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Abstract. In this paper, we prove that a non-autonomous stochastic dif-
ferential equation generates a continuous random dynamical system. The
flow then possesses a random pullback attractor under the dissipativity
condition(s) of the drift and smallness of diffusion part.

1. Introduction

This work is a follow up part of [7], [14] to study the the asymptotic quali-
tative behavior of the differential equation

(1.1) dyt = f(t, yt)dt+ g(t, yt)dB
H
t , t ∈ R, y0 ∈ Rd.

in which BH is a fractional Brownian motion with Hurst parameter H bigger

than
1

2
; f and g are some continuous functions on R× Rd.

When dealing with qualitative properties of (1.1), one important problem
is the generation of random dynamical system, RDS in short ([1]). The concept
of RDS is a combining idea of randomness and dynamical system. Theory
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flow, random dynamical systems, random attractors.
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of RDS is the frame work to study the system’s asymptotic for instance the
random attractors, random manifolds, Lyapunov spectrum,...In general cases,
when f, g are functions of (t, y) ∈ R × Rd, the system generates a stochastic
two-parameter flow X(t0, t, y0, ω) by mean of its Cauchy operators [4], the flow
induces a random dynamical system (RDS) in case f, g are time independent.

In [22, 23], a nonautonomous ordinary differential equations dy(t) = f(t, yt)dt
is considered. By introducing the space ”hull” of f , the solution can be viewed
as a dynamical system. Motivated by these results, we establish conditions on
f, g to construct appropriate spaces for f, g which admit needed probability
structures. The flow is then defined on the product spaces and possesses group
property. Equation (1.1) then generates a RDS in the sense of Bebutov flow
[22].

One another topic in this paper is study the existence of random pullback
attractor of the system, see for instant [5] or [8], [10] for recent results estab-
lished for stochastic differential equations driven by Hölder noises. We show
in Section 3 that the generated RDS possesses a random pullback random at-
tractor under dissipative assumption of f and point out that the attractor is
singleton if dissipativity is strict and g is small in some sense.

2. Preliminaries

We briefly recall some notions used in the sequence.

• Let C([a, b],Rr), r ≥ 1, denote the space of all continuous paths x :
[a, b] → Rr equipped with supremum norm ∥·∥∞,[a,b] given by ∥x∥∞,[a,b] =
supt∈[a,b] |xt|.

• For 0 < α < 1, let x is a Hölder continuous function with exponent α on
[a, b]. The semi norm α− Hölder of x is defined as

|||x|||α−Hol,[a,b] = sup
a≤s<t≤b

|xt − xs|
(t− s)α

.

• For given p ≥ 1, denote by Cp−var([a, b],Rr) ⊂ C([a, b],Rr) the space
consists of all continuous paths x of finite p−variation, i.e.

|||x|||p−var,[a,b] :=

(
sup

a=t0<t1<···<tn=b

n∑
i=1

|xti+1
− xti |p

)1/p

< ∞.
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The p−variation norm of x is defined by

∥x∥p−var,[a,b] := |xa|+ |||x|||p−var,[a,b] .

Then (Cp−var([a, b],Rr), ∥ · ∥p−var,[a,b]) is a (nonseparable) Banach space
[11, Theorem 5.25, p. 92].

Young integral

Assume y ∈ Cq−var([a, b],Rd×m) and x ∈ Cp−var([a, b],Rm) with 1
p + 1

q > 1,

the Young integral
∫ b

a
ytdxt is defined as the limitation of the Darboux sum∫ b

a

ytdxt := lim
|Π|→0

∑
ti∈Π

yti(xti+1
− xti),

where the limit is taken over all the finite partitions Π = {a = t0 < t1 < · · · <
tn = b} of [a, b] with |Π| := max

i
|ti+1− ti| (see [24]). The integral satisfies ([11,

Theorem 6.8, p. 116])∣∣∣ ∫ b

a

yudxu − ya(xb − xa)
∣∣∣ ≤ (1− 21−

1
p−

1
q )−1 |||y|||q−var,[a,b] |||x|||p−var,[a,b] .

Fractional Brownian motions
A m-dimensional fractional Brownian motion index H, BH = (BH

t ), t ∈ R, is a
vector consists of m independent one dimensional fractional Brownian motions
index H which are centered continuous Gaussian processes with covariance
function

RH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H), s, t ∈ R.

For each p ≥ 1 denote by C0,p−var([a, b],Rm) the closure of set of smooth paths
in Cp−var([a, b],Rm) and Ω the spaces of all continuous functions ω : R → Rm

vanish at 0 such that the restriction of ω on [a, b] is in C0,p−var([a, b],Rm) for
all [a, b]. Then Ω is a separable metric space with the metric (see [2])

(2.1) d(ω1, ω2) :=

∞∑
n=1

2−n ∥ω1 − ω2∥p-var,[−n,n]

1 + ∥ω1 − ω2∥p-var,[−n,n]
.

Follow [13], one can construct a canonical space for BH on Ω for some
p > 1/H with Borel σ−algebra F and the law P of BH . It is proved in [13]
that together with Wiener shift (θt) defined as

θt(ω)(·) := ω(t+ ·)− ω(t), ω ∈ Ω,
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the space (Ω,F ,P, (θt)) forms an ergodic dynamical system. From now on, we
always work on the canonical space of BH . We keep the old notation BH and
identify BH

· (ω) = ω(·), ω ∈ Ω. Moreover, since we consider the case H > 1/2,
p can be choosen in (1/H, 2), the integral w.r.t. BH can be defined by Young
sense [24].

Finally, recall from [15, Proposition 2.1] that there exists random variable

ξ(ω) and κ > 0 satisfying Eeκξ2 < ∞ such that for some constant D, for almost
all ω ∣∣∣∣∣∣BH

· (ω)
∣∣∣∣∣∣
p−var,[0,1]

≤ Dξ(ω).

It follows that for all k > 0, E
∣∣∣∣∣∣BH

· (ω)
∣∣∣∣∣∣k
p−var,[0,1]

< ∞.

3. Generation of random dynamical system

3.1. Bebutov flow

In this section we show that (1.1) generates a random dynamical system
(RDS) in an extended space. A RDS on Rd over a metric dynamical system
(see for instant [1]) (Ω∗,F∗,P∗, (θ∗t )) is a measurable mapping

φ : R+ × Rd × Ω∗ → Rd, (t, x, ω) 7→ φ(t, ω)x

satisfying
(i) φ(0, ω) = Id for all ω ∈ Ω∗,

(ii) φ(t+ s, ω) = φ(t, θ∗sω) ◦ φ(s, ω) for all s, t ∈ R+, ω ∈ Ω∗.

If, in addition, x 7→ φ(t, ω)x is continuous for all t, ω then φ is called
continuous.

Recall from [22] that on C := C(R×Rd,Rd) the shift mapping S = (St)t∈R
is defined as

Sth = S(t, h) =: ht, ∀h ∈ C,

ht is called a translate of h given by ht(s, x) = h(t+ s, x), (s, x) ∈ R× Rd.

Observe that if y is a solution to

(3.1) dyt = f(t, yt)dt+ g(t, yt)dωt, t ∈ R, y0 ∈ Rd,
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where ω is a realization of BH , then

ys+t(3.2)

=

∫ s+t

0

f(u, yu)du+

∫ s+t

0

g(u, yu)dωu

=

∫ s

0

f(u, yu)du+

∫ s

0

g(u, yu)dωu +

∫ s+t

s

f(u, yu)du+

∫ s+t

s

g(u, yu)dωu

= ys +

∫ t

0

Ssf(u, ys+u)du+

∫ t

0

Ssg(u, ys+u)dθsωu.

Then ys+· is the solution of (3.1) with coefficients Ssf, Ssg. This suggested
using Krylov-Bogoliubov theorem [18, Chapter VI, §9] to construct probability
structures on hull of f and g in appropriate metric spaces. To do this we
consider (1.1) under the conditions as follows.

Assumptions

(H1) f(t, x) is uniformly continuous on R ×K for each K compact in Rd,
and there exists Cf , f0 > 0 such that for all x, y ∈ Rd, s, t ∈ R{

(i) |f(t, x)− f(t, y)| ≤ Cf |x− y|,
(ii) |f(t, 0)| ≤ f0.

(H2) g(t, x) is bounded by ∥g∥∞ and differentiable in x with ∂xg being
locally Lipschitz in x uniformly in t. Moreover, there exists Cg > 0 and β ∈
(1− 1/p, 1) such that the following properties hold for all x, y ∈ Rd, s, t ∈ R{

(i) |g(t, x)− g(t, y)| ≤ Cg|x− y|,
(ii) |g(t, x)− g(s, x)|+ ∥∂xg(t, x)− ∂xg(s, x)∥ ≤ Cg|t− s|β .

Under these conditions, system (1.1) possesses a unique solution yt =
y(t, x0, ω), t ∈ R for each realization ω of BH . Moreover, for all [a, b] ⊂ R,

∥y∥p−var,[a,b] ≤ M(b− a) [|ya|+ 1]Λ(ω, [a, b])(3.3)

where M is a constant depend on b − a and Λ(ω, [a, b]) is a polynomial of
|||ω|||p−var,[a,b] (see [4],[8]).

3.1.1. Hull of f

In a similar manner of (2.1), define the metric d0 in C - space of all continu-
ous functions on R by replacing the p−variation norm ∥·∥p−var,[a,b] by supreme

norm ∥ · ∥∞,[a,b]. For given f , the hull of f , denoted by Hf
d0

the closure of the
sets {Sτf |τ ∈ R} in (C, d0),

Hf
d0

:= {Sτf |τ ∈ R}
(C,d0)

.
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According to [22, Theorem 1, 14] S defines a dynamical system on C. Moreover,
by the assumptions, f is bounded and uniformly continuous on R×K for each
K compact in Rd, Hf

d0
is compact in C. We derive required properties for Hf

d0
.

Note that, similar results apply for C1,0 = (C1,0(R×Rd,Rd), ρ)-the space of
continuous functions h with ∂xh ∈ C with metric

(3.4) ρ(h, k) = d0(h, k) + d0(∂xh, ∂xk).

3.1.2. Hull of g

Next, we construct similar space for g. Firstly, consider the subspace
Cα;1,0(R × Rd,Rd×m) ⊂ C1,0(R × Rd,Rd×m) containing functions h which is
of local α−Hölder w.r.t. t for each x ∈ Rd and moreover for each compact set
K in Rd

sup
x∈K

|||h(·, x)|||α−Hol,[a,b] < ∞, ∀[a, b] ⊂ Rd.

We consider the following metric on Cα;1,0(R×Rd,Rd×m) which is denoted by
d1

(3.5) d1(h
1, h2) :=

∞∑
n=1

1

2n
∥h1 − h2∥α,1,0;Kn

1 + ∥h1 − h2∥α,1,0;Kn

,

where

∥h1 − h2∥α,1,0;K1×K2 := ∥h1 − h2∥1,0;K1×K2 +
∣∣∣∣∣∣h1 − h2

∣∣∣∣∣∣
α,K1×K2

∥h1 − h2∥1,0;K1×K2 := sup
K1×K2

|h1 − h2|+ sup
K1×K2

∥∂xh1 − ∂xh
2∥∣∣∣∣∣∣h1 − h2

∣∣∣∣∣∣
α,K1×K2 := sup

x∈K2

∣∣∣∣∣∣h1(·, x)− h2(·, x)
∣∣∣∣∣∣
α−Hol,K1

with K1,K2 are compact sets in R, Rd respectively.

Proposition 3.1. (Cα;1,0(R× Rd,Rd×m), d1) is a complete metric space.

Proof. See in the Appendix.

Next, we fix 1− 1
p < β0 < β, denoted by (Cβ0;1,0, d1) the space (Cβ0;1,0(R×

Rd,Rd×m), d1). Put Hg
d1

the closure of {Sτg|τ ∈ R} in Cβ0;1,0, i.e.

Hg
d1

:= {Sτg|τ ∈ R}
(Cβ0;1,0,d1)

.

The similar results hold for hull of g as stated below.

Lemma 3.1. All g∗ ∈ Hg
d1

satisfies (H2) and moreover, Hg
d1

is a compact set

in (Cβ0;1,0, d1).
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Proof. See in the Appendix.

Since Cβ0;1,0 is not separable, in the following we directly prove that S
defines a dynamical system on Hg

d1
.

Lemma 3.2. S defines a dynamical system on Hg
d1
.

Proof. Due to [22, Theorem 12], S defined a dynamical system on C1,0(R ×
Rd,Rd×m). We just need to check that for fixed (t0, h

0) ∈ R×Hg
d1
, if t ∈ R, h ∈

Hg
d1

such that |t−t0|, d1(h, h0) → 0 then
∣∣∣∣∣∣ht(·, x)− h0

t0(·, x)
∣∣∣∣∣∣
β0−Hol,[a,b]×K

→ 0

for each a, b, each K compact in Rd. Namely, by choosing appropriate [a′, b′]
we have ∣∣∣∣∣∣ht − h0

t0

∣∣∣∣∣∣
β0−Hol,[a,b]×K

≤
∣∣∣∣∣∣ht − h0

t

∣∣∣∣∣∣
β0−Hol,[a,b]×K

+
∣∣∣∣∣∣h0

t − h0
t0

∣∣∣∣∣∣
β0−Hol,[a,b]×K

≤
∣∣∣∣∣∣h− h0

∣∣∣∣∣∣
β0−Hol,[a′,b′]×K

+ 2
∣∣∣∣∣∣h0

∣∣∣∣∣∣β0/β

β−Hol,[a′,b′]×K
.∥h0

t − h0
t0∥

1−β0/β
∞,[a,b]×K

→ 0, as |t− t0| → 0, d1(h, h
0) → 0.

This shows the continuity of S on Hg
d1
. Since Hg

d1
is compact, S is measurable

w.r.t. the σ−algebra generated by d1. The proof is completed.

■

3.2. Generation of RDS

SinceHf
d0
,Hg

d1
are compact sets with appropriate metrics constructed above,

we deduce from Krylov-Bogoliubov theorem [18, Chapter VI, §9] that there

are probability measures Pf ,Pg on measurable space (Hf
d0
,Bf ), (Hg

d1
,Bg) with

Borel σ−algebras Bf ,Bg, that are invariant under the shifts mapping S. De-
note by Ω̄ the Catersian product Hf

d0
×Hg

d1
×Ω with the product Borel σ−field

denoted by B̄ and the product measure P̄ = Pf × Pg × P and consider the
product dynamical system θ̄ : R× Ω̄ → Ω̄ given by

θ̄(t, f̃ , g̃, ω) = (Stf̃ , Stg̃, θtω), (f̃ , g̃, ω) ∈ Ω̄.

It is evident that (Ω̄, B̄, P̄, θ̄) forms a metric dynamical system.

Proposition 3.2. For each ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, equation

(3.6) dyt = f̄(t, yt)dt+ ḡ(t, yt)dωt, y0 ∈ Rd, t ∈ R+

possesses a unique solution y(t, y0, ω̄). The solution is continuous w.r.t. the
initial condition y0 and satisfies (3.3).
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Proof. It is easy to check that all elements in Hf
d0

satisfies (H1). As stated in
Lemma 3.1, ḡ satisfies (H2). The statement is evident due to [4].

■

Theorem 3.3. System

(3.7) dyt = f(t, yt)dt+ g(t, yt)dB
H
t

generates a continuous random dynamical system over (Ω̄, B̄, P̄ , θ̄).

Proof. For each ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, consider (3.6). Define

Φ∗ : R+ × Rd × Ω̄ → Rd

where Φ∗(t, ω̄)y0 is the value of the of the solution of (3.6) at the time t ∈ R+

with the initial time s = 0 and initial value y0, i.e. y(t, y0, ω̄). From (3.2), Φ∗

satisfies cocycle property

Φ∗(t+ s, ω̄)y0 = Φ∗(t, θ̄sω̄) ◦ Φ∗(s, ω̄)y0.

Next, to complete the proof we prove that the solution is continuous w.r.t.
ω̄ as an element in the product of separable metric spaces Hf

d0
,Hg

d1
,Ω. The

measurability of the solution is obtained thank to [3, Lemma III. 14]. Namely,
we fix t, x0 and [0, T ] contains t and consider ω̄1 = (f1, g1, ω1), ω̄2 = (f2, g2, ω2)
in Ω̄. Put y1t := y(t, y0, ω̄

1), y2t := y(t, y0, ω̄
2) then we have

y1t = x0 +

∫ t

0

f1(s, y1s)ds+

∫ t

0

g1(s, y1s)dω
1
s ,

y2t = x0 +

∫ t

0

f2(s, y2s)ds+

∫ t

0

g2(s, y2s)dω
2
s .

Therefore, zt := y1t − y2t satisfies the equation

zt = y1t − y2t

=

∫ t

0

[f1(s, y1s)− f2(s, y2s)]ds+

∫ t

0

[g1(s, y1s)dω
1
s −

∫ t

0

g2(s, y2s)]dω
2
s

+

∫ t

0

[f2(s, y1s)− f2(s, y2s)]ds+

∫ t

0

[f1(s, y1s)− f2(s, y1s)]ds

+

∫ t

0

g1(s, y1s)d(ω
1
s − ω2

s) +

∫ t

0

[g1(s, y1s)− g2(s, y1s)]dω
2
s

+

∫ t

0

[g2(s, y1s)− g2(s, y2s)]dω
2
s .
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Fixing ω̄1, due to (3.3) one can findR depends on ω̄1 such that ∥y(·, y0, ω̄)∥p−var,[0,T ]

≤ R for all ω̄ lies in the neighbor of ω̄1 of radius 1. We choose a upper bound
for the norms of f i, gi, ωi on K̄ := [0, T ]× B̄(0, R) and reuse the notation R for
convenient. We will show that z is near 0 when ∥f1 − f2∥∞,K̄ , ∥g1 − g2∥∞,K̄ ,

∥∂xg1 − ∂xg
2∥∞,K̄ , and

∣∣∣∣∣∣g1 − g2
∣∣∣∣∣∣
β0,K̄

less than ε small enough.

For 0 ≤ u < v ∈ [0, T ] and q := 1/β

|zu − zv| =

∣∣∣∣∫ v

u

[f2(s, y1s)− f2(s, y2s)]ds

∣∣∣∣+ ∣∣∣∣∫ v

u

[f1(s, y1s)− f2(s, y1s)]ds

∣∣∣∣
+

∣∣∣∣∫ v

u

[g2(s, y1s)− g2(s, y2s)]dω
2
s

∣∣∣∣+ ∣∣∣∣∫ v

u

g1(s, y1s)d(ω
1
s − ω2

s)

∣∣∣∣
+

∣∣∣∣∫ v

u

[g1(s, y1s)− g2(s, y1s)]dω
2
s

∣∣∣∣
in which∣∣∣∣∫ v

u

[f2(s, y1s)− f2(s, y2s)]ds

∣∣∣∣ ≤ Cf

∫ v

u

|zs|ds,∣∣∣∣∫ v

u

[g2(s, y1s)− g2(s, y2s)]dω
2
s

∣∣∣∣ ≤ DCg(1 +
∣∣∣∣∣∣y1∣∣∣∣∣∣

p−var,[u,v]
+
∣∣∣∣∣∣y2∣∣∣∣∣∣

p−var,[u,v]
)×

×
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

∥z∥q−var,[u,v]

where the final estimate due to [4]. And∣∣∣∣∫ v

u

[f1(s, y1s)− f2(s, y1s)]ds

∣∣∣∣ ≤ ∥f1 − f2∥∞,K̄(v − u),∣∣∣∣∫ v

u

g1(s, y1s)d(ω
1
s − ω2

s)

∣∣∣∣ ≤ D
∣∣∣∣∣∣ω1 − ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥y1∥q−var,[u,v] + (v − u)β + 1

]
,∣∣∣∣∫ v

u

[g1(s, y1s)− g2(s, y1s)]dω
2
s

∣∣∣∣ ≤ D
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥g1 − g2∥∞,K̄ +

∣∣∣∣∣∣g1 − g2
∣∣∣∣∣∣
q−var,[u,v]

]
,

≤ D
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

[
∥g1 − g2∥∞,K̄

+
∣∣∣∣∣∣g1 − g2

∣∣∣∣∣∣
β0,K̄

(v − u)β + ∥∂xg1 − ∂xg
2∥∞,K̄

∣∣∣∣∣∣y1∣∣∣∣∣∣
p−var,[u,v]

]
.

In the final estimate we use the mean value theorem namely for s, t ∈ [u, v]

|g1(t, y1t )− g2(t, y1t )− g1(s, y1s) + g2(s, y1s)|
≤ |(g1 − g2)(t, y1t )− |(g1 − g2)(s, y1t )|+ |(g1 − g2)(s, y1t )− |(g1 − g2)(s, y1s)|
≤
∣∣∣∣∣∣g1 − g2

∣∣∣∣∣∣
β0,K̄

(t− s)β0 + ∥∂xg1 − ∂xg
2∥∞,K̄ |y1t − y1s |.

Therefore

|||z|||q−var,[u,v] ≤ D

(∫ v

u

|zs|ds+ ∥z∥q,[u,v] +A1/q
u,v

)
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where D is a constant depending on R and A is a control function defined by

A1/q
u,v := ε(v − u) +

∣∣∣∣∣∣ω1 − ω2
∣∣∣∣∣∣
p−var,[u,v]

+ ε
∣∣∣∣∣∣ω2

∣∣∣∣∣∣
p−var,[u,v]

.

Apply Lemma 4.1, since z0 = 0 we obtain

∥z∥q−var,[0,T ] ≤ D(∥z0∥+ ε) = Dε → 0 as ε → 0.

This completes the proof. ■

4. Random attractors

In what follows we recall the notion of the (global) random attractor. For
a probability space (Ω∗,F∗,P∗), a set M ⊂ Rd × Ω∗ with closed ω−section
M(ω) = {x ∈ Rd|(ω, x) ∈ M} is called random set if the map ω 7→ d(x,M(ω))
is measurable for every x ∈ Rd, where d is the Hausdorff semi-distance.

We work with the universe D̂- the family of tempered random sets D̂(ω), i.e
D̂(ω) is contained in a ball B(0, r(ω)) a.s., where the radius r(ω) is a tempered
random variable, namely satisfies

(4.1) lim
t→±∞

1

t
log+ r(θ∗tω) = 0, a.s.

Let φ be a continuous random dynamical system on Rd over a metric dynamical
system (Ω∗,F∗,P∗, (θ∗t )). A random subset A is called invariant, if

φ(t, ω)A(ω) = A(θ∗tω) ∀t ∈ R+, a.s ω ∈ Ω∗.

It is called a pullback random attractor in D̂ if it is compact, invariant and
attracts any D̂ ∈ D̂ in the pullback sense, i.e.

(4.2) lim
t→∞

d(φ(t, θ∗−tω)D̂(θ∗−tω)|A(ω)) = 0, ∀D̂ ∈ D̂, a.s. ω ∈ Ω∗.

A random set B ∈ D̂ is called pullback absorbing in the universe D̂ if B
absorbs all sets in D̂, i.e. for any D̂ ∈ D̂, there exists a time t0 = t0(ω, D̂) such
that

(4.3) φ(t, θ∗−tω)D̂(θ∗−tω) ⊂ B(ω), for all t ≥ t0.

If there exists pullback absorbing set for φ, then it is proved that

(4.4) A(ω) =
⋂
s≥0

⋃
t≥s

φ(t, θ∗−tω)B(θ∗−tω).
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is the random pullback attractor of φ. Moreover, it is unique in D̂ ([21]).

In the following, we assume that f is uniform dissipative ([6]), i.e. there
exist c, d > 0 such that for all t ∈ R, x ∈ Rd

(4.5) ⟨x, f(t, x)⟩ ≤ c− d∥x∥2.

We will prove that the RDS generated by (3.7) possesses a random attractor.
The technique is followed from [8]. Here we sketch some main details.

Theorem 4.1. In addition to (H1), (H2) if f satisfies (4.5), then RDS gen-
erated by system (3.7) possesses a random pullback attractor almost sure.

Proof. Step 1: First, fix ω̄ = (f̄ , ḡ, ω) ∈ Ω̄, [a, b] ⊂ R+. We consider the
corresponding ordinary differential equation

(4.6) µ̇t = f̄(t, µt), t ∈ [a, b], µa = ya.

where y is a solution of (3.6) on [a, b].

Since f is dissipative,

∥µ∥∞,[a,b] ≤ |µa|+ L,

|||µ|||p−var,[a,b] ≤ L (|µa|+ 1) (b− a)

where L is a constant.

Define kt = yt − µt, t ∈ [a, b]. Since k satisfies the equation

dkt = d(yt − µt) = [f̄(t, µt + kt)− f̄(t, µt)]dt+ ḡ(t, µt + kt)dωt

we have

kt − ks =

∫ t

s

[
f̄(u, ku + µu)− f̄(u, µu)

]
du+

∫ t

s

ḡ(u, ku + µu)dωu.

It follows from (H2) and the boundedness of g that

|kt − ks| ≤
∫ t

s

Cf |ku|du+ ∥ḡ∥∞ |||ω|||p−var,[s,t](4.7)

+K |||ω|||p−var,[s,t] |||ḡ(·, k· + µ·)|||q−var,[s,t] ,

where q = 1/β, K = (1− 21−1/p−1/q)−1. Since

|ḡ(t, kt + µt)− ḡ(s, ks + µs)|
≤ |ḡ(t, kt + µt)− ḡ(t, ks + µs)|+ |ḡ(t, ks + µs)− ḡ(s, ks + µs)|
≤ Cg|kt − ks|+ Cg|µt − µs|+ Cg(t− s)β

≤ Cg|kt − ks|+M(1 + |µa|β)(t− s)β , ∀a ≤ s < t ≤ b
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where M = M(r) depends on r = b− a, we have

|||ḡ(·, k· + µ·)|||q−var,[s,t] ≤ Cg |||k|||p−var,[s,t] +M(1 + |µa|β)(t− s)β ,

with a note that qβ ≥ 1 and q ≥ p. Then

|kt − ks| ≤
[
∥g∥∞ +KM(1 + |µa|β)

]
|||ω|||p−var,[s,t] +

∫ t

s

Cf |ku|du

+KCg |||ω|||p−var,[s,t] |||k|||p−var,[s,t] .

Using Lemma 4.1 and Young inequality for product

∥k∥∞,[a,b] ≤ e2Cfr
[
|ka|+M(1 + |µa|β) |||ω|||p−var,[a,b] (1 + |||ω|||pp−var,[a,b])

]
≤ M(1 + |µa|β) |||ω|||p−var,[a,b] (1 + |||ω|||pp−var,[a,b])

≤ ε|ya|+ Λ(ω, [a, b]),(4.8)

where ε > 0 is chosen later and Λ(ω, [a, b]) is a general polynomial of |||ω|||p−var,[a,b].

Step 2: Next, we estimate the solution of (3.6) by discretization.

By assumption of f , it can be seen that all f̃ ∈ Hf
d0

satisfy (4.5). For each
n, consider(4.6) with [a, b] is replaced by [n − 1, n]. By known result of (4.6)
under condition (4.5), there exists η ∈ (0, 1), L > 0 such that

|µn| ≤ η∗|yn|+ L.

Now in (4.8), we choose 0 < ε < 1− η∗ and η = η∗ + ε ∈ (0, 1). Then,

|yn| ≤ |kn|+ |µn|
≤ η|yn−1|+ Λ(ω, [n− 1, n]).

Therefore,

|yn| ≤ η|yn−1|+ Λ(ω, [n− 1, n])

≤ ηn|y0|+
n∑

j=1

ηjΛ(ω, [n− 1− j, n− j]).(4.9)

Define R(ω̄) :=
∑

j≥0 η
jΛ(ω, [−j,−j + 1]), then as n large enough

|y(n, y0, θ−nω̄)| ≤ 1 +R(ω̄).

Step 3: Finally, we prove the existence of an absorbing set.

Using (3.3) the value of solution at arbitrary time is evaluated similarly.
Namely, there exists a tempered random variable R̃(ω̄) (see [8]) such that

|y(t, y0, θ̄−tω̄)| ≤ 1 + R̃(ω̄)
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as t large enough. It shows the existence of the absorbing set B(ω̄) = B̄(0, R̃(ω̄)).
The proof of this step relies on the ergodicity of canonical space (Ω,F ,P, θ)
and ergodic Birkhoff theorem.

Note that E
∣∣∣∣∣∣BH

∣∣∣∣∣∣m
p−var,[0,1]

< ∞ for all m ∈ N. This deduces that Λ(ω)

and then R̃(ω) is also integrable. Moreover, in (4.9), one can evaluate |yn|m
for any m > 0 and choose R̃ to be integrable at arbitrary order m.

The existence of random pullback attractor A(ω̄) for Φ∗ is proved.

■

Theorem 4.2. If we assume f satisfies uniform one-sided dissipative condition

⟨x− y, f(t, x)− f(t, y)⟩ ≤ −L|x− y|2, ∀t, x, y

for some L > 0. Then there exists ϵ > 0 such that if Cg < ϵ the attractor is
singleton.

Proof. Let y1, y2 be two solutions of (3.6) where the initial conditions lie in
B̄(0, R). Put ȳ = y2 − y1 then

dȳt = [f̄(t, ȳt + y1t )− f̄(t, y1t )]dt+ [ḡ(t, y2t )− ḡ(t, y1t )]dωt.

Once again, we consider the pure dt equation

dµ̄t = [f̄(t, µ̄t + y1t )− f̄(t, y1t )]dt, µ̄0 = ȳ0.

By assumption of f , there exists η ∈ (0, 1) such that

|µ̄1| ≤ η|µ̄0|.

Now, put z = ȳ − µ̄, we have

dzt = [f̄(t, ȳt + y1t )− f̄(t, µ̄t)]dt+ [ḡ(t, y2t )− ḡ(t, y1t )]dωt.

Computation leads to
(4.10)

|zt−zs| ≤
∫ t

s

Cf |zu|du+DCg |||ω|||p−var,[s,t] .∥z+µ̄∥p−var,[s,t](1+
∣∣∣∣∣∣y1∣∣∣∣∣∣

p−var,[s,t]
).

By (3.3), for all s, t ∈ [0, 1]

|zt − zs| ≤
∫ t

s

Cf |zu|du+DRCg |||ω|||p−var,[s,t] Λ(ω, [0, 1]).∥z + µ̄∥p−var,[s,t],

then using Lemma 4.1,

∥z∥p−var,[0,1] ≤ DR|ȳ0|Cge
RCgΛ(ω,[0,1]),
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where Λ(ω, [a, b]) is a general polynomial of |||ω|||p−var,[a,b]. We arrive at

(4.11) |ȳ1| ≤ η|ȳ0|
[
1 +DRCge

RCgΛ(ω,[0,1])
]
.

The rest of the proof is followed step by step to [8, Theorem 3.11].

■

Appendix

Proof of Proposition 3.1

Proof. That d1 is a metric on Cα;1,0(R × Rd,Rd × m) is evident due to the
seminorm properties of the Hölder norm. We only need to prove the com-
pleteness. Let hn be a Cauchy sequence in Cα;1,0(R × Rd,Rd×m). Since
(C1,0(R × Rd,Rd × m), ρ) is complete, there exists a subsequence, which we
still use the notation hn, converges to h in C1,0(R× Rd,Rd×m), i.e.

lim
n→∞

ρ(hn, h) = 0.

We will prove that for each K1,K2 compact sets in R,Rd, |||hn − h|||α,K1×K2 →
0 as n → ∞. Fix K ⊂ Rd compact, we have for each [a, b] ⊂ R there exist a
constant M such that

sup
n

sup
x∈K

|||hn(·, x)|||α−Hol,[a,b] ≤ M.

For each x ∈ K

|h(t, x)− h(s, x)| = lim
n→∞

|hn(t, x)− hn(s, x)| ≤ M |t− s|α,

this implies that supx∈K |||h(·, x)|||α−Hol,[a,b] < ∞ or h ∈ Cα;1,0(R× Rd,Rd×m).

Now to complete the proof we show that hn converges to h, in α−Hölder
norm on each K compact in Rd. For each s < t ∈ [a, b], x ∈ K

|(hn − h)(t, x)− (hn − h)(s, x)|
|t− s|α

= lim
m→∞

|(hn − hm)(t, x)− (hn − hm)(s, x)|
|t− s|α

≤ lim
m→∞

sup
x∈K

sup
a≤v<u≤b

|(hn − hm)(u, x)− (hn − hm)(v, x)|
|u− v|α

≤ lim
m→∞

|||hn − hm|||α,[a,b]×K ,
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which implies

|||hn − h|||α,[a,b]×K ≤ lim
m→∞

|||hn − hm|||α,[a,b]×K → 0, as n → ∞.

The proof is completed.

Proof of Lemma 3.1

Proof.

It can be seen from the assumptions of g that g together with ∂xg satisfies
the condition boundedness and equicontinuous on R×K for each K compact
in Rd.

Due to [22, Theorem 16] Hg
d1

is compact in (C1,0(R×Rd,Rd×m), ρ). Hence,
for g∗ ∈ Hg

d1
, ∂xg

∗ exists and is continuous. Moreover, and there exists tn such
that lim

n→∞
d1(g

∗, gtn) = 0.

It is evident that g∗ is bounded by ∥g∥∞, and

|g∗(t, x)− g∗(t, y)| = lim
n→∞

|gtn(t, x)− gtn(t, y)|

= lim
n→∞

|g(tn + t, x)− g(tn + t, y)| ≤ Cg|x− y|,

|g∗(t, x)− g∗(s, x)|+ ∥∂xg∗(t, x)− ∂xg
∗(s, x)∥

= lim
n→∞

|gtn(t, x)− gtn(s, x)|+ ∥∂xgtn(t, x)− ∂xgtn(s, x)∥

≤ Cg|t− s|β .

That ∂xg
∗(t, x) is local Lipschitz in x uniformly in t is also obvious. The first

statement is proved.

For the second one, since Hg
d1

is compact in C1,0, from a sequence hn ∈
Hg

d1
there exists a subsequence hnk that converges (in ρ) to h ∈ C1,0(R ×

Rd,Rd×m). One may choose the subsequence in the form gtn . Applying the
above arguments for g∗ = h and the sequence gtn we have h ∈ Cβ;1,0(R ×
Rd,Rd×m). Moreover, |||hnk |||β,K1×K2 , |||h|||β,K1×K2 are less than Cg for K1,K2

are compact sets in R,Rd respectively.

Finally, put hk = hnk − h. Since β0 < β, for s, t ∈ K1, x ∈ K2

|hk(t, x)− hk(s, x)|
|t− s|β0

=

(
|hk(t, x)− hk(s, x)|

|t− s|β

) β0
β

.|hk(t, x)− hk(s, x)|1−
β0
β

≤ |||hk|||
β0
β

β,K1×K2 (|hk(t, x)|+ |hk(s, x)|)1−
β0
β , hence

|||hk|||β0,K1×K2 ≤ 4C
β0
β

g ∥hk∥
1− β0

β

∞,K1×K2 → 0 as k → ∞.

To sum up, hnk converges to h in d1. The proof is completed.

■
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Lemma 4.1 (Gronwall-type Lemma). For q ≥ p so that 1
p+

1
q > 1, if y satisfies

the following condition

|yt − ys| ≤ Â
1/q
s,t + a1

∫ t

s

|yu|du+ |||ω|||p,[s,t] (a2|ys|+ a3 |||y|||q−var,[s,t])

for all s ≤ t ∈ [a, b], where a1, a2, a3 are positive real constants, Â is a control
function on {(s, t)|a ≤ s ≤ t ≤ b}, then

∥y∥p,[a,b] ≤
[
|ya|+ 2Â

1/q
a,b N[a,b]

]
e2a1(b−a)+κN[a,b]N

p−1
p

[a,b] (ω)

with κ = log a3/a2+2
a3/a2+1 , and

N[a,b] ≤ D(1 + |||ω|||pp,[a,b])

for D depends on ai. If a2 = 0 one may take κ = 0.

Proof. See [8, Theorem 2.4].

■
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