, L(f)) +N(r,

1

L(f)
) + S(r, f).(2.8)
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Combining (2.8), Lemma 2.7 and Corollary 2.1, we obtain

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

■

From Lemma 2.9, we get the following result.

Corollary 2.2. Let n be a integer number. Let f be a non-constant entire
function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Then

N(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f),

N(r,
1

(L(f))(n)
) ≤ N(r,

1

f
) + S(r, f).

Lemma 2.10. Let n, p be integer numbers. Let f be a non-constant meromor-
phic function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, (L(f))

(n)) (all i ≥ p+ 1). Then

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,

1

f
) + S(r, f).

Proof. Apply Lemma 2.9, we have

N(r,
1

(L(f))(n)
) ⩽ T (r, (L(f))(n))− T (r, f) +N(r,

1

f
) + S(r, f).(2.9)

We have

N(r,
1

(L(f))(n)
) = Np(r,

1

(L(f))(n)
) +

∞∑
j=p+1

N (j(r,
1

(L(f))(n)
)(2.10)

and

N(r,
1

f
) = Np(r,

1

f
) +

∞∑
j=p+1

N (j(r,
1

f
).(2.11)

Hence, combining (2.9) to (2.11) and by the assumption

E(i(0, f) ⊂ E(i(0, (L(f))
(n)) (all i ≥ p+ 1),
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we get

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
)

+

∞∑
j=p+1

N (j(r,
1

f
)−

∞∑
j=p+1

N (j(r,
1

(L(f))(n)
) + S(r, f)

≤ T (r, (L(f))(n))− T (r, f) +Np(r,
1

f
) + S(r, f).

By Lemma 2.9, we have

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).(2.12)

Hence, combining (2.9), (2.11) and (2.12), we obtain

Np(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,

1

f
)

+

∞∑
j=p+1

N (j(r,
1

f
)−

∞∑
j=p+1

N (j(r,
1

(L(f))(n)
) + S(r, f)

≤ nkN(r, f) + (k − 1)N(r, f) +Np(r,
1

f
) + S(r, f).

■

From Lemma 2.10, we get the following result.

Corollary 2.3. Let n, p be integer numbers. Let f be a non-constant en-
tire function with hyper order less than 1 such that (L(f))(n) ̸≡ 0. Suppose
E(i(0, f) ⊂ E(i(0, (L(f))

(n)) (all i ≥ p+ 1). Then

Np(r,
1

(L(f))(n)
) ≤ T (r, (L(f))(n))− T (r, f) +Np(r,

1

f
) + S(r, f),

Np(r,
1

(L(f))(n)
) ≤ Np(r,

1

f
) + S(r, f).

Lemma 2.11. Let c1 and c2 be two arbitrary complex numbers, and let f be a
meromorphic function of finite order σ. Assume that ε > 0, then there exists a
subset E ⊂ R with finite logarithmic measure so that for all |z| = r ̸∈ E ∪ [0, 1],
we have

exp(−rσ−1+ε) ≤
∣∣∣f(z + c1)

f(z + c2)

∣∣∣ ≤ exp(rσ−1+ε).
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Lemma 2.12. [6, Corollary 1] Assume that f is a transcendental meromorphic
function of finite order σ = σ(f). Let ε > 0, k > j ≥ 0 be two integers. Then
there exists a set E ⊂ [0, 2π) with linear measure zero, so that if φ ∈ [0, 2π)\E,
then there is a constant R0 = R0(φ) > 0 so that for all z verifying argz = φ
and |z| ≥ R0, we have ∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

Lemma 2.13. Assume that f is a transcendental meromorphic function of
finite order σ = σ(f). Let c1 and c2 be complex numbers and k is a positive
integer and ε > 0. Then there is a subset E1 ⊂ R with finite logarithmic measure
and set E ⊂ [0, 2π) with linear measure zero so that if z = reiφ, φ ∈ [0, 2π)\E,
we have that ∣∣∣∣f (k)(z + c1)

f(z + c2)

∣∣∣∣ ≤ |z|k(σ−1+ε)exp(rσ−1+ε)

holds for all |z| = r ≥ r0(φ) > 1 and |z| ̸∈ E1.

Proof. Since f has finite order, then by Corollary 2.1, we have

T (r, f(z + c1)) = T (r, f) + o(T (r, f)).

It implies that f(z + c1) has finite order and σf(z + c1) = σ(f). By Lemma
2.12 for g(z) = f(z + c1), there is a set E ⊂ [0, 2π) with linear measure zero,
so that if φ ∈ [0, 2π) \ E, then there is a constant R0 = R0(φ) > 1 so that∣∣∣∣g(k)(z)g(z)

∣∣∣∣ ≤ |z|k(σ−1+ε)(2.13)

holds for all z satisfying argz = φ and |z| ≥ R0 > 1. Using Lemma 2.11, there
is a subset E ⊂ R with finite logarithmic measure so that for all r ̸∈ E1 ∪ [0, 1],
we have

exp(−rσ−1+ε) ≤
∣∣∣f(z + c1)

f(z + c2)

∣∣∣ ≤ exp(rσ−1+ε).(2.14)

Combine (2.13) and (2.13), we deduce that∣∣∣∣f (k)(z + c1)

f(z + c2)

∣∣∣∣ = ∣∣∣∣f (k)(z + c1)

f(z + c1)

f(z + c1)

f(z + c2)

∣∣∣∣ ≤ |z|k(σ−1+ε)exp(rσ−1+ε)

holds for all z : argz = φ and |z| ≥ R0 > 1 and |z| ̸∈ E1. ■
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3. Proof of Theorems

3.1. Proof of Theorem 1.1

Proof. From the conditions of Theorem 1.1, we know that f and (L(f))(n)

share (1, l). We consider three cases as following of l.

Case 1: l = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
) +N2(r, f) +N2(r,

1

f
)

+ 2(N(r,
1

(L(f))(n)
) +N(r, (L(f))(n))) + (N(r,

1

f
) +N(r, f)) + S(r, f),

(3.1)

and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
)

+ 2(N(r,
1

f
) +N(r, f)) + (N(r,

1

(L(f))(n)
) +N(r, (L(f))(n))) + S(r, f).

(3.2)

First, from Corollary 2.1, we have

N2(r, (L(f))
(n)) ≤ 2N(r, (L(f))(n)) = 2N(r, L(f)) ≤ 2kN(r, f) + S(r, f).

(3.3)

By Lemma 2.10, we know

N2(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N2(r,

1

f
) + S(r, f),(3.4)

N(r,
1

(L(f))(n)
) ≤ nkN(r, f) + (k − 1)N(r, f) +N(r,

1

f
) + S(r, f).

Still using Lemma 2.10 and (3.1), (3.3)-(3.4), we get

T (r, (L(f))(n)) ⩽ T (r, (L(f))(n))− T (r, f) + 2N2(r,
1

f
) + 3N(r,

1

f
)

+ (k(2n+ 4) + 3)N(r, f) + 2(k − 1)N(r, f) + S(r, f).
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This implies

T (r, f) ⩽ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 4) + 3)N(r, f)(3.5)

+ 2(k − 1)N(r, f) + S(r, f).

Similarly, from Lemma 2.10 and (3.2), we obtain

T (r, f) ⩽ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 3) + 4)N(r, f)(3.6)

+ 2(k − 1)N(r, f) + S(r, f)

≤ 2N2(r,
1

f
) + 3N(r,

1

f
) + (k(2n+ 4) + 3)N(r, f)

+ 2(k − 1)N(r, f) + S(r, f).

Therefore, combining (3.5) and (3.6), we get

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) + 3(1−Θ(0, f))T (r, f)

+ (k(2n+ 4) + 3)(1−Θ(∞, f))T (r, f)

+ 2(k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies (K1 − ((2n+ 6)k + 5))T (r, f) ≤ S(r, f), where

K1 = 2δ2(0, f) + 3Θ(0, f) + ((2n+ 4)k + 3)Θ(∞, f)

+ 2(k − 1)δ(∞, f)− ((2n+ 6)k + 5) > 0

since

2δ2(0, f)+3Θ(0, f)+((2n+4)k+3)Θ(∞, f)+2(k−1)δ(∞, f) > (2n+6)k+5.

This is a contradiction. Thus, by Lemma 2.4, we must have f ≡ (L(f))(n) or
f.(L(f))(n) ≡ 1. We consider the case f.(L(f))(n) ≡ 1. Since f and (L(f))(n)

share ∞− IM, then the case f.(L(f))(n) ≡ 1 is impossible. Hence, we obtain

f ≡ (L(f))(n).

We have finished the proof of Theorem 1.1 in the case l = 0.

Case 2: l = 1. Apply to Lemma 2.5, we may assume that two inequality below
hold:

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
) +N2(r, f) +N2(r,

1

f
)

+
1

2
(N(r,

1

(L(f))(n)
) +N(r, (L(f))(n))) + S(r, f),(3.7)
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and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
)(3.8)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f).

Combine Lemma 2.10 and (3.7), we get

T (r, (L(f))(n)) ⩽ T (r, (L(f))(n))− T (r, f) + 2N2(r,
1

f
) +

1

2
N(r,

1

f
)

+ ((
n+ 5

2
)k + 2)N(r, f) +

k − 1

2
N(r, f) + S(r, f).

This implies

T (r, f) ⩽ 2N2(r,
1

f
) +

1

2
N(r,

1

f
) + ((

n+ 5

2
)k + 2)N(r, f)(3.9)

+
k − 1

2
N(r, f) + S(r, f).

Similarly, from Lemma 2.10, (3.3)-(3.4) and (3.8), we obtain

T (r, f) ⩽ 2N2(r,
1

f
) +

1

2
N(r,

1

f
) + ((n+ 2)k +

5

2
)N(r, f)(3.10)

+ (k − 1)N(r, f) + S(r, f).

Since

((
n+ 5

2
k+2)N(r, f) +

k − 1

2
N(r, f) ≤ ((n+2)k+

5

2
)N(r, f) + (k− 1)N(r, f),

then, combining (3.9) and (3.10), we get

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) +
1

2
(1−Θ(0, f))T (r, f)

+ ((n+ 2)k +
5

2
)(1−Θ(∞, f))T (r, f) + (k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies
(K2 − ((n+ 3)k + 3))T (r, f) ≤ S(r, f),

where

K2 = 2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f).

This is a contradiction with

2δ2(0, f) +
1

2
Θ(0, f) + ((n+ 2)k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > (n+ 3)k+ 3.
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By an argument as Case 1, we have

f ≡ (L(f))(n).

Case 3: l ≥ 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

T (r, (L(f))(n)) ⩽ N2(r, (L(f))
(n)) +N2(r,

1

(L(f))(n)
)(3.11)

+N2(r, f) +N2(r,
1

f
) + S(r, f),

and

T (r, f) ⩽ N2(r, f) +N2(r,
1

f
) +N2(r, (L(f))

(n)) +N2(r,
1

(L(f))(n)
) + S(r, f).

(3.12)

Using Lemma 2.10, (3.3)-(3.4) and (3.11), (3.12) implies that

T (r, f) ⩽ 2N2(r,
1

f
) + ((n+ 2)k + 2)N(r, f) + (k − 1)N(r, f) + S(r, f).

(3.13)

Indeed, (3.11) implies

T (r, f) ≤ (2k + 2)N(r, f) + 2N2(r,
1

f
) + S(r, f)

≤ 2N2(r,
1

f
) + ((n+ 2)k + 2)N(r, f) + (k − 1)N(r, f) + S(r, f).

Therefore, from (3.13) we deduce

T (r, f) ⩽ 2(1− δ2(0, f))T (r, f) + ((n+ 2)k + 2)(1−Θ(∞, f))T (r, f)

+ (k − 1)(1− δ(∞, f))T (r, f) + S(r, f).

This implies (K3 − ((n+ 3)k + 2))T (r, f) ≤ S(r, f), where

K3 = 2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f).

This is a contradiction with

2δ2(0, f) + ((n+ 2)k + 2)Θ(∞, f) + (k − 1)δ(∞, f) > (n+ 3)k + 2.

By an argument as Case 1, we have f ≡ (L(f))(n). ■
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3.2. Proof of Theorem 1.2

Proof. From the conditions of Theorem 1.2, we know that f (n) and L(f) share
(1, l). We consider three cases as following of l.

Case 1: l = 0. Apply Lemma 2.4, we may assume that two following inequal-
ities hold:

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
) +N2(r, f

(n)) +N2(r,
1

f (n)
)

(3.14)

+ 2(N(r,
1

L(f)
) +N(r, L(f))) + (N(r,

1

f (n)
) +N(r, f (n))) + S(r, f),

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
)

(3.15)

+ 2(N(r,
1

f (n)
) +N(r, f (n))) + (N(r,

1

L(f)
) +N(r, L(f))) + S(r, f).

From Corrollary 2.1 and (3.14), we have

T (r, L(f)) ⩽ (2k + 2)N(r, f) +N2(r,
1

L(f)
) +N2(r,

1

f (n)
)(3.16)

+ (2k + 1)N(r, f) + 2N(r,
1

L(f)
) +N(r,

1

f (n)
) + S(r, f),

Using Lemma 2.2 and Lemma 2.8, (3.16) implies that

T (r, L(f)) ⩽ (2k + 2)N(r, f) + T (r, L(f))− T (r, f) +N2(r,
1

f
)

+ nN(r, f) +Nn+2(r,
1

f
) + (2k + 1)N(r, f) + 2((k − 1)N(r, f)

+N(r,
1

f
)) + nN(r, f) +Nn+1(r,

1

f
) + S(r, f).

Hence, we deduce

T (r, f) ≤ (4k + 2n+ 3)N(r, f) + 2(k − 1)N(r, f) + 2N(r,
1

f
)(3.17)

+N2(r,
1

f
) +Nn+2(r,

1

f
) + 2Nn+1(r,

1

f
) + S(r, f).
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From (3.15), using Lemma 2.2 and Lemma 2.8, we have

T (r, f) ⩽ (2n+ 3k + 4)N(r, f) + 2(k − 1)N(r, f) +N(r,
1

f
)(3.18)

+N2(r,
1

f
) + 2Nn+1(r,

1

f
) +Nn+2(r,

1

f
)

≤ (4k + 2n+ 3)N(r, f) + 2(k − 1)N(r, f) + 2N(r,
1

f
)

+N2(r,
1

f
) + 2Nn+1(r,

1

f
) +Nn+2(r,

1

f
) + S(r, f).

From (3.17) and (3.18), we have K4T (r, f) ≤ S(r, f), where

K4 = (4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f)

+ 2δn+1(0, f) + δn+2(0, f)− (6k + 2n+ 6).

It is a contradiction since

(4k + 2n+ 3)Θ(∞, f) + 2(k − 1)δ(∞, f) + 2Θ(0, f) + δ2(0, f) + 2δn+1(0, f)

+ δn+2(0, f) > (6k + 2n+ 6).

Thus, by Lemma 2.4, we must have f (n) ≡ L(f) or f (n).L(f) ≡ 1. The equality
f (n).L(f) ≡ 1 cannot occur since f (n) and L(f) share ∞-IM. Hence, we obtain

f ≡ (L(f))(n).

We have finished the proof of Theorem 1.2 in the case l = 0.

Case 2: l = 1. Apply Lemma 2.5, we may assume that two inequalities below
hold:

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
) +N2(r, f) +N2(r,

1

f
)(3.19)

+
1

2
(N(r,

1

L(f)
) +N(r, L(f))) + S(r, f),

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
)(3.20)

+
1

2
(N(r,

1

f
) +N(r, f)) + S(r, f).
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Combine Lemma 2.8 and (3.19), we get

T (r, L(f)) ⩽ (2k + 2)N(r, f) + T (r, L(f))− T (r, f) + 2N2(r,
1

f
)

+
1

2
((k − 1)N(r, f) +N(r,

1

f
)) +

k

2
N(r, f) + S(r, f).

It implies that

T (r, f) ≤ 2N2(r,
1

f
) +

1

2
N(r,

1

f
)(3.21)

+ (
5k

2
+ 2)N(r, f) +

k − 1

2
N(r, f) + S(r, f)

≤ N2(r,
1

f
) +Nn+2(r,

1

f
) +

1

2
N(r,

1

f
)

+ (2k +
5

2
)N(r, f) + (k − 1)N(r, f) + S(r, f).

Similarly, from Lemma 2.3, Lemma 2.8 and (3.20), we obtain

T (r, f) ⩽ T (r, f (n))− T (r, f) + (2k +
5

2
)N(r, f) + (k − 1)N(r, f) +N2(r,

1

f
)

+Nn+2(r,
1

f
) +

1

2
N(r,

1

f
) + S(r, f).

Hence, we deduce

T (r, f) ⩽ (2k +
5

2
)N(r, f) + (k − 1)N(r, f) +N2(r,

1

f
)(3.22)

+Nn+2(r,
1

f
) +

1

2
N(r,

1

f
) + S(r, f).

From (3.21) and (3.22), we get (K5 − ((3k + 3))T (r, f) ≤ S(r, f), where

K5 = δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + (2k +

5

2
)Θ(∞, f) + (k − 1)δ(∞, f).

It is a contradiction with

δ2(0, f) + δn+2(0, f) +
1

2
Θ(0, f) + ((2k+

5

2
)Θ(∞, f) + (k− 1)δ(∞, f) > 3k+3.

By an argument as Case 1 of Theorem 1.1, we have

f (n) ≡ L(f).
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Case 3: l ≥ 2. Apply Lemma 2.6, we may assume that two inequalities below
hold.

T (r, L(f)) ⩽ N2(r, L(f)) +N2(r,
1

L(f)
)(3.23)

+N2(r, f) +N2(r,
1

f
) + S(r, f),

and

T (r, f (n)) ⩽ N2(r, f
(n)) +N2(r,

1

f (n)
) +N2(r, L(f)) +N2(r,

1

L(f)
) + S(r, f).

(3.24)

Combine Lemma 2.8 and (3.23), we get

T (r, L(f)) ⩽ T (r, L(f))− T (r, f) + (2k + 2)N(r, f) + 2N2(r,
1

f
) + S(r, f).

This implies

T (r, f) ⩽ 2N2(r,
1

f
) + (2k + 2)N(r, f) + S(r, f)

(3.25)

≤ N2(r,
1

f
) +Nn+2(r,

1

f
) + (k − 1)N(r, f) + (2k + 2)N(r, f) + S(r, f).

Using Lemma 2.3, Lemma 2.8 and (3.24), we deduce

T (r, f (n)) ≤ (2k + 2)N(r, f) + (k − 1)N(r, f) +N2(r,
1

f
) +Nn+2(r,

1

f
)

+ T (r, f (n))− T (r, f) + S(r, f).

It implies that

T (r, f) ≤ (2k + 2)N(r, f) + (k − 1)N(r, f) +N2(r,
1

f
) +Nn+2(r,

1

f
) + S(r, f).

(3.26)

From (3.25) and (3.26), we get (K6 − (3k + 2))T (r, f) ⩽ S(r, f), where

K6 = (2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f).

This is a contradiction with

(2k + 2)Θ(∞, f) + (k − 1)δ(∞, f) + δ2(0, f) + δn+2(0, f) > 3k + 2.

By an argument as Case 1, we have

f (n) ≡ L(f).

■
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3.3. Proof of Theorem 1.3

Proof. First, we assume that f is a transcendental meromorphic solution of
(1.1). It means that

(

k∑
j=1

ajf(z + cj))
(n) = f.(3.27)

Assume that the solution of (3.27) has order σ(f) < 1, then we can choose
ε > 0 such that 0 < ε < 1 − σ. Apply Lemma 2.13, there is a subset Ej

1 ⊂ R
with finite logarithmic measure and set Ej ⊂ [0, 2π) with linear measure zero
so that if z = reiφ, φ ∈ [0, 2π) \ Ej , we have that∣∣∣∣f (n)(z + cj)

f(z)

∣∣∣∣ ≤ |z|n(σ−1+ε)exp(rσ−1+ε), j = 1, . . . , k,(3.28)

hold for all |z| = r ≥ rj(φ) > 1 and |z| ̸∈ Ej
1. We denote E1 = ∪k

j=1E
j
1 and

E = ∪k
j=1Ej , then E has measure zero in [0, 2π) and E1 has finite logarithmic

measure. Denote r0 = maxj=1,...,k rj(φ), then (3.28) holds for all j = 1, . . . , k
and z = reiφ, φ ∈ [0, 2π) \ E and |z| > r0, |z| ̸∈ E1. Thus, from (3.27) and
(3.28), we get

1 ≤
k∑

j=1

|aj |rn(σ−1+ε)exp(rσ−1+ε).(3.29)

Since σ−1+ε < 0, let r → ∞, r ̸∈ E1 in (3.29), the right side tends to zero and
we get a contradiction. Hence we get σ(f) ≥ 1. If f is a solution of (1.2), using
Lemma 2.13 and by arguments as previous computing, we obtain σ(f) ≥ 1.

■
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