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Abstract. Accurate credit risk assessment is crucial for the stability and
growth of peer-to-peer (P2P) lending platforms. This study investigates
the effectiveness of machine learning models in predicting loan defaults us-
ing historical Lending Club data. We evaluate logistic regression, decision
tree, and random forest, employing feature engineering techniques like one-
hot and weight of evidence encoding. Model performance is assessed using
K-fold cross-validation and metrics such as accuracy and AUC. To enhance
model interpretability, we utilize explainable AI techniques like LIME and
SHAP, enabling lenders and borrowers to understand the factors driving
loan defaults. Our findings demonstrate that while complex models offer
higher predictive accuracy, simpler models like logistic regression with WoE
encoding provide a suitable balance between accuracy and interpretability,
fostering trust and responsible lending within the P2P lending ecosystem.

1. Introduction

The emergence of financial technology (Fintech) is widely recognized as
one of the most significant innovations in the financial sector, reshaping the
delivery and consumption of financial services at an unprecedented pace [1].
Broadly, Fintech solutions fall into two categories: those designed for individual
consumers such as personal financial management, investment, and lending
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and those developed for financial institutions, offering solutions like customer
identification and credit scoring (ISB, 2025).

Among consumer-facing Fintech innovations, Peer-to-Peer (P2P) lending
has gained considerable traction as a disruptive force in traditional lending
markets. In this model, individual lenders provide unsecured loans directly
to borrowers through online platforms, bypassing conventional financial inter-
mediaries. P2P lending platforms operate similarly to marketplace disruptors
like Uber and Grab, facilitating connections between lenders and borrowers at
scale.

Since the launch of the first P2P platform, Zopa, in the UK in 2005, the
industry has grown rapidly across the globe [2]. The Credit Committee on
the Global Financial System and the Financial Stability Board have identified
China, the United States, and the United Kingdom as the largest P2P markets,
with outstanding P2P credit in China reaching USD 99.7 billion, followed by
USD 34.3 billion in the U.S. and USD 4.1 billion in the UK.

Several factors have contributed to this surge. The aftermath of the 2008
global financial crisis led to stricter regulatory capital requirements and con-
strained lending by traditional banks [3]. Simultaneously, declining interest
rates on savings accounts pushed investors to seek higher-yield alternatives.
P2P lending has also appealed to underserved segments, such as small and
medium enterprises (SMEs) and rural populations who are often excluded from
formal banking channels. In addition, the proliferation of mobile technology
and the internet has created an infrastructure that supports the scalability of
digital lending platforms.

Despite its rapid growth, the P2P lending industry faces significant chal-
lenges, particularly in ensuring robust credit risk assessment to maintain plat-
form stability and protect stakeholders. The motivation for this study stems
from the critical need to develop accurate and interpretable credit risk models
that can effectively predict loan defaults while meeting regulatory and ethical
standards. In P2P lending, where individual investors bear the financial risk of
borrower defaults, inaccurate credit assessments can lead to substantial losses,
erode investor confidence, and undermine the sustainability of lending plat-
forms. Moreover, the lack of transparency in credit decision-making processes
can exacerbate issues of trust and fairness, particularly for borrowers who may
be denied loans without clear justifications. These challenges are compounded
by the increasing complexity of modern credit datasets, which include diverse
borrower attributes and require sophisticated analytical approaches to uncover
meaningful patterns.

Traditional credit scoring methods, such as logistic regression and statistical
scoring models, have long been valued for their simplicity and interpretability,
making them suitable for regulatory compliance and stakeholder communica-
tion. However, these methods often struggle to capture the non-linear rela-
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tionships and high-dimensional interactions present in large-scale P2P lending
datasets. In contrast, machine learning (ML) techniques, such as decision trees
and random forests, excel at modeling complex patterns and improving predic-
tive accuracy, but their ”black-box” nature poses challenges in regulated finan-
cial environments where explainability is paramount. For instance, regulations
like the Fair Credit Reporting Act (1970) in the United States and the General
Data Protection Regulation (GDPR) (2018) in the European Union mandate
that lenders provide clear explanations for credit decisions, a requirement that
complex ML models struggle to meet without additional interpretability tools.
The integration of machine learning and mathematical models offers a promis-
ing solution to address these dual objectives of accuracy and interpretability.
By combining the predictive power of advanced ML algorithms with the trans-
parency of traditional mathematical frameworks, such as logistic regression
with Weight of Evidence (WoE) encoding, this study aims to develop credit
risk models that are both highly accurate and easily interpretable. Further-
more, the incorporation of explainable AI (XAI) techniques, such as Local
Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive ex-
Planations (SHAP), allows us to bridge the interpretability gap for complex ML
models, enabling lenders to understand and communicate the factors driving
credit decisions.

This study makes several key contributions to the field of credit risk as-
sessment in P2P lending. First, we provide a comprehensive evaluation of ma-
chine learning models (logistic regression, decision trees, and random forests)
under two preprocessing strategies-Weight of Evidence (WoE) encoding and
one-hot encoding with min-max scaling-using a real-world dataset from Lend-
ing Club. This analysis identifies optimal modeling approaches that balance
predictive accuracy with interpretability, offering practical guidance for P2P
lending platforms. Second, we demonstrate the effectiveness of integrating
traditional mathematical models with advanced ML techniques, showing that
logistic regression with WoE encoding achieves a desirable trade-off between
performance and transparency, while random forests enhanced with XAT tools
deliver superior accuracy with actionable explanations. Third, we apply LIME
and SHAP to interpret complex ML models, providing both local and global
insights into the factors driving credit decisions, which supports regulatory
compliance and enhances stakeholder trust. Finally, our findings contribute
to the respomnsible deployment of ML in P2P lending by proposing a frame-
work that aligns with regulatory expectations, promotes fair lending practices,
and fosters transparency in credit scoring, thereby supporting the sustainable
growth of the P2P lending ecosystem.

However, the growth of P2P lending raises concerns around regulatory over-
sight, consumer protection, and systemic risk. Countries like China and the
U.S. have implemented regulatory safeguards-such as prohibiting platforms
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from holding client funds or disbursing loans directly in order to reduce risks
such as fraud, mismanagement, and financial exclusion. Legal risks, includ-
ing Ponzi-like schemes and investor discrimination, remain ongoing challenges,
and concerns about transparency, liquidity, and platform viability persist [4] [5].
These developments underscore the need for robust credit risk models that can
assess borrower quality and support the responsible expansion of P2P lending.

Given the scale and risks involved in digital lending ecosystems, credit de-
fault prediction has become an essential task in modern financial services.
Building reliable models that can identify borrowers likely to default is cru-
cial for mitigating financial loss, maintaining investor trust, and complying
with regulatory standards. This paper focuses on building and interpreting
machine learning models for predicting credit default risk using a real-world
dataset from Lending Club, one of the largest P2P lending platforms in the
United States.

2. Literature Review

Credit risk modeling has long been central to financial decision-making,
with early work relying on traditional statistical techniques [6]. As credit mar-
kets expanded and digital lending platforms emerged, machine learning (ML)
approaches have increasingly been used to enhance prediction accuracy and
scale model deployment. Among these, logistic regression, decision trees, and
random forests remain some of the most widely applied methods in consumer
credit risk, including in peer-to-peer (P2P) lending [7] [8], mortgage default [9]
[10], and credit card repayment modeling [11].

The rapid growth of digital lending platforms, particularly peer-to-peer
(P2P) lending, has spurred research into advanced machine learning (ML) tech-
niques for credit risk assessment, with a shared goal of improving predictive
accuracy while addressing interpretability challenges in regulated financial en-
vironments. Ma et al. (2018) [7] made a significant contribution by addressing
the critical problem of predicting loan defaults in P2P lending networks, aiming
to enhance risk assessment for online platforms. They employed gradient boost-
ing algorithms, specifically Light GBM and XGBoost, on a high-dimensional
dataset from a Chinese P2P lending platform, incorporating borrower demo-
graphics, credit history, and transaction records, with preprocessing to handle
missing values and outliers. Their results demonstrated superior performance,
with Light GBM achieving an AUC of 0.85, underscoring the power of gradi-
ent boosting to capture complex, non-linear patterns in P2P lending data and
setting a benchmark for predictive modeling in this domain, which directly
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informs our study’s exploration of ML in P2P credit scoring.

Similarly, Duan (2019) [8] tackled credit default prediction across various
lending contexts, focusing on modeling financial system risk. The study uti-
lized deep neural networks (DNNs) on a proprietary consumer loan dataset,
including features like credit scores, debt-to-income ratios, and payment his-
tories. The DNNs achieved an accuracy of 0.82, surpassing logistic regression,
but their complexity highlighted the need for interpretability in regulated set-
tings, a challenge that aligns with our emphasis on explainable models for P2P
lending.

In the mortgage sector, Sirignano et al. (2016) [9] addressed the problem of
predicting default risk, a priority following the 2008 financial crisis. They ap-
plied recurrent neural networks (RNNs) to a large U.S. mortgage loan dataset,
incorporating time-series data on payment behavior and macroeconomic indi-
cators. Their model achieved an AUC of 0.78, demonstrating the ability of deep
learning to model temporal dependencies, though the lack of interpretability
posed limitations, reinforcing the need for explainable AI (XAI) methods in
our work.

Kvamme et al. (2018) [10] also focused on mortgage default prediction, aim-
ing to improve risk assessment for financial institutions. Using convolutional
neural networks (CNNs) on a Norwegian mortgage dataset with borrower fi-
nancials and loan characteristics, they achieved a recall of 0.71, outperforming
traditional models. However, the black-box nature of CNNs underscored the
importance of interpretability, a concern central to our study’s use of XAI
techniques like LIME and SHAP.

Butaru et al. (2016) [11] investigated credit card repayment risk, seeking
to identify delinquency drivers in consumer credit. They applied logistic re-
gression and random forests to a large dataset from a U.S. credit card issuer,
including transaction and payment data. The random forest model yielded
an AUC of 0.80, outperforming logistic regression, but regulatory demands for
transparency favored the interpretable logistic regression, a finding that shapes
our model selection strategy for balancing accuracy and explainability in P2P
lending. These studies collectively highlight the potential of advanced ML to
enhance credit risk prediction across diverse lending contexts, with Ma et al.
(2018) [7] providing a particularly relevant framework for P2P lending through
their high-performing gradient boosting approach. However, the recurring chal-
lenge of model interpretability, especially for complex models, underscores the
need for integrating predictive power with transparency, a core objective of our
study.

Logistic regression continues to be popular in the financial industry due to
its simplicity and transparency. The model’s coefficients can be directly inter-
preted as indicators of a feature’s effect on the likelihood of default, making
it highly suitable in regulated environments. Decision trees also offer trans-
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parency through their rule-based structure but are prone to instability when
faced with noisy or imbalanced data. To improve predictive performance, many
studies and industry applications turn to random forests, which aggregate pre-
dictions from multiple decision trees trained on randomized subsets of the data
and features [12]. Although random forests generally outperform simpler mod-
els, they are less transparent, making them difficult to interpret a key concern
in finance.

This lack of interpretability presents serious challenges in regulated credit
environments. In the United States, the Fair Credit Reporting Act (1970)
requires lenders to disclose the main reasons behind a loan rejection. In the
European Union, the General Data Protection Regulation (GDPR) (2018) pro-
vides individuals with a ”right to explanation” for algorithmic decisions [13].
In Vietnam, the regulatory landscape for digital lending is still evolving, but
the State Bank of Vietnam’s Fintech Sandbox Draft Decree (2021) has empha-
sized that platforms must provide clear disclosure of loan terms and decision
criteria. However, there are no standardized guidelines yet for how credit risk
scores should be calculated, especially when ML models are involved. This cre-
ates growing pressure on lenders to ensure their models are not only accurate
but also explainable. To address these challenges, researchers have increasingly
focused on interpretable machine learning. Traditional models such as logis-
tic regression and decision trees are naturally interpretable, but may lack the
flexibility to capture complex relationships in the data. In contrast, ensemble
methods like random forests offer improved performance, but are considered
black-box models. To bridge this gap, post hoc interpretability methods have
been developed—most notably, LIME (Local Interpretable Model-Agnostic Ex-
planations) and SHAP (SHapley Additive exPlanations). LIME approximates
a complex model locally using a linear surrogate [14], while SHAP attributes a
model’s prediction to individual features using cooperative game theory princi-
ples [15]. These methods have been applied to credit risk modeling, including
work on Lending Club data [16], [17], [18].

In this study, we focus specifically on the lender’s perspective, recognizing
their need for both high-performing models and clear justifications for credit
decisions. Using loan-level data from Lending Club, we evaluate the perfor-
mance of logistic regression (with L1 and L2 regularization) and tree-based
models (decision trees and random forests) under two different preprocessing
strategies: (i) weight of evidence (WoE) and (ii) one-hot encoding with min-
max scaling. Our results identify two models of interest: a logistic regression
model using WoE, which is inherently interpretable, and a random forest model
trained on one-hot encoded, scaled data, which achieves high accuracy but re-
quires additional explanation tools. Therefore, we analyze the logistic model
using standard coefficient interpretation, and apply LIME and SHAP exclu-
sively to the random forest model to uncover the drivers behind its predictions.
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By balancing predictive power with interpretability tailored for lenders, this
work contributes to the responsible deployment of machine learning in P2P
credit scoring, helping loan providers meet regulatory expectations while mak-
ing informed, transparent lending decisions.

3. Methodology

3.1. Reviewing data

For this study, we utilized historical loan data from Lending Club, a leading
U.S. peer-to-peer (P2P) lending platform, covering loans issued in 2018. The
dataset is publicly available through Kaggle, specifically the ”Lending Club
Loan Data” dataset, which includes loans from 2007 to 2018 [23], licensed
under CCO 1.0 Universal (Public Domain Dedication). This dataset contains
hundreds of features per loan, including key financial attributes such as loan
amount, interest rate, monthly installment, and borrower-related variables like
homeownership type, annual income, monthly FICO score, debt-to-income ra-
tio, and the number of open credit lines. The data represents loans actually
funded through the platform, not loan applications, ensuring that the analysis
reflects real lending outcomes.

To provide clarity on the dataset’s structure, Table 1 presents an example
of the training dataset, showcasing a subset of five loan records with selected
features and their corresponding labels. This example illustrates the types of
variables used and the binary classification labels derived for modeling.

Table 1. Example of Training Dataset from Lending Club 2018 Data

loan_amnt | annual_inc | fico_range_low | dti | home_ownership | loan_status
10000 60000 700 15.2 RENT Fully Paid
15000 45000 665 22.5 MORTGAGE Charged Off
20000 80000 720 18.7 OWN Fully Paid
8000 35000 680 25.3 RENT Default
12000 55000 695 20.1 MORTGAGE Fully Paid

Note: loan_amnt (loan amount in USD), annual_inc (annual income in
USD), fico_range_ low (lower bound of FICO score), dti (debt-to-income ratio
in %), home_ownership (borrower’s homeownership status), loan_status (loan
outcome).

Loan status serves as the outcome variable and reflects the borrower’s re-
payment behavior. A loan is marked as ”Current” if it is being repaid on time,
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”Late” if payment is between 16 and 120 days overdue, and ”Default” if the de-
lay exceeds 121 days. If Lending Club determines that a loan will not be repaid,
it is labeled as ” Charged-Off.” To streamline the classification task, we limited
our analysis to loans that were either Fully Paid, Default, or Charged-Off. We
categorized Fully Paid loans as creditworthy, and those labeled as Default or
Charged-Off as non-creditworthy. After filtering, the dataset comprised 8,323
non-creditworthy records and 47,384 creditworthy ones.

Following the definition of the classification labels, we examined the fea-
tures available in the dataset. These features fall into three broad categories:
borrower characteristics (such as FICO score, employment status, and annual
income), platform-driven decisions (such as loan grade and interest rate), and
loan performance outcomes (such as total payment). Because our objective is
to develop a model that can be applied in real-world settings, we prioritized
features that would be available to an investor at the time of loan issuance.
This approach ensures that the model’s predictions are not only accurate but
also practical and actionable.

In doing so, we addressed two major concerns: data leakage and the use
of platform-derived variables. Data leakage arises when a model incorporates
information that would not be accessible at the time a prediction is made,
especially when such information is strongly correlated with the target variable.
For example, the total payment feature is highly predictive of loan outcome-
loans that default or are paid off early typically have lower total payments.
While including this variable may boost model performance during training, it
undermines the model’s applicability in real-time investment decisions, where
such information is unavailable in advance.

Another concern involves variables that are not direct borrower attributes
but instead are generated by Lending Club’s internal risk models. The loan
grade variable is a clear example, and features such as interest rate and in-
stallment amount are closely tied to this grade. Since these variables reflect
Lending Club’s proprietary assessment mechanisms rather than fundamental
borrower characteristics, we excluded them from our analysis to ensure the
model remains independent of platform-specific decisions and can generalize to
other lending contexts.

3.2. Prediction models

The fundamental objective of credit scoring is to assess the creditworthiness
of individual applicants, which is essentially a binary classification problem. A
creditworthy applicant is expected to fulfill their financial obligations, whereas
a non-creditworthy applicant is likely to default. Accordingly, we frame the
consumer credit risk prediction task as estimating the probability of default for
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a borrower, based on a set of observed features.

Let x; = (z41, %42, . .., i) denote the feature vector for borrower i, which
captures information such as credit history, income, debt-to-income ratio, and
prior delinquencies. The target variable y; € {0,1} represents whether the
borrower defaulted, where y; = 1 indicates default and y; = 0 indicates no
default. The modeling tasks is then to estimate:

(1) Ui = Pr(y; = 1| x;).

We apply two categories of machine learning models to this task: linear
models-specifically L1- and L2-regularized logistic regression and tree-based
models including decision trees and random forests.

3.2.1. Logistic Regression

Logistic regression is a statistical classification method that models the
probability of a binary outcome as a function of a linear combination of input
features. It was formally introduced in the context of binary response modeling
by Cox (1958). The method models the log-odds of the probability of default
as follows:

Pr(y: = 1) > = Bo+ Bz + - + BrTik.

The parameters 8 = (o, 81, . .., Or) are estimated by maximizing the like-
lihood function. To improve generalization and prevent overfitting, regulariza-
tion is commonly applied.

L1-regularized logistic regression, also known as Lasso logistic regression,
introduces a penalty term proportional to the absolute value of the coefficients:

n k

(3) Lo=— [yiloggi+ (1—yi)log(l =Gl + 1) I6]-

i=1 j=1
This regularization induces sparsity, effectively performing feature selection by
shrinking some coefficients to zero.

In contrast, L2-regularized logistic regression, or Ridge logistic regression,
penalizes the squared magnitudes of the coefficients:

n

k
(4) ,CL:_Z[yilogﬂﬂr(1—.%')10%(1—3?1‘)]4')‘2512'

i=1 j=1

This penalty shrinks coefficients toward zero without eliminating them, which
can be beneficial in the presence of multicollinearity.
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3.2.2. Decision Tree

A decision tree is a non-parametric, supervised learning algorithm that pre-
dicts outcomes by recursively partitioning the input space based on feature
thresholds. The Classification and Regression Tree (CART) algorithm, intro-
duced by [12], constructs the tree by selecting feature-value splits that minimize
an impurity criterion, typically Gini impurity:

C
(5) Gini(t) =1-> p(c|t)?

where p(c | t) is the proportion of class ¢ in node ¢. This recursive partitioning
continues until a stopping criterion is met (e.g., maximum depth or minimum
node size), resulting in a tree structure where each leaf node represents a final
prediction.

3.2.3. Random Forests

Random forest is an ensemble learning technique that aggregates predic-
tions from multiple decision trees to improve classification performance and
robustness [20]. Each decision tree in the ensemble is trained on a different
bootstrap sample of the training data, and feature selection at each node is
randomized. This combination of bootstrap aggregation (bagging) and ran-
dom feature selection helps ensure low correlation among trees, which in turn
reduces model variance.

To classify a new observation, each decision tree provides a prediction, and
the random forest outputs the majority vote across all trees. While individual
trees are relatively interpretable, the ensemble nature of random forests makes
the model difficult to interpret as a whole. As such, random forests are often
considered black-box models, despite their strong predictive performance and
robustness to overfitting.

3.3. Preprocessing data

To prepare the dataset for modeling, we experimented with two distinct pre-
processing strategies: weight of evidence (WoE) encoding and min-max scaling.
Each strategy was applied independently, as WoE produces features that are
already normalized, thereby eliminating the need for further scaling, while min-
max scaling operates directly on the original continuous variables and does not
require binning or WoE transformation.

Weight of evidence encoding is a widely used technique in credit risk mod-
eling [21], particularly suitable for datasets containing special values, missing
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data, or outliers. We began by discretizing continuous features into bins, which
allows special values to be grouped into separate categories and helps mitigate
the influence of extreme values. WoE assigns each bin a numerical value based
on the distribution of creditworthy and non-creditworthy borrowers. For bin i,
the WoE value is defined as:

Ngood,i

(6) WoE; = In

where Ngooq,; and Nyaq,; are the numbers of creditworthy and non-creditworthy
observations in bin i, and Ngo0q and Np,q are the total numbers of creditworthy
and non-creditworthy observations in the dataset.

One advantage of WoE is that it standardizes feature values on a log-odds
scale, which is especially useful for linear models like logistic regression. It also
handles missing values and outliers effectively by assigning them to dedicated
bins. However, because WoE relies on binning, it may introduce some loss of
granularity and is less interpretable outside of credit modeling contexts.

As an alternative, we apply min-max scaling to the original continuous
features without discretization. This method normalizes each feature x to a
value 2’ in the range [0, 1], according to the formula:

2 — min(x)

@ v= max(z) — min(z)’

This transformation ensures that all features are on a comparable scale,
which can help improve numerical stability and convergence in gradient-based
models. While tree-based models such as decision trees and random forests are
typically invariant to monotonic transformations, scaling can still be beneficial
in controlling feature dominance and improving performance, especially when
the features span very different numeric ranges.

Because we use both linear and non-linear models, our preprocessing strat-
egy is designed to test which approach better supports each model type. In
particular, we expect WoE to be more effective for linear models, where en-
coding categorical and binned variables in terms of log-odds enhances model
interpretability and alignment with assumptions. For tree-based models, which
naturally handle non-linear splits, we test whether simple min-max scaling pro-
vides sufficient normalization without the need for more domain-specific trans-
formations like WoE.
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3.4. Interpretability methods

In high-stakes domains such as credit scoring, interpretability is a key re-
quirement for model adoption and trustworthiness. While complex models
like random forests often deliver superior predictive performance, they are fre-
quently criticized for their black-box nature. In this section, we explore three
interpretability methods: coefficient analysis using Weight of Evidence (WoE),
Local Interpretable Model-Agnostic Explanations (LIME), and SHapley Ad-
ditive exPlanations (SHAP). Each method provides a different lens through
which to understand model behavior and explain individual predictions.

3.4.1. Coefficient for WoE

When logistic regression is trained using features encoded with Weight of
Evidence (WoE), model interpretability is naturally preserved. Since WoE
transforms each variable into a continuous value representing the log-odds of
creditworthiness, the estimated coefficients in the logistic regression model can
be interpreted directly as the marginal effect of each feature on the log-odds of
default. A positive coefficient indicates that an increase in the WoE-encoded
feature increases the likelihood of default (i.e., reduces creditworthiness), while
a negative coefficient implies the opposite.

This approach is particularly appealing for credit risk applications because
it aligns with long-standing industry practices and produces additive, transpar-
ent risk contributions across features. Moreover, when features are pre-binned
and monotonic WoE encodings are applied, the signs and magnitudes of the
coefficients tend to be more stable and easier to interpret.

3.4.2. Local Interpretable Model-Agnostic Explanations (LIME)

LIME is a post hoc model-agnostic technique that provides local inter-
pretability by approximating the decision boundary of any black-box model
around a specific data point with a linear model [14]. This linear approxima-
tion is trained by sampling perturbed versions of the original input and fitting
a locally weighted linear regression model. The weights are assigned based
on the proximity of the perturbed samples to the original instance, typically
measured using a kernel function.

The coefficients of the resulting local surrogate model serve as feature im-
portance scores, highlighting how each input feature contributes to the model’s
prediction for that particular instance. The strength of LIME lies in its flexibil-
ity—it can be applied to any model and any type of data. However, its reliance
on sampling introduces randomness, and explanations can vary slightly across
different runs. Furthermore, the local linear approximation may not faithfully
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represent highly non-linear decision boundaries.
3.4.3. SHapley Additive exPlanations (SHAP)

SHAP is an explainable AT method based on cooperative game theory. It
attributes a model’s prediction for a specific data point to the contributions of
each feature using the concept of Shapley values, originally developed to fairly
distribute payouts among players in a coalition [22]. SHAP satisfies several
desirable properties for interpretability, including local accuracy (the sum of
the attributions equals the model output), missingness (features not present
receive zero contribution), and consistency (if a feature’s contribution increases
in a model, its Shapley value will not decrease).

We employ the Kernel SHAP implementation introduced by [15], which
approximates Shapley values using a weighted least squares regression. To
explain a data point z; , Kernel SHAP constructs a dataset of feature subsets
sampled from x;, with the remaining features replaced by background values
from the training data. Each subset receives a weight based on the size of the
subset, with smaller subsets (closer to the marginal contribution of a single
feature) weighted more heavily. The regression solution yields the estimated
Shapley values.

Despite its theoretical appeal, Kernel SHAP suffers from poor scalability:
computing exact Shapley values requires evaluating all 2* feature subsets, which
becomes computationally infeasible for high-dimensional datasets. Approxi-
mate methods and sampling strategies are used in practice, but the method
remains relatively expensive compared to alternatives like LIME.

3.4.4. Comparative Discussion

Both LIME and SHAP provide complementary perspectives for model in-
terpretability. LIME excels in computational efficiency and model-agnostic
flexibility, offering quick local approximations that are especially useful when
working with large feature sets or real-time explanations. However, LIME may
lack fidelity in capturing true feature interactions and does not guarantee con-
sistency or local accuracy.

SHAP, on the other hand, offers theoretically grounded explanations that
reflect both individual feature contributions and their interactions. It provides
robust, additive attributions that sum to the model’s prediction, but it is com-
putationally more intensive and may be less suitable for real-time applications.

In practice, the choice between LIME and SHAP should be guided by the
specific use case. For instance, when interpretability is paramount for au-
ditability or regulatory compliance, SHAP may be more appropriate despite
its computational cost. In contrast, when speed is essential and the model
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is used in a dynamic setting with frequent queries, LIME may offer a more
practical solution. By applying both techniques judiciously, practitioners can
better understand and validate complex machine learning models, particularly
in sensitive domains like credit risk assessment.

4. Results

4.1. Model performance

In this section, we evaluate the performance of various machine learning
models under two different preprocessing strategies: Weight of Evidence (WoE)
encoding and one-hot encoding with min-max scaling. The models under con-
sideration include L1- and L2-regularized logistic regression, decision tree, and
random forest classifiers.

We employ 5-fold cross-validation to assess the generalization performance
of each model. In this setup, the dataset is randomly partitioned into five equal
subsets. In each fold, one subset is held out as the test set, while the remaining
four subsets are used for training. Thus, in each iteration, the training set
consists of 80% of the data and the test set comprises the remaining 20%.
Performance metrics are computed on the test set and then averaged across all
five folds to ensure robustness.

We utilized a dataset of 55,707 records (8,323 non-creditworthy and 47,384
creditworthy) and applied a 5-fold cross-validation approach, which inherently
combines training and testing phases without a separate validation set. Specif-
ically, in each fold, the dataset was split into a training set of approximately
44,566 records (80% of the data) and a test set of 11,141 records (20%), to-
taling 38,994 records for training and 16,713 for testing across all folds, as
derived from the provided split (38,994 training 4+ 16,713 test = 55,707). We
did not use a distinct validation set because the 5-fold cross-validation process
effectively validates the model by rotating the test set across folds, optimizing
performance metrics like recall for the non-creditworthy class, as detailed in
our hyperparameter tuning with GridSearchCV. This approach ensures that
the model is evaluated on multiple subsets, providing a robust estimate of
generalization performance without requiring a separate validation set.

To address the class imbalance in our dataset, we implemented a combina-
tion of Synthetic Minority Oversampling Technique (SMOTE), class weighting,
and a recall-focused scoring metric to enhance the performance of our machine
learning models, particularly for the non-creditworthy class. SMOTE was ap-
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plied to the training data within each fold of our 5-fold cross-validation to
generate synthetic non-creditworthy samples, balancing the class distribution
while preserving the original test set for realistic evaluation. Additionally,
we incorporated class weighting (e.g., balanced or a 1:5 ratio favoring non-
creditworthy) in our logistic regression and random forest models to penalize
misclassifications of the minority class more heavily. By using recall as the
primary scoring metric in hyperparameter tuning via GridSearchCV, we prior-
itized the identification of non-creditworthy loans, minimizing false negatives
critical to credit risk assessment. These strategies collectively mitigated the
risk of overfitting and improved the models’ ability to accurately classify non-
creditworthy records, as evidenced by enhanced recall scores in our results.

To evaluate classification performance, we use accuracy, area under the
receiver operating characteristic curve (AUC), and recall, with particular em-
phasis on recall due to the cost-sensitive nature of credit risk. Since our goal is
to minimize the number of high-risk borrowers who are incorrectly classified as
low-risk (i.e., false negatives), recall-defined as the proportion of true default-
ers correctly identified is of primary importance. The AUC reflects the model’s
ability to distinguish between creditworthy and non-creditworthy applicants,
while accuracy captures the overall proportion of correctly classified samples.
Given that our dataset is relatively balanced, accuracy remains a meaningful
metric alongside AUC and recall. For all models, the predicted probability of
default is converted to a binary classification using a threshold of 0.5.

Tables 1 and 2 summarize the results of the 5-fold cross-validation for the
two preprocessing pipelines. Among the models trained on WoE-encoded data,
logistic regression models perform best in terms of both AUC and recall. Specif-
ically, L2-penalized logistic regression achieves an accuracy of 0.66, an AUC of
0.71, and a recall of 0.67. Although the random forest achieves the highest
accuracy (0.71), its recall is considerably lower (0.50), which limits its effec-
tiveness for detecting defaulters. This supports the view that WoE encoding,
when combined with interpretable linear models, offers strong predictive per-
formance while maintaining transparency.

Table 2. 5-fold cross-validation performance of ML models using WoE encoding

Model Accuracy | AUC | Recall
L1 Logistic Regression 0.65 0.70 0.65
L2 Logistic Regression 0.66 0.71 0.67
Decision Tree 0.61 0.67 0.61
Random Forest 0.71 0.69 0.50

In contrast, when models are trained on min-max scaled data with one-hot
encoding, the random forest outperforms the other models across all metrics.
It achieves an accuracy of 0.78, an AUC of 0.69, and a recall of 0.38. However,
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its recall remains relatively low, suggesting that even with higher accuracy, it
may not be optimal for identifying risky applicants. Meanwhile, L1-penalized
logistic regression achieves a competitive recall of 0.66, though its accuracy
(0.59) and AUC (0.67) are lower than those of the random forest.

Table 3. bH-fold cross-validation performance of ML models using min-max
scaling

Model Accuracy | AUC | Recall
L1 Logistic Regression 0.59 0.67 0.66
L2 Logistic Regression 0.71 0.65 0.45
Decision Tree 0.57 0.66 0.67
Random Forest 0.78 0.69 0.38

From a practical standpoint, logistic regression trained with WoE features
presents an attractive option for credit scoring applications. It offers inter-
pretable coefficients that align with industry standards and regulatory require-
ments. However, implementing WoE encoding requires feature binning, mono-
tonicity constraints, and careful calibration, which increases preprocessing com-
plexity.

On the other hand, random forests, though superior in raw predictive power
when trained on scaled features, suffer from limited interpretability. The en-
semble nature of the model, which aggregates hundreds of decision paths, makes
it difficult to explain individual predictions—an issue particularly relevant in
regulated domains like consumer finance.

In the context of peer-to-peer lending, both types of misclassification-false
negatives (defaulters misclassified as creditworthy) and false positives (credit-
worthy applicants denied loans)-have important business implications. Misclas-
sifying defaulters results in financial losses, while rejecting potentially reliable
borrowers leads to lost revenue. Given the scale of the lending industry, even
small gains in recall or precision can translate into substantial economic im-
pact. Despite this, regulatory constraints and the need for explainability often
prevent lenders from adopting more complex but opaque models. This trade-
off motivates our deeper investigation into model interpretability in the next
section.

4.2. Explaining model results

In this section, we analyze the interpretability of the models to support their
practical adoption in loan decision-making systems. Machine learning models
are increasingly used by lending institutions to assess the creditworthiness of
borrowers. However, regulatory frameworks such as the Equal Credit Oppor-
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tunity Act (ECOA) and the Fair Credit Reporting Act (FCRA) in the United
States require that lenders provide specific reasons for loan denial. This has
created a strong demand for interpretable models and reliable post hoc expla-
nation techniques.

Interpretability is not only essential for regulatory compliance but also for
building trust with applicants and improving internal risk assessment proce-
dures. In this context, lenders seek to identify the key factors driving credit-
worthiness and to generate understandable explanations for individual decisions
made by the model. Transparent models also allow companies to identify rep-
resentative historical borrowers whose profiles are similar to new applicants,
thus supporting a case-based reasoning approach.

4.2.1. WOoE Coefficients for Logistic Regression

One effective approach to achieving model interpretability is through the use
of logistic regression trained on Weight of Evidence (WoE)-encoded features. In
this setting, each feature represents the log-odds of being creditworthy within
a given bin, and the coefficients of the logistic regression model quantify the
contribution of each feature to the log-odds of default.

The intercept of the trained L2-penalized logistic regression model is —1.713,
and the coefficients for each WoE-transformed feature are presented in Table
3. A positive coefficient implies that higher values of the corresponding WoE
feature (i.e., riskier bins) increase the likelihood of default, while negative coef-
ficients imply the opposite. Because WoE encoding aligns feature values with
the probability of default, the resulting coefficients can be directly interpreted
as directional indicators of credit risk.

As shown in the table, the loan amount (loan_amnt_woe) is the most in-
fluential variable in determining creditworthiness, with a coefficient of 1.247.
This suggests that larger loan amounts are associated with a higher prob-
ability of default. Other important predictors include recent credit inquiries
(ing-last_6mths_woe, 0.971), annual income (annual_inc_woe, 0.908), and FICO
score range (fico_range low_woe, 0.725). These features align well with common
industry understanding of credit risk factors.

The simplicity and transparency of this model make it particularly suitable
for lending environments where interpretability and regulatory reporting are as
important as predictive accuracy. In contrast to complex models such as ran-
dom forests, logistic regression with WoE encoding provides clear justifications
for both individual and population-level decisions.
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Table 4. Coefficients of L2-Penalized Logistic Regression (WoE Model)

Feature Coefficient
loan_amnt_woe 1.247
inq_last_6mths_woe 0.971
annual_inc_woe 0.908
fico_range_low_woe 0.725
verification_status_woe 0.677
home_ownership_woe 0.637
num_il_tl_woe 0.487
revol_util_woe 0.473
mort_acc_woe 0.423
mths_since_rcnt_il_woe 0.315
mo_sin_old_rev_tl_op_woe 0.255

4.2.2. Local Interpretable Model-Agnostic Explanations (LIME) for
Random Forest

LIME (Local Interpretable Model-Agnostic Explanations) is a post hoc in-
terpretability technique that approximates complex models by training a local,
interpretable surrogate model around a prediction of interest [14]. In our case,
LIME is used to interpret predictions made by the random forest model trained
on one-hot encoded features with min-max scaling.

For each individual data point, LIME perturbs the instance to generate a
synthetic neighborhood and fits a locally weighted linear regression to approx-
imate the black-box model’s behavior in that region. The coefficients of this
surrogate model represent the impact of each feature on the prediction and can
be interpreted as the change in the predicted probability resulting from a unit
change in the feature value, holding other features constant.

Figure 1 shows a LIME explanation for a single borrower. The model assigns
a 91% predicted probability of default, indicating high credit risk. The bar
charts in the figure break down this prediction by feature contribution. Features
shown in red increase the probability of default (Class 1), while those in green
support a prediction of no default (Class 0).

In this example, the most influential features increasing the likelihood of de-
fault are verification_status_Verified = 0.00, indicating unverified income, which
contributes approximately 4+0.05 to the prediction; application_type_Joint App
= 0.00, adding 40.04; and both home_ownership MORTGAGE = 0.00 and
home_ownership_ RENT = 0.00, each contributing +0.03. Additionally, fico_range
Jdow = 0.35 and mort_acc = 0.25 fall into intervals that the model associates
with higher risk, each contributing approximately +0.02 to the probability of
default.
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These features push the prediction strongly toward the ”Default” class. On
the other hand, features such as loan_amnt = 0.49, num_actv_bc_tl = 0.17,
and inq_last_12m = 0.01 slightly counterbalance the default risk, with negative
contributions shown in green. However, the mitigating effect of these features
is not sufficient to override the cumulative positive influence of the others,
resulting in a high default prediction.

LIME’s local explanation highlights which features the model relied on for
this specific decision and allows decision-makers to trace the rationale behind
a prediction. While LIME does not guarantee global consistency or faithful-
ness to the underlying model, it is computationally efficient and flexible across
model types and data structures. In production environments where trans-
parency is critical for instance, when rejecting a loan application LIME can
help generate individualized explanations in real time. These explanations sat-
isfy regulatory requirements and help build trust with customers by providing
a human-understandable rationale for each prediction.

4.2.3. SHapley Additive exPlanations (SHAP) for Random Forest

To interpret the predictions of the random forest model trained on one-hot
encoded features with min-max scaling, we apply SHapley Additive exPlana-
tions (SHAP). SHAP is an explainability technique rooted in cooperative game
theory that decomposes a model’s prediction into the contributions of each in-
put feature [22]. For this task, we use the Tree SHAP algorithm, which is
optimized for ensemble models such as random forests [15].

SHAP provides global explanations by measuring the average magnitude
of each feature’s contribution across all instances in the dataset. These values
represent how much each feature, on average, influences the model’s prediction
toward either class: ”Default” (Class 1) or "No Default” (Class 0). Figure 2
presents the SHAP summary plot based on mean absolute SHAP values, with
red bars representing contributions toward predicting default, and blue bars
representing contributions toward predicting no default.

The results highlight loan_amnt, fico_range_low, and verification_status_Veri
-fied as the most influential predictors in the model’s decision-making. This
aligns well with financial intuition: larger loan amounts and lower FICO scores
are commonly associated with higher credit risk, while income verification sta-
tus reflects the reliability of the reported income, which can strongly influ-
ence repayment behavior. Other important features include mort_acc (num-
ber of mortgage accounts), home_ownership MORTGAGE, and inq_last_6mths
(number of credit inquiries in the last six months), all of which are standard
indicators in credit risk evaluation.

Unlike the WoE-based logistic regression model described in Section 4.2.1,
which offers interpretability through linear coefficients aligned with log-odds,
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Figure 1. LIME explanation for one borrower classified as ”Default” by the
random forest model (predicted probability = 0.91). Red bars indicate features
contributing to the ”Default” prediction, while green bars indicate features
supporting ”No Default.”

the random forest model requires post hoc interpretability tools like SHAP due
to its non-linear and ensemble nature. While the random forest model achieves
higher accuracy, its lack of transparency can be a barrier to deployment in
regulated financial contexts. SHAP mitigates this by revealing how each feature
contributes to predictions at both the global and individual levels.

Despite its advantages, SHAP also has limitations. While Tree SHAP is
computationally efficient compared to the original Shapley value formulation,
it can still be resource-intensive for very large models or datasets. Moreover,
SHAP’s explanations, while grounded in strong theory, may still be difficult to
communicate to non-technical stakeholders, particularly when many features
are involved.

Nonetheless, SHAP serves as a powerful bridge between predictive perfor-
mance and interpretability. It allows stakeholders to audit the behavior of
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complex models like random forests and to gain trust in model predictions by
understanding the most influential drivers of credit decisions.

We compare the interpretability results of our Random Forest model (min-
max scaling) in Figures 1 and 2 with similar existing works to assess their
quality. Our SHAP analysis (Figure 2) identifies loan amount, FICO score,
and verification status as top predictors, aligning closely with [16] and [17],
who also highlight FICO score and loan amount using SHAP on Lending Club
data, and [18], who emphasize credit history on a Colombian P2P dataset. Sim-
ilarly, our LIME explanation (Figure 1) provides detailed contributions (e.g.,
unverified income: +0.05, FICO score: +0.02) for a borrower predicted as
"Default” (probability 0.91), offering more granularity than LIME results in
Hadji Misheva et al. and Ariza-Garzon et al., enhancing individual decision
explanations. We argue that these results are ”good enough” for P2P lend-
ing credit risk assessment, as they provide actionable local (LIME) and global
(SHAP) insights, meeting regulatory requirements for transparency and align-
ing with traditional risk factors like FICO score and loan amount. Despite the
Random Forest’s lower recall (0.38) compared to L2 Logistic Regression (0.67),
the interpretability results are sufficiently detailed and relevant, supporting
stakeholder trust and responsible lending practices though future work could
improve predictive performance for non-creditworthy detection.

5. Conclusion

This study investigated the trade-off between predictive performance and
model interpretability in the context of credit risk assessment for peer-to-peer
(P2P) lending. Using historical data from Lending Club, we compared the
effectiveness of logistic regression, decision tree, and random forest models
under two preprocessing pipelines: Weight of Evidence (WoE) encoding and
one-hot encoding with min-max scaling. Our results show that while random
forest models trained on scaled one-hot features achieve the highest accuracy,
logistic regression models using WoE encoding strike a more desirable balance
between predictive power and interoperability.

From a practical perspective, the choice of model should reflect the priorities
of the lending platform. When the primary objective is regulatory compliance
and transparency, as is often the case in highly regulated environments, logistic
regression with WoE encoding offers a clear advantage. This approach enables
lenders to trace the contribution of each feature to the predicted probability
of default, making the model easier to audit and justify. On the other hand,
when prediction accuracy is paramount, especially in settings where regulatory
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Figure 2. SHAP summary plot showing the global feature importance for the
random forest model trained using one-hot encoding and min-max scaling. Red
bars indicate contributions toward predicting ”Default” (Class 1), while blue
bars indicate contributions toward predicting ”No Default” (Class 0).
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constraints are less strict, random forests can provide superior performance.

To address the opacity of ensemble models, we employed two post hoc
explainability techniques-LIME and SHAP-to interpret the predictions of the
random forest. These tools revealed that key drivers of credit decisions include
loan amount, FICO score, verification status, and the number of mortgage
accounts factors that are consistent with traditional credit risk evaluation. The
application of LIME enabled localized, instance-specific explanations, which are
useful for generating individualized decision justifications. SHAP, in contrast,
offered a global perspective on feature importance, contributing to broader
model understanding and policy refinement.

Ultimately, our findings highlight that interpretability and accuracy need
not be mutually exclusive. By selecting modeling techniques and explanation
methods aligned with institutional goals and regulatory expectations, lenders
can build trustworthy, effective credit scoring systems. As the P2P lending
industry continues to evolve, integrating transparent machine learning models
will be essential for promoting responsible lending practices, enhancing bor-
rower trust, and maintaining regulatory compliance.
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