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Abstract. In this paper, we introduce a new algorithm for solving strongly
monotone variational inequality problem, where the constraint set is the
solution set of the split variational inequality and fixed point problem. Our
method uses dynamic step sizes selected based on information of the pre-
vious step, which gives strong convergence result without the prior knowl-
edge of the given bounded linear operator’s norm. In addition, using our
method, we do not require any information of the Lipschitz and strongly
monotone constants of the mappings. Several corollaries of our main re-
sult are also presented. Finally, a numerical example has been given to
illustrate the effectiveness of our proposed algorithm.

1. Introduction

Consider two real Hilbert spaces, denoted as H1 and H2, with a bounded
linear operator A : H1 −→ H2. Let C be a nonempty closed convex subset of
H1. Additionally, let F : H1 −→ H1 and T : H2 −→ H2 be given mappings.
The Split Variational Inequality and Fixed Point Problem (SVIFPP) aim to
find a solution x∗ in the spaceH1 for which the image A(x∗), under the operator
A, serves as a fixed point for another mapping in H2.

To be more specific, the SVIFPP can be formulated as follows:

(1.1) Find x∗ ∈ C : ⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ C
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such that

(1.2) T (A(x∗)) = A(x∗).

A particular instance of the SVIFPP, denoted by equations (1.1)-(1.2) with
F = 0 and T = PQ, corresponds to the Split Feasibility Problem (SFP). In
short, the SFP can be stated as follows:

(1.3) Find x∗ ∈ C such that A(x∗) ∈ Q,

where C and Q are two nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Recently, it has been demonstrated that the SFP can
serve as a practical model in intensity-modulated radiation therapy [10, 11,
13] and in various other real-world applications. To solve the SFP and their
generalizations, numerous iterative projection methods have been developed.
For more details, see [1–9, 12–16, 18, 21, 23, 24] and the references therein.

To find a specific solution to the SVIFPP, Hai et al. [14] investigated the
following variational inequality problem

(1.4) Find x∗ ∈ ΩSVIFPP such that ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSVIFPP,

where S : H1 −→ H1 is η-strongly monotone and κ-Lipschitz continuous on
H1, F : H1 −→ H1 is pseudomonotone on C and L-Lipschitz continuous on
H1, T : H2 −→ H2 is γ-demicontractive and demi-closed at zero, ΩSVIFPP =
{x∗ ∈ Sol(C,F ) : A(x∗) ∈ Fix(T )} defines the solution set of the SVIFPP.
As detailed in [14], the authors recommended the subgradient extragradient
method to solve problem (1.4) (refer to Algorithm 1 in [14])

(1.5)



x0 ∈ H1,

un = A(xn),

vn = T (un),

yn = xn + δnA
∗(vn − un),

zn = PC(y
n − µnF (yn)),

tn = PCn(y
n − µnF (zn)),

xn+1 = tn − εnS(t
n)

where Cn = {ω ∈ H1 : ⟨yn − µnF (yn) − zn, ω − zn⟩ ≤ 0}, {δn} ⊂ [δ, δ] ⊂(
0,

1− γ

∥A∥2 + 1

)
, {µn} ⊂ [a, b] ⊂

(
0,

1

L

)
, {εn} ⊂ (0, 1), lim

n→∞
εn = 0 and

∞∑
n=0

εn = ∞. In [14], the authors proved that the sequence {xn}, generated

by (1.5), converges strongly to the unique solution x∗ of the variational in-
equality problem (1.4), assuming the solution set ΩSVIFPP of the SVIFPP is
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nonempty.
In extragradient methods, performing two projections onto the constrained

set C per iteration can hinder the algorithm’s efficiency. To overcome this chal-
lenge, Tseng’s extragradient method [20] reduces the computational burden by
performing only one projection onto C in each iteration. The formulation of
Tseng’s extragradient method is outlined as follows:

(1.6)


x0 ∈ H,

yn = PC(x
n − µF (xn)),

xn+1 = yn − µ(F (yn)− F (xn)),

where F is L-Lipschitz continuous, and µ ∈
(
0,

1

L

)
. It is important to highlight

that the main drawback of Algorithms (1.5) and (1.6) is the need to know the
Lipschitz constants of the operator F , or at the very least, to have estimates
of this parameter.

In this paper, motivated by the previously discussed works, we propose a
novel algorithm designed to solve the variational inequality problem over the
solution set of the split variational inequality and fixed point problem (1.4).
The main contribution of the algorithm is the replacement of the subgradient
extragradient method in Algorithm (1.5) with a modified version of Tseng’s
extragradient methods, which use self-adaptive step sizes. By implementing
this modification, the need for the Lipschitz constant of the cost operator F is
removed, resulting in a faster convergence rate. Additionally, our method does
not require any prior information regarding the norm of the operator A.

The paper is structured as follows. Section 2 presents key definitions and
preliminary results, which are utilized in Section 3, where the algorithm is
introduced, its strong convergence is established, and several corollaries are
discussed. In the final section, a numerical example is provided to compare the
performance of the proposed algorithm with that of Hai et al. [14].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. It is
well-known that for all point x ∈ H, there exists a unique point PC(x) ∈ C
such that

(2.1) ∥x− PC(x)∥ = min{∥x− y∥ : y ∈ C}.

The mapping PC : H −→ C defined by (2.1) is called the metric projection of
H onto C. Notably, PC is nonexpansive. Additionally, the following inequality
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holds for all for all x ∈ H and y ∈ C:

⟨x− PC(x), y − PC(x)⟩ ≤ 0.

Definition 2.1. Let H1 and H2 be two Hilbert spaces and let A : H1 −→ H2

be a bounded linear operator. An operator A∗ : H2 −→ H1 with the property
⟨A(x), y⟩ = ⟨x,A∗(y)⟩ for all x ∈ H1 and y ∈ H2, is called an adjoint operator.

The adjoint operator of a bounded linear operator A between Hilbert spaces
H1, H2 always exists and is uniquely determined. Additionally, A∗ is a bounded
linear operator and the equality ∥A∗∥ = ∥A∥ holds true.

Definition 2.2 (see [17]). A mapping S : H −→ H is said to be

(i) η-strongly monotone on H if there exists η > 0 such that

⟨S(x)− S(y), x− y⟩ ≥ η∥x− y∥2 ∀x, y ∈ H;

(ii) κ-Lipschitz continuous on H if

∥S(x)− S(y)∥ ≤ κ∥x− y∥ ∀x, y ∈ H.

Definition 2.3. A mapping T : H −→ H is said to be

(i) γ-demicontractive if Fix(T ) ̸= ∅ and there exists a constant γ ∈ [0, 1)
such that

∥T (x)− x∗∥2 ≤ ∥x− x∗∥2 + γ∥T (x)− x∥2 ∀x ∈ H,∀x∗ ∈ Fix(T );

(ii) demi-closed at zero if, for every sequence {xn} in H, the following impli-
cation holds {

xn ⇀ x

lim
n→∞

∥T (xn)− xn∥ = 0
⇒ x ∈ Fix(T ).

The subsequent lemmas are essential for establishing the main result in our
paper.

Lemma 2.1 (see [16]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let F : H −→ H be a mapping such that lim sup

n→∞
⟨F (xn), y −

yn⟩ ≤ ⟨F (x), y − y⟩ for every sequences {xn}, {yn} in H converging weakly to
x and y, respectively. Assume that µn ≥ a > 0 for all n, {xn} is a sequence in
H satisfying xn ⇀ x and lim

n→∞
∥xn − yn∥ = 0, where yn = PC(x

n − µnF (xn))

for all n. Then x ∈ Sol(C,F ).
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Lemma 2.2 (see [22]). Let {un} be a sequence of nonnegative real numbers,

{αn} be a sequence in (0, 1) such that

∞∑
n=0

αn = ∞ and {vn} be a sequence of

real numbers with lim sup
n→∞

vn ≤ 0. Suppose that

un+1 ≤ (1− αn)un + αnvn ∀n ≥ 0.

Then lim
n→∞

un = 0.

Lemma 2.3 (see [19]). Let {an} be a sequence of nonnegative real numbers
such that for any integer m, there exists an integer p such that p ≥ m and
ap ≤ ap+1. Let n0 be an integer such that an0 ≤ an0+1 and define, for all
integer n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence satisfying lim
n→∞

τ(n) = ∞ and

the following inequalities are satisfied:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

3. The algorithm and convergence analysis

In this section, we propose an algorithm with strong convergence for solving
the problem (1.4). We specify the following assumptions related to the map-
pings S, F and T involved in the formulation of the problem (1.4).

(A1): S : H1 −→ H1 is η-strongly monotone and κ-Lipschitz continuous on
H1.

(A2): F : H1 −→ H1 is pseudomonotone on C and L-Lipschitz continuous
on H1.

(A3): lim sup
n→∞

⟨F (xn), y− yn⟩ ≤ ⟨F (x), y− y⟩ for every sequence {xn}, {yn}
in H1 converging weakly to x and y, respectively.

(A4): T : H2 −→ H2 is γ-demicontractive and demi-closed at zero.
The algorithm is presented as follows.

Algorithm 3.1.
Step 0. Choose µ0 > 0, µ ∈ (0, 1), {ρn} ⊂ [a, b] ⊂

(
0, 1 − γ

)
, {εn} ⊂ (0, 1)

such that lim
n→∞

εn = 0 and

∞∑
n=0

εn = ∞.
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Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute un = A(xn), vn = T (un) and

yn = xn + δnA
∗(vn − un),

where the step size δn is chosen in such a way that

δn =


ρn∥vn − un∥2

∥A∗(vn − un)∥2
if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.

Step 3. Compute
zn = PC(y

n − µnF (yn)),

tn = zn − µn(F (zn)− F (yn)),

where

µn+1 =

min

{
µ∥yn − zn∥

∥F (yn)− F (zn)∥
, µn

}
if F (yn) ̸= F (zn),

µn if F (yn) = F (zn).

Step 4. Compute
xn+1 = tn − εnS(t

n).

Step 5. Set n := n+ 1, and go to Step 2.

The strong convergence of the sequence generated through Algorithm 3.1
is established by the following theorem.

Theorem 3.1. Assuming that conditions (A1), (A2), (A3) and (A4) hold,
the sequence {xn} generated by Algorithm 3.1 converges strongly to the unique
solution of problem (1.4), provided that the solution set ΩSVIFPP of the SVIFPP
is nonempty.

Proof. Since ΩSVIFPP ̸= ∅, the problem (1.4) has a unique solution, denoted
by x∗. In particular, x∗ ∈ ΩSVIFPP, which implies that x∗ ∈ Sol(C,F ) and
A(x∗) ∈ Fix(T ). The proof of the theorem is divided into several steps.
Step 1. For all n ≥ 0, we show that

(3.1)
(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2.

Given that zn = PC(y
n − µnF (yn)) and x∗ ∈ C, by utilizing the properties of

the projection mapping, we have

⟨yn − µnF (yn)− zn, x∗ − zn⟩ ≤ 0
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or, equivalently

(3.2) −⟨yn − zn, zn − x∗⟩ ≤ −µn⟨F (yn), zn − x∗⟩.

By applying the equality

∥y∥2 = ∥x+ y∥2 − ∥x∥2 − 2⟨x, y⟩ ∀x, y ∈ H1

and taking (3.2) into consideration, we derive

∥zn − x∗∥2 = ∥(yn − zn) + (zn − x∗)∥2 − ∥yn − zn∥2 − 2⟨yn − zn, zn − x∗⟩
≤ ∥yn − x∗∥2 − ∥yn − zn∥2 − 2µn⟨F (yn), zn − x∗⟩.(3.3)

Since x∗ ∈ Sol(C,F ), it follows that ⟨F (x∗), z − x∗⟩ ≥ 0 for all z ∈ C. By
applying the pseudomonotonicity of F on C, we deduce that ⟨F (z), z−x∗⟩ ≥ 0
for all z ∈ C. Taking z = zn ∈ C, we obtain

(3.4) ⟨F (zn), zn − x∗⟩ ≥ 0.

From the definition of µn+1, it follows that

(3.5) ∥F (yn)− F (zn)∥ ≤ µ

µn+1
∥yn − zn∥.

Indeed, if F (yn) = F (zn), then the inequality (3.5) is satisfied. Otherwise, we
derive the following

µn+1 = min

{
µ∥yn − zn∥

∥F (yn)− F (zn)∥
, µn

}
≤ µ∥yn − zn∥

∥F (yn)− F (zn)∥
,

which implies (3.5).
From (3.3), (3.4) and (3.5), we obtain

∥tn − x∗∥2 = ∥zn − x∗ − µn(F (zn)− F (yn))∥2

= ∥zn − x∗∥2 − 2µn⟨F (zn)− F (yn), zn − x∗⟩
+ µ2

n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 − ∥yn − zn∥2 − 2µn⟨F (zn), zn − x∗⟩
+ µ2

n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 − ∥yn − zn∥2 + µ2
n∥F (zn)− F (yn)∥2

≤ ∥yn − x∗∥2 −
(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2.

As a result, we get(
1− µ2 µ2

n

µ2
n+1

)
∥yn − zn∥2 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2 ∀n ≥ 0.
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Step 2. For all n ≥ 0, we have

(3.6) ⟨xn − x∗, A∗(vn − un)⟩ ≤ −1− γ

2
∥vn − un∥2.

Thanks to the γ-demicontractivity of T , we get

⟨xn − x∗, A∗(vn − un)⟩
= ⟨A(xn − x∗), vn − un⟩
= ⟨vn −A(x∗), vn − un⟩ − ∥vn − un∥2

=
1

2

[(
∥vn −A(x∗)∥2 − ∥un −A(x∗)∥2

)
− ∥vn − un∥2

]
=

1

2

[(
∥T (un)−A(x∗)∥2 − ∥un −A(x∗)∥2

)
− ∥vn − un∥2

]
≤ 1

2

[
γ∥T (un)− un∥2 − ∥vn − un∥2

]
= −1− γ

2
∥vn − un∥2.

Step 3. We show that

(3.7) µn+1 ≤ µn, µn ≥ min
(µ

L
, µ0

)
∀n ≥ 0, lim

n→∞
µn = µ∗ ≥ min

(µ

L
, µ0

)
.

Since F is L-Lipschitz continuous on H1, we have

∥F (yn)− F (zn)∥ ≤ L∥yn − zn∥.

Thus, when F (yn) ̸= F (zn), it follows that

µ∥yn − zn∥
∥F (yn)− F (zn)∥

≥ µ

L
.

By induction, we obtain

µn ≥ min
(µ

L
, µ0

)
∀n ≥ 0.

From the definition of µn+1, it is clear that µn+1 ≤ µn for all n ≥ 0. Therefore,

together with the fact that µn ≥ min
(µ

L
, µ0

)
for all n ≥ 0, it follows that the

sequence {µn} has a limit, denoted by µ∗, and we conclude that lim
n→∞

µn =

µ∗ ≥ min
(µ

L
, µ0

)
.

Step 4. We show that, for all n ≥ 0

(3.8)

a2

(∥A∥+ 1)2
∥vn − un∥2 ≤ ∥yn − xn∥2,

∥yn − xn∥2 ≤ b

1− γ − b

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
.
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We now consider two distinct cases.
Case 1. A∗(vn − un) = 0. From (3.6), we deduce that ∥vn − un∥ = 0. Since
δn = 0, it follows that yn = xn. Therefore, (3.8) holds.
Case 2. A∗(vn − un) ̸= 0. It follows from (3.6) that

∥yn − x∗∥2 = ∥(xn − x∗) + δnA
∗(vn − un)∥2

= ∥xn − x∗∥2 + ∥δnA∗(vn − un)∥2 + 2δn⟨xn − x∗, A∗(vn − un)⟩
≤ ∥xn − x∗∥2 + δ2n∥A∗(vn − un)∥2 − δn(1− γ)∥vn − un∥2

= ∥xn − x∗∥2 − ρ2n∥vn − un∥4

∥A∗(vn − un)∥2
· 1− γ − ρn

ρn

≤ ∥xn − x∗∥2 − ρ2n∥vn − un∥4

∥A∗(vn − un)∥2
· 1− γ − b

b
∀n ≥ 0.(3.9)

By applying (3.9), we get

∥yn − xn∥2 = δ2n∥A∗(vn − un)∥2

=
ρ2n∥vn − un∥4

∥A∗(vn − un)∥4
∥A∗(vn − un)∥2

=
ρ2n∥vn − un∥4

∥A∗(vn − un)∥2
(3.10)

≤ b

1− γ − b

(
∥xn − x∗∥2 − ∥yn − x∗∥2

)
∀n ≥ 0.

On the other hand

(3.11) ∥A∗(vn−un)∥ ≤ ∥A∗∥∥vn−un∥ = ∥A∥∥vn−un∥ ≤ (∥A∥+1)∥vn−un∥.

By using (3.10) and (3.11) together, we obtain

∥yn − xn∥2 ≥ ρ2n∥vn − un∥4

(∥A∥+ 1)2∥vn − un∥2
≥ a2

(∥A∥+ 1)2
∥vn − un∥2 ∀n ≥ 0.

Therefore, the inequalities in (3.8) are proven.

Now, choose ε ∈
(
0,

2η

κ2

)
. From lim

n→∞
εn = 0 and lim

n→∞

(
1−µ2 µ2

n

µ2
n+1

)
= 1−µ2 >

0, there exists n0 ∈ N such that

(3.12) εn < ε ∀n ≥ n0, 1− µ2 µ2
n

µ2
n+1

>
1− µ2

2
> 0 ∀n ≥ n0.

Step 5. For all n ≥ n0, we show that

(3.13) ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥ ≤
(
1− εnτ

ε

)
∥tn − x∗∥,
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where τ = 1−
√

1− ε(2η − εκ2) ∈ (0, 1].
Given the κ-Lipschitz continuity and η-strong monotonicity of S on H1, we
deduce

∥tn − x∗−ε(S(tn)− S(x∗))∥2

= ∥tn − x∗∥2 − 2ε⟨tn − x∗, S(tn)− S(x∗)⟩+ ε2∥S(tn)− S(x∗)∥2

≤ ∥tn − x∗∥2 − 2εη∥tn − x∗∥2 + ε2κ2∥tn − x∗∥2

=
[
1− ε(2η − εκ2)

]
∥tn − x∗∥2.

From (3.12) and the inequality above, it follows that

∥tn−εnS(t
n)− x∗ + εnS(x

∗)∥

=
∥∥∥(1− εn

ε

)
(tn − x∗) +

εn
ε

[
tn − x∗ − ε(S(tn)− S(x∗))

]∥∥∥
≤

(
1− εn

ε

)
∥tn − x∗∥+ εn

ε
∥tn − x∗ − ε(S(tn)− S(x∗))∥

≤
(
1− εn

ε

)
∥tn − x∗∥+ εn

ε

√
1− ε(2η − εκ2)∥tn − x∗∥

=
[
1− εn

ε

(
1−

√
1− ε(2η − εκ2)

)]
∥tn − x∗∥

=
(
1− εnτ

ε

)
∥tn − x∗∥ ∀n ≥ n0.

Step 6. The sequences {xn}, {yn}, {tn} and {S(tn)} are bounded.
From inequality (3.13), we obtain

∥xn+1 − x∗∥ = ∥tn − εnS(t
n)− x∗ + εnS(x

∗)− εnS(x
∗)∥

≤ ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥+ εn∥S(x∗)∥

≤
(
1− εnτ

ε

)
∥tn − x∗∥+ εn∥S(x∗)∥ ∀n ≥ n0.(3.14)

Using (3.1), (3.8) and (3.12), we get

(3.15) ∥tn − x∗∥ ≤ ∥yn − x∗∥ ≤ ∥xn − x∗∥ ∀n ≥ n0.

By applying (3.14) and (3.15), we derive

∥xn+1 − x∗∥ ≤
(
1− εnτ

ε

)
∥xn − x∗∥+ εn∥S(x∗)∥

=
(
1− εnτ

ε

)
∥xn − x∗∥+ εnτ

ε
· ε∥S(x

∗)∥
τ

∀n ≥ n0.

In particular,

∥xn+1 − x∗∥ ≤ max
{
∥xn − x∗∥, ε∥S(x

∗)∥
τ

}
∀n ≥ n0,
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and thus, by induction, we have

∥xn − x∗∥ ≤ max
{
∥xn0 − x∗∥, ε∥S(x

∗)∥
τ

}
∀n ≥ n0.

Therefore, the sequence {xn} is bounded and this is true for the sequences
{yn}, {tn} and {S(tn)} as well, thanks to (3.15) and the Lipschitz continuity
of S.
Step 7. We prove that {xn} converges strongly to x∗.
Based on (3.13), we deduce, for every n ≥ n0, that

∥xn+1 − x∗∥2 ≤ ∥xn+1 − x∗∥2 + ε2n∥S(x∗)∥2

= ∥xn+1 − x∗ + εnS(x
∗)∥2 − 2⟨εnS(x∗), xn+1 − x∗⟩

= ∥tn − εnS(t
n)− x∗ + εnS(x

∗)∥2 − 2εn⟨S(x∗), xn+1 − x∗⟩

≤
[(

1− εnτ

ε

)
∥tn − x∗∥

]2
− 2εn⟨S(x∗), xn+1 − x∗⟩

≤
(
1− εnτ

ε

)
∥tn − x∗∥2 − 2εn⟨S(x∗), xn+1 − x∗⟩.(3.16)

We will consider two cases.
Case 1. Let us consider the case where there exists n∗ such that {∥xn−x∗∥} is
decreasing for n ≥ n∗. As a result, the limit of {∥xn−x∗∥} exists. Consequently,
from (3.15) and (3.16), we deduce, for all n ≥ n0, that

0 ≤ ∥yn − x∗∥2 − ∥tn − x∗∥2

≤ ∥xn − x∗∥2 − ∥tn − x∗∥2

≤
(
∥xn − x∗∥2 − ∥xn+1 − x∗∥2

)
− 2εn⟨S(x∗), xn+1 − x∗⟩.

Given that ∥xn − x∗∥ has a limit, with lim
n→∞

εn = 0, and the sequence {xn} is

bounded, the above inequalities yield that

lim
n→∞

(∥yn − x∗∥2 − ∥tn − x∗∥2) = 0,(3.17)

lim
n→∞

(∥xn − x∗∥2 − ∥tn − x∗∥2) = 0.(3.18)

It follows from (3.1), (3.12) and (3.17) that

(3.19) lim
n→∞

∥yn − zn∥ = 0.

From (3.17) and (3.18), we have

(3.20) lim
n→∞

(∥xn − x∗∥2 − ∥yn − x∗∥2) = 0.
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Consequently, from (3.8) and (3.20), we get

lim
n→∞

∥yn − xn∥ = 0,(3.21)

lim
n→∞

∥vn − un∥ ⇒ lim
n→∞

∥T (un)− un∥ = 0.(3.22)

Applying the triangle inequality along with the L-Lipschitz continuity of F on
H1, we have

∥xn − tn∥ ≤ ∥xn − yn∥+ ∥yn − zn∥+ ∥zn − tn∥
= ∥xn − yn∥+ ∥yn − zn∥+ ∥µn(F (zn)− F (yn))∥
≤ ∥xn − yn∥+ ∥yn − zn∥+ µnL∥zn − yn∥
≤ ∥xn − yn∥+ (1 + µ0L)∥yn − zn∥.

Therefore, using (3.19) and (3.21), it follows that

(3.23) lim
n→∞

∥xn − tn∥ = 0.

Now, we prove that

(3.24) lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ ≤ 0.

Choose a subsequence {xnν} from {xn} such that

lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ = lim
ν→∞

⟨S(x∗), x∗ − xnν ⟩.

As {xnν} is bounded, we can assume without loss of generality that xnν ⇀ x.
Hence

(3.25) lim sup
n→∞

⟨S(x∗), x∗ − xn+1⟩ = ⟨S(x∗), x∗ − x⟩.

Using the weak convergence xnν ⇀ x and (3.21), we infer ynν ⇀ x. From
(3.19), we have lim

ν→∞
∥ynν − znν∥ = 0. Since znν = PC(y

nν − µnν
F (ynν )),

ynν ⇀ x, µnν ≥ min
(µ

L
, µ0

)
> 0. By Lemma 2.1, we obtain x ∈ Sol(C,F ).

From xnν ⇀ x, we imply unν = A(xnν ) ⇀ A(x). Together with (3.22) and the
demiclosedness of T , it follows that A(x) ∈ Fix(T ). Taking into account that
x ∈ Sol(C,F ), we conclude that x ∈ ΩSVIFPP. Consequently, ⟨S(x∗), x−x∗⟩ ≥
0, and combined with (3.25), this gives (3.24).
By applying (3.15) and (3.16), we get

(3.26) ∥xn+1 − x∗∥2 ≤
(
1− εnτ

ε

)
∥xn − x∗∥2 + εnτ

ε
bn ∀n ≥ n0,
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where

bn =
2ε⟨S(x∗), x∗ − xn+1⟩

τ
.

Using (3.24), we conclude that lim sup
n→∞

bn ≤ 0. Since εn < ε ∀n ≥ n0 and

0 < τ ≤ 1, it follows that
{εnτ

ε

}
n≥n0

⊂ (0, 1). As a result, from (3.26),

∞∑
n=0

εn = ∞, lim sup
n→∞

bn ≤ 0 and Lemma 2.2, we deduce that lim
n→∞

∥xn−x∗∥2 =

0, which implies xn → x∗ as n → ∞.
Case 2. Assume that for every integer m, there exists an integer n such that
n ≥ m and ∥xn − x∗∥ ≤ ∥xn+1 − x∗∥. By applying Lemma 2.3, we can define
a nondecreasing sequence {τ(n)}n≥N of N such that lim

n→∞
τ(n) = ∞ and the

following inequalities hold

(3.27) ∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥, ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥ ∀n ≥ N.

Select n∗ ≥ N such that τ(n) ≥ n0 for all n ≥ n∗. Using (3.27) and (3.14), we
get

∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥

≤
(
1−

ετ(n)τ

ε

)
∥tτ(n) − x∗∥+ ετ(n)∥S(x∗)∥

≤ ∥tτ(n) − x∗∥+ ετ(n)∥S(x∗)∥ ∀n ≥ n∗,

which together with (3.15) implies, for all n ≥ n∗, that

(3.28)
0 ≤ ∥yτ(n) − x∗∥ − ∥tτ(n) − x∗∥
≤ ∥xτ(n) − x∗∥ − ∥tτ(n) − x∗∥ ≤ ετ(n)∥S(x∗)∥.

Then, it follows from (3.28) and lim
n→∞

εn = 0 that

(3.29)
lim
n→∞

(∥yτ(n) − x∗∥ − ∥tτ(n) − x∗∥) = 0,

lim
n→∞

(∥xτ(n) − x∗∥ − ∥tτ(n) − x∗∥) = 0.

Using (3.29) and the fact that the sequences {xn}, {yn} and {tn} are bounded,
we derive

lim
n→∞

(∥yτ(n) − x∗∥2 − ∥tτ(n) − x∗∥2) = 0,

lim
n→∞

(∥xτ(n) − x∗∥2 − ∥tτ(n) − x∗∥2) = 0.

Applying the same reasoning as in the first case, it follows that

(3.30) lim
n→∞

∥xτ(n) − tτ(n)∥ = 0, lim sup
n→∞

⟨S(x∗), x∗ − xτ(n)⟩ ≤ 0.
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We now observe that

∥xτ(n)+1 − xτ(n)∥ = ∥tτ(n) − xτ(n) − ετ(n)S(t
τ(n))∥

≤ ∥tτ(n) − xτ(n)∥+ ετ(n)∥S(tτ(n))∥,

which, in combination with (3.30), lim
n→∞

εn = 0 and the boundedness of {S(tτ(n))},
implies

(3.31) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.

Using (3.31) along with the Cauchy-Schwarz inequality, we get

(3.32) lim
n→∞

⟨S(x∗), xτ(n) − xτ(n)+1⟩ = 0.

By combining (3.32) and (3.30), we conclude that

lim sup
n→∞

⟨S(x∗), x∗ − xτ(n)+1⟩

= lim sup
n→∞

[
⟨S(x∗), x∗ − xτ(n)⟩+ ⟨S(x∗), xτ(n) − xτ(n)+1⟩

]
= lim sup

n→∞
⟨S(x∗), x∗ − xτ(n)⟩ ≤ 0.(3.33)

Also, from (3.16) and (3.15), we get

(3.34) ∥xn+1−x∗∥2 ≤
(
1− εnτ

ε

)
∥xn−x∗∥2+2εn⟨S(x∗), x∗−xn+1⟩ ∀n ≥ n0,

Since τ(n) ≥ n0 holds for all n ≥ n∗, we can conclude from (3.34) and (3.27)
that for all n ≥ n∗

∥xτ(n)+1 − x∗∥2 ≤
(
1−

ετ(n)τ

ε

)
∥xτ(n) − x∗∥2 + 2ετ(n)⟨S(x∗), x∗ − xτ(n)+1⟩

≤
(
1−

ετ(n)τ

ε

)
∥xτ(n)+1 − x∗∥2 + 2ετ(n)⟨S(x∗), x∗ − xτ(n)+1⟩.

As a result, since ετ(n) > 0

∥xτ(n)+1 − x∗∥2 ≤ 2ε

τ
⟨S(x∗), x∗ − xτ(n)+1⟩ ∀n ≥ n∗.

By combining this inequality with (3.27), given that n∗ ≥ N , we have

(3.35) ∥xn − x∗∥2 ≤ 2ε

τ
⟨S(x∗), x∗ − xτ(n)+1⟩ ∀n ≥ n∗.

Taking the limit in (3.35) as n → ∞ and applying (3.33), we arrive at

lim sup
n→∞

∥xn − x∗∥2 ≤ 0.

Therefore, it follows that xn → x∗ as n → ∞. This completes the proof of
Theorem 3.1. ■
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Remark 3.1. We highlight the advantages of Algorithm 3.1 compared to
the algorithm of Hai et al. in [14, Algorithm 1].

i) In Algorithm 3.1, unlike the result in [14, Algorithm 1], the step size is
selected in such a way that its implementation does not require any prior
knowledge of the norms of the given bounded linear operators.

ii) Algorithm 1 in [14] requires computing or estimating the Lipschitz con-
stant of the mapping F , which is generally a challenging task in practice.
In contrast, our Algorithm 3.1 removes this restriction.

When F is set to zero and T is defined as PQ, the SVIFPP described by
equations (1.1)-(1.2) reduces to the SFP given in (1.3). Consequently, utilizing
the results from Algorithm 1 and Theorem 3.1, we derive the following result for
solving the variational inequality problem over the solution set of the SFP. It
is important to note that the proposed algorithm requires only two projections
per iteration, and notably, its implementation does not rely on any information
about the norm of the operator A.

Algorithm 3.2.
Step 0. Choose {ρn} ⊂ [a, b] ⊂ (0, 1), {εn} ⊂ (0, 1) such that lim

n→∞
εn = 0 and

∞∑
n=0

εn = ∞.

Step 1. Let x0 ∈ H1. Set n := 0.
Step 2. Compute un = A(xn), vn = PQ(u

n) and

yn = xn + δnA
∗(vn − un),

where the stepsize δn is chosen in such a way that

δn =


ρn∥vn − un∥2

∥A∗(vn − un)∥2
if A∗(vn − un) ̸= 0,

0 if A∗(vn − un) = 0.

Step 3. Compute zn = PC(y
n).

Step 4. Compute
xn+1 = zn − εnS(z

n).

Step 5. Set n := n+ 1, and go to Step 2.

Corollary 3.1. Let C and Q be two nonempty closed convex subsets of two
real Hilbert spaces H1 and H2, respectively, and let S : H1 −→ H1 be a strongly
monotone and Lipschitz continuous mapping. Suppose that the solution set
ΩSFP = {x∗ ∈ C : A(x∗) ∈ Q} of the SFP is nonempty. Then the sequence
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{xn} generated by Algorithm 3.2 converges strongly to x∗ ∈ ΩSFP, which is the
unique solution of the variational inequality problem

(3.36) ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSFP,

provided that the solution set ΩSFP of the SFP is nonempty.

Assume the following conditions to be satisfied:
(B1): S : H −→ H is strongly monotone and Lipschitz continuous on H.
(B2): F : H −→ H is pseudomonotone on C and Lipschitz continuous on

H.
(B3): lim sup

n→∞
⟨F (xn), y− yn⟩ ≤ ⟨F (x), y− y⟩ for every sequence {xn}, {yn}

in H converging weakly to x and y, respectively.
When H1 = H2 := H, and both T and A are the identity mappings in H,

the SVIFPP reduces to the variational inequality problem (1.1). Consequently,
by applying Algorithm 3.1 and utilizing Theorem 3.1, we obtain the following
result for solving the variational inequality problem over the solution set of an-
other VIP. It is important to emphasize that the proposed algorithm requires
only one projection onto the feasible set at each iteration, and its implemen-
tation does not require any information about the Lipschitz constants of the
mappings S and F , nor the modulus of strong monotonicity of S.

Algorithm 3.3.
Step 0. Choose µ0 > 0, µ ∈ (0, 1) and {εn} ⊂ (0, 1) such that lim

n→∞
εn = 0,

∞∑
n=0

εn = ∞.

Step 1. Let x0 ∈ H. Set n := 0.
Step 2. Compute

yn = PC(x
n − µnF (xn)),

zn = yn − µn(F (yn)− F (xn)),

where

µn+1 =

min

{
µ∥xn − yn∥

∥F (xn)− F (yn)∥
, µn

}
if F (xn) ̸= F (yn),

µn if F (xn) = F (yn).

Step 3. Compute
xn+1 = zn − εnS(z

n).

Step 4. Set n := n+ 1, and go to Step 2.

Corollary 3.2. Under the assumption that conditions (B1), (B2) and (B3)
hold, the sequence {xn} generated by Algorithm 3.3 converges strongly to a
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point x∗ ∈ Sol(C,F ), which is the unique solution of the variational inequality

(3.37) ⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ Sol(C,F ),

provided that Sol(C,F ) ̸= ∅.

4. Numerical illustrations

In this section, we present numerical experiments to demonstrate the effec-
tiveness of the proposed algorithm. The Python scripts were run on a 2017
MacBook Pro, featuring a 2.3 GHz Intel Core i5 processor, an Intel Iris Plus
Graphics 640 with 1536 MB of memory, and 8 GB of 2133 MHz LPDDR3
RAM. The experiments were conducted using Python version 3.11.

Example 4.1. ([14]) Let RK be endowed with the standard Euclidean norm

∥x∥ =
(
x2
1 + x2

2 + · · ·+ x2
K

) 1
2 for all x = (x1, x2, . . . , xK)T ∈ RK . We consider

the SVIFPP with the mapping F : R4 −→ R4 defined by F (x) = (sin ∥x∥+2)a0

for all x ∈ R4, where a0 = (12,−4, 4,−4)T ∈ R4. Additionally, let C be the set
defined as

C = {(x1, x2, x3, x4)
T ∈ R4 : 12x1 − 4x2 + 4x3 − 4x4 ≥ 9}

and the bounded linear operator A : R4 −→ R2 defined by A(x) = Mx for all
x ∈ R4, where

M =

(
1 0 1 1
0 1 1 −1

)
Assume that T : R2 −→ R2 is defined by, for all y = (y1, y2)

T ∈ R2

T (y) =

{
(y1, y2)

T if y1 ≤ 0,

(−2y1, y2)
T if y1 > 0.

Then T is
1

3
-demicontractive and Fix(T ) = (−∞, 0]× R.

Consider the mapping S : R4 −→ R4 be defined by S(x) = x for all x ∈ R4.
This mapping S is strongly monotone with η = 1 and Lipschitz continuous
with κ = 1 on R4. In this situation, the problem (1.4) becomes the problem of
finding the minimum-norm solution of the SVIFPP.
The solution set ΩSVIFPP of the SVIFPP is given by

ΩSVIFPP = {(x1, x2, x3, x4)
T ∈ Sol(C,F ) : A(x1, x2, x3, x4) ∈ Fix(T )}

= {(x1, x2, x3, x4)
T ∈ R4 : 12x1 − 4x2 + 4x3 − 4x4 = 9, x1 + x3 + x4 ≤ 0}.
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and the minimum-norm solution x∗ of the SVIFPP is x∗ =
(1
2
,−1

4
, 0,−1

2

)T

.

We now provide a comparison between Algorithm 3.1 and Algorithm 1 in

[14]. Given that the exact solution of the problem is x∗ =
(1
2
,−1

4
, 0,−1

2

)T

, we

using ∥xn − x∗∥ ≤ ε as the stopping condition. Both algorithms use the same
initial point x0, obtained by randomly generating values within the interval
[−10, 10]. The parameters for each algorithm are chosen as follows:

• Algorithm 3.1: µ0 = 2, µ = 0.1, ρn = 1− 10−2 and εn =
1

n+ 2
.

• Algorithm 1 in [14]: δn =
n+ 1

500n+ 510
, µn =

n+ 1

600n+ 605
and εn =

1

n+ 2
.

Table 1. A comparison of Algorithm 3.1 and Algorithm 1 in [14] using
various tolerances ε and the stopping criterion ∥xn − x∗∥ ≤ ε

ε = 10−3 ε = 10−4

Iter(n) CPU time(s) Iter(n) CPU time(s)

Algorithm 3.1 4274 0.8088 89639 9.6047
Algorithm 1 in [14] 28470 2.1334 295407 18.5596

Table 1 shows that our Algorithm 3.1 outperforms Algorithm 1 in [14] in
terms of both the number of iterations and CPU time.

Example 4.2. We consider the mapping S : R3 −→ R3 defined by S(x) =
(4x1+16, 4x2−4, 4x3+3)T for all x = (x1, x2, x3)

T ∈ R3. It is straightforward
to verify that S is both strongly monotone and Lipschitz continuous on R3.
Define the sets C = {(x1, x2, x3)

T ∈ R3 : x1 − x2 +2x3 = 4}, Q = {(u1, u2)
T ∈

R2 : 3u1 − u2 = 10} and let the bounded linear operator A : R3 −→ R2 be
defined by A(x) = Mx, where

M =

(
1 −4 2
2 −9 −4

)
.

The solution set ΩSFP of the SFP is given by

ΩSFP =

{
x1 − x2 + 2x3 = 4

3(x1 − 4x2 + 2x3)− (2x1 − 9x2 − 4x3) = 10

=

{
x1 − x2 + 2x3 = 4

x1 − 3x2 + 10x3 = 10,

which can be expressed in parametric form as:

ΩSFP =
{
(2t+ 1, 4t− 3, t)T : t ∈ R

}
.
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Assume that x∗ = (2t∗ + 1, 4t∗ − 3, t∗)T ∈ ΩSFP satisfies the variational in-
equality

⟨S(x∗), x− x∗⟩ ≥ 0 ∀x ∈ ΩSFP.

Given that S(x∗) = (8t∗+20, 16t∗−16, 4t∗+3), x−x∗ = (2t−2t∗, 4t−4t∗, t−
t∗)T , the inequality becomes

(8t∗ + 20)(2t− 2t∗) + (16t∗ − 16)(4t− 4t∗) + (4t∗ + 3)(t− t∗) ≥ 0 ∀t ∈ R.

This expression simplifies to 21(4t∗−1)(t−t∗) ≥ 0 for all t ∈ R. This inequality
holds if and only if t∗ =

1

4
. Therefore, the unique solution to the variational

inequality problem (3.36) is x∗ =
(3
2
,−2,

1

4

)T

.

We select an initial point x0 ∈ R3, where each component of x0 is randomly

generated within the closed interval [−10, 10]. With εn =
1

n+ 2
and the stop-

ping criterion ∥xn − x∗∥ ≤ ε, we compute approximate solutions to the exact

solution x∗ =
(3
2
,−2,

1

4

)T

for various tolerance levels ε, as presented in Table

2.

Table 2. Approximate solutions corresponding to various tolerance levels
ε, obtained using Algorithm 3.2 with the stopping criterion ∥xn − x∗∥ ≤ ε

ε Iter(n) CPU time(s) xn

ε = 10−2 19392 1.2879 (1.491653,−1.996977, 0.254602)T

ε = 10−3 194115 10.8199 (1.499165,−1.999698, 0.250460)T

ε = 10−4 1941349 109.1283 (1.499917,−1.999970, 0.250046)T

Example 4.3. We consider the set C ⊂ R3 defined by

C = {x = (x1, x2, x3)
T ∈ R3 : 2x1 − x2 + 5x3 ≥ 6}.

Next, define the mapping F : R3 −→ R3 by F (x) = (sin ∥x∥+ 6)f0 for all x ∈
R3, where f0 = (2,−1, 5)T ∈ R3. It is easy to verify that F is pseudomonotone
and Lipschitz continuous on R3. Furthermore, the solution set Sol(C,F ) of the
variational inequality problem V IP (C,F ) is given by

Sol(C,F ) = {x = (x1, x2, x3)
T ∈ R3 : 2x1 − x2 + 5x3 = 6}.

Now, consider the mapping S : R3 −→ R3 defined by S(x) = x for all
x ∈ R3. This mapping is strongly monotone with modulus η = 1 and Lip-
schitz continuous with constant L = 1 on R3. In this setting, Problem (3.37)
reduces to finding the minimum-norm solution of the variational inequality
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problem V IP (C,F ). The resulting minimum-norm solution is given by x∗ =
PSol(C,F )(0) = (0.4,−0.2, 1)T .

We select an initial point x0 ∈ R3, where each component of x0 is ran-
domly generated within the closed interval [−10, 10]. With parameters µ0 =

4, µ = 0.7, εn =
1

n+ 2
in Algorithm 3.3 and using the stopping criterion

∥xn+1 − xn∥ ≤ ε. With the tolerance ε = 10−9, an approximate solution is
obtained after 84027 iterations (with time 6.109 seconds), given by

x84027 = (0.400055,−0.199997, 0.999936)T ,

which serves as a good approximation to the exact solution x∗ = (0.4,−0.2, 1)T .

5. Conclusion

We propose a new algorithm for solving the strongly monotone variational
inequality problem over the solution set of split variational inequality and fixed
point problem in real Hilbert spaces. By placing suitable conditions on the
parameters, we prove a strong convergence theorem for the algorithm, which
avoids the need to compute or estimate the norms of the bounded linear op-
erators. Importantly, the algorithm does not require prior knowledge of the
Lipschitz or strongly monotone constants of the mappings. Additionally, we
derive several corollaries from our main result and demonstrate the algorithm’s
performance with a basic numerical example.
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