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Abstract. We study the global existence and uniqueness of pseudo almost
periodic mild solutions for the parabolic-parabolic Keller-Segel systems
on the real hyperbolic spaces H"(R), where n > 2. First, we use the
dispersive estimates of the scalar heat semigroup to estabilish the well-
posedness of bounded mild solutions for the corresponding linear systems.
Then, we prove the existence and uniquess of pseudo almost periodic mild
solutions by proving a Massara-type principle. Finally, the well-posedness
of such solutions for semilinear systems are obtained by employing fixed
point arguments.

1. Introduction

We consider the following parabolic-parabolic (P-P) Keller—Segel system
on the real hyperbolic space H" (n > 2) and on the whole line time-axis, i.e.,
teR:

(1.1) { up = Au—V - (uVv) + g(t) (t,z) € R x H",

vy = Av— v+ Kku+ h(t) (t,z) € R x H",
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where the functions g(¢,x) and h(t,z) are given and the parameters v > 0
and k > 0 denote the decay and production rate of the attractant, respec-
tively. The unkown of system (1.1) are u(¢, ) (scalar function) representing the
density of cells and v(t,-) (scalar function) which is the concentration of the
chemoattractant.

If the function h = 0 and the concentration of the chemoattractant is inde-
pendent of time, the system (1.1) simplifies to a form known as the parabolic-
elliptic Keller-Segel system (also called patlak-Keller-Segel system), which is
given by (see [25] for the model on H?):

(1.2) u = Au—V - (uVv) + g(t) (t,z) € R x H",
’ —Av+yv = kKu (t,x) € R x H™.

The chemotaxis model, initially introduced in Euclidean space by Keller and
Segel [18], describes the aggregation of biological species. Specifically, this
model captures the behavior of organisms moving toward regions with higher
concentrations of food molecules or chemicals secreted by the organisms them-
selves. For further details on the well-posedness and long-term behavior of
solutions for system (1.2), we refer readers to the relevant works in [2, 6, 8, 10,
22, 23, 12, 13, 15] and the references therein.

We briefly review previous studies on Keller—Segel (P-P) systems and re-
lated models. Winkler [42] obtained LP—L? dispersive and smoothing esti-
mates for the Neumann heat semigroup, proving exponential stability of mild
solutions for n > 3, and later studied finite-time blow-up in higher dimen-
sions [44]. Cao [5] extended these results by deriving smallness conditions in
optimal Lebesgue spaces, ensuring global boundedness and large-time conver-
gence for n > 2. Hao et al. [14] established global classical solutions for
the Keller—Segel-Navier—Stokes system with matrix-valued sensitivity. Jiang
proved global stability in critical spaces [16] and for homogeneous steady states
in scaling-invariant spaces [17]. Other important contributions include [43, 45],
and time-periodic solutions were addressed in [20, 31]. For the whole space R™
(n > 2), well-posedness and asymptotic behavior have been studied extensively;
see [3, 4, 7, 32, 41, 29] and references therein.

In non-Euclidean geometries, the curvature of Riemannian manifolds cru-
cially affects the phase space and asymptotic behavior of solutions to Keller—Segel
systems and other PDEs, in contrast to the flat Euclidean case. Hence, study-
ing chemotaxis on curved spaces, such as hyperbolic manifolds, is of particular
interest for understanding organism motion under curvature effects. On posi-
tively curved domains, Montaru [26] analyzed the Patlak—Keller—Segel system
on a ball B C R™ and proved exponential convergence of radial solutions to
the steady state in the subcritical case M = [ g Yo, dVolp < 8. More recently,
Ahmedou et al. [1] showed blow-up for steady states on compact Riemann sur-
faces. For negatively curved manifolds, Pierfelice and Maheux [25] established
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global well-posedness on H? with any L' initial data under M < 87, and blow-
up for M > 8w. Furthermore, Xuan et al. [37, 38] proved well-posedness and
exponential stability (including decay) of periodic and asymptotically almost
periodic mild solutions on H" (n > 2).

The well-posedness of periodic and generalized mild solutions—such as al-
most periodic, asymptotically almost periodic, and pseudo almost periodic
ones—has been widely studied for parabolic and hyperbolic equations (see
[9] and references therein). For chemotaxis models, substantial progress has
been achieved in the parabolic-elliptic Keller—Segel setting: periodic mild so-
lutions [37], almost periodic [39], asymptotically almost periodic [38], and
pseudo almost periodic solutions [33]. More recently, the parabolic—parabolic
Keller—Segel system on the real hyperbolic space H™ was shown to admit well-
posed and exponentially stable periodic and almost periodic mild solutions
[34].

In this paper, extending [34, 40], we establish the existence and uniqueness
of pseudo almost periodic mild solutions to system (1.1). Our approach pro-
ceeds as follows: we first prove well-posedness of bounded mild solutions to
the associated linear system using LP—LY dispersive and smoothing estimates
for the scalar heat semigroup (Lemma 3.1). Next, we establish a Massera-type
principle, ensuring pseudo almost periodic mild solutions of the linear system
for given pseudo almost periodic inputs. Finally, by combining the linear re-
sults with fixed-point arguments, we obtain existence and uniqueness of pseudo
almost periodic mild solutions for the semilinear system (1.1).

Our paper is organized as follows. Section 2 introduces the Keller—Segel
(P—P) system on real hyperbolic spaces, recalls the LP—L? dispersive and smooth-
ing estimates for the scalar heat semigroup, and defines the functional spaces
for mild solutions. Section 3 presents the proofs of well-posedness for pseudo
almost periodic mild solutions of both linear and semilinear systems.

2. Parabolic-parabolic Keller-Segel systems on hyperbolic spaces

Let (H", g) = (H*(R), g) be a real hyperbolic manifold, where n > 2 is the
dimension, endowed with a Riemannian metric g. This space is realized via a
hyperboloid in R**! by considering the upper sheet

{(azo,xl,...,xn) e R 20 >1 and xt—at—ai. -2 = 1}

where the metric is given by dg = —dz2 + dz? + ... + d22.
In geodesic polar coordinates, the hyperbolic manifold (H", g) can be de-
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scribed as
H" = {(coshT,wsinhT)7 T>0,we S"_l}

with dg = d7? + (sinh 7)2dw?, where dw? is the canonical metric on the sphere
S”~1. In these coordinates, the Laplace-Beltrami operator A := Ay on H” can
be expressed as

A=Ay =0+ (n— 1) cothrd, +sinh 2 rAgn-1.

—1)2
It is well known that the spectrum of —A is the half-line {(714), oo).

For the sake of simplicity, we assume v = k = 1, the Keller-Segel (P-P)
system (1.1) becomes

(2.1) u =Au—V - (uVv) + g(t) (t,z) € R x H",
’ vy =Av—v+u+h(t) (t,z) € R x H".

By employing the term of matrix, we can rewrite the system (2.1) as follows

(2.2) % m + A m: - [V' %‘V“)} +F (a [ZD (t,7) € R x H,

where Id denotes identity operator and
|-A 0 ul) [0 g(t)
e A= ] mar (o) - L))

We recall the dispersive and smoothing estimates of the scalar heat semi-
group on the real hyperbolic space H" (n > 2) in the following lemma:

Lemma 2.1. Let v, = % [(% — %) + % <1 — %)} The following dispersive

estimates for scalar heat semigroup hold

(i) Ift > 0, and p, q such that 1 < p < ¢ < oo, then

n

(24) le*4e]l o < Ra(1 4872 7)™ O
for all scalar function w € LP(H™).

(i) Ift >0, and p, q such that 1 < p < g < oo, then

(25) [Vl < ka1 4 EGD) (R

for all scalar function v € LP(H™).
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(tit) Moreover, the dual version of (2.5) holds. In particular, if t > 0, and p,
q such that 1 <p < q < o0, then

Yg.9tp.g

(26) [V T, < ka1 + 373Gt CHEE)

for all vector field T € LP(T'(H™)).

Proof.  The proof was given in [28] (see Theorem 4.1, Corollary 4.3 and
Remark 4.4), with noting that

[ ()]* < C(t7% +1) (a>0).

Now we recall some concepts of generalized functions. For more details we
refer the readers to book [9] and references therein. Let X be a Banach space,
we denote

Cy(R, X) :={f:R — X | f is continuous on R and sup ||f(t)||x < oo}
teR

which is a Banach space endowed with the norm ||fllec,x = [[fllc,@® x) =
sup || f()]|x-
teRr

Definition 2.1. (AP-function) A function h € Cy(R, X) is called almost pe-
riodic function if for each € > 0, there exists I > 0 such that every interval of
length l. contains at least a number T with the following property

sup ||h(t+T) — h(t)|| <e.
teR

The collection of all almost periodic functions h : R — X will be denoted
by AP(R, X) which is a Banach space endowed with the norm ||h||apw x) =
iﬂﬂgl\h(t)Hx-

€

Definition 2.2. (PAP-function) A function f € Cp(R,X) is called pseudo
almost periodic if it can be decomposed as f = g+ ¢ where g € AP(R, X) and
¢ is a bounded continuous function with vanishing mean value i.e.

1 L
li — dt = 0.
im / (o)

L—oo 2L

We denote the set of all functions with vanishing mean value by PAPy(R, X)
and the set of all the pseudo almost periodic (PAP-) functions by PAP(R, X).
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We have that (PAP(R, X), ||.||c,x) is a Banach space, where |||/« x is the
supremum norm. As well as AAP- functional space, we have the following
decomposition

PAP(R,X) = AP(R,X) & PAPy(R, X).

The notion of pseudo almost periodic function is a generalisation of the
periodic and almost periodic functions. Precisely, we have the following inclu-
sions

P(R,X) < AP(R, X) < PAP(R, X) — Cy(R, X).

where P(R, X) is the space of all continuous and periodic functions from R to
X.

Example. The function h(t) = cost + cos(v/2t) is almost periodic but not
periodic, h(t) = cost + cos(v/2t) + eIt is pseudo almost periodic but not
almost periodic. Moreover, let X be a Banach space and g € X — {0}, we have
that f = hg € AP(R,X) and f = hg € PAP(R, X).

3. 'Well-posedness of pseudo almost periodic solutions

we study the following inhomogeneous linear equa-

¢

tion corresponding to origin equation (2.2):
0 [u u| V- (wVC() g(t) n
S PO L. Y S R

v 0 )+ h(t)
By Duhamel’s principle we define the mild solution (u,v) of equation (3.1)
as the solution of following integral equations

. w
For a given vector {

t

(3.2) u(t) = — /_t e=IAY . (WVC)(s)ds +/ et=98g(s)ds

— 00

and
t t
(3.3) v(t) :/ e(t_s)(A_Id)u(s)ds—&—/ =) A=1)p ()i,

In the matrix form, these equations are equivalent to

w  [us(Ee (e
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where

(3.5) 5 ([ag]) (5) = - /; o (=9)A [v : (BNO] (5)ds

and
(3.6)

) Y R I R RA

Let 2 < n and max{3,n} < p. We consider the well-posedness of system
(3.1) in the following Banach space

X = {(u,v) € Cy(R, L (H") x LE(H™)), Vo € Cy(R,, LP(H"))
such that : sup (||u(t)||Lg +lv@®Il 2 + ||Vv(t)||Lp) < Jroo}
teR
endowed with the norm
67 o)l =suw (Ju®l g + 0@,z + Vo))
teR

For convenience, we denote also that

(3.8) ‘

]|
0] = s +1o@is + 19, e R

Remark 3.1. Note that, the condition on the dimension of phase space
p > max{3,n} arises due to technical issues that appear in the proofs of the
results. In particular, this condition ensures the applicability of Lemma 2.1 and
the boundedness of certain improper integrals, which are crucial for the proofs
of Lemma 3.1 and Theorem 3.2 below.

The existence and uniqueness of mild solution for the linear equation (3.1)
in the space X is established in the following lemma.

Lemma 3.1. Let 2 < n and max{3,n} < p. For given functions [(Z] € X and

{‘;ﬂ € Cy(R, L% (H") x L%(H")), there exists a unique mild solution of linear
equation (3.1) satisfying the integral equation (3.4). Moreover, the following

boundedness holds
2
Ll <l e[ 2]
v ¢ M llco,L8 w3

+Co
X

(3.9) <O

X
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Proof. Using the dispersive and smoothing estimates (2.4), (2.6) in Lemma
2.1, we have

lu@)Il 5

g/t e<t*8>Av.(wvg)(3)]ﬁ ds+/

—0o0 — 00

t

L2

=92 (s)| , ds

K n Op/2,p/21Vp/3,p
</€2/ (14_(15_8)*%*@) e~ (t=3) 12:0/2% 0 /3 /Z)Hw(s)vc(S)HL% ds

— 00

t
o [ e 0w g(s)] p ds

— 00

+oo n Yp/2,p/2 Vp)3,
<kollwll_ 5 1Y€l 1o / (1427 ) oeianagionts
0

0o, L2

+oo
thilgl gy [ e Omeas

k
(3-10)< k2Ll 15 IVl 1o + 5 9l .13

p/2,p/2

+ _l,n .
where C' = ( + (Tp2p2POpise/2) =5t ST (% — %)) < o0 since

the boundedness of Gamma, function T’ (1 — ﬂ) provided that p > n.

2
Vp/3.p/3 T Vp/3,p/2

2 2p
By the same way as above we can estimate

t t
o), 2 < / e<t78><A*1d>u(s)H , ds + / =) A=1p | ds
L2 — 00 Lj — 00 LE
t
< b et () s
T
t [ e I ()| g ds
ko
< 7(u e + ||k g)
ewrewen | (CINITR LN
o1 ks C'
< ———llwll 2 IV<lle 1
Vp/2,p/2 1 ’ )
3.11 + max G i g
(3.11) , ;
Vos2.0/2(Vos2p/2 + 1) Ypj2p/2 +1 h oo, LB xLE

where the last estimate holds by using (3.10).
Moreover, by using the estimates (2.4) and (2.5) we estimate the gradient
of v(t) as
Vo)l

t
< / HVe(t_s)(A_Id)u(s)‘ ds
oo Lr

ds + / HVe(t_S)(A_Id)h(s)‘

t
oo

L
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Nl

t
< k;2/ (1 +(t—s)" *%) e—(vwz,ﬁl)(t—S)||u(3)||L%d8

t
+ko / (1 + (t— s)_%—%> 67(7”/24’“)(“3)||h(s)\|Lgds

1 1l_n 1 n
< ko (W + (’Yp/z,p + 1)2 e N (2 — 2p)> (||u|‘m7L% + ”hlloo,L%)
< k' (llull , yp + Bl 42
1 1. n 1 n
where C' = | —— + (v +1)7 2t <)>
( Vos2p +1 Corap +1) 2 %))

< BOClwll 3 Vel o

!
(3.12) + max {kleC ,kgc’} H [g}
Yp/2.p + 1 h

Lhxrh’
where the last estimate holds by using again (3.10).

Combining inequalities (3.10), (3.11) and (3.12) we obtain the boundedness
(3.9) which leads to the existence of mild solution of (3.1). The uniqueness
holds clearly. |

As a direct consequence of Lemma 3.1, we can define the solution operator
S : X — X associating with linear equation (3.1) as

S: X=X

s ()

where S(w, () is a unique solution of integral equation (3.4), i.e, mild solution
of (3.1).

We state and prove the existence and uniqueness of PAP-mild solutions for
linear equation (3.1) in the following theorem.

Theorem 3.1. Let 2 < n and max{3,n} < p. For a given PAP-function
t— (w,C, g,h)(t) with respect on the norm

(3.13)

[(w; ¢, 9, W)@ = llw®)l 5 + 1SNz + IV Lo + g 5 + RO 5,

there exists a unique PAP-mild solution of linear equation (3.1) satisfying the
integral equation (3.4).

Proof. This theorem is in fact a Massera-type principle for PAP-mild solu-
tions of parabolic-parabolic Keller-Segel systems (see the similar subjects for
parabolic-elliptic Keller-Segel systems in [37, 38, 39]). In particular, we need
to prove that the solution operator S preserves the pseudo almost periodic
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h

()

which is a unique solution of integral equation (3.1) which means that the
functions u and v satisfy equations (3.2) and (3.3), respectively.

property of functions [ﬂ and {g ] . Indeed, we have

By hypothesis, we can decompose

w w1 %)
(3.15) =S+ |@
g g1 g2
h hy ho

for (wy,C1,91,h1) is almost periodic in Cy(R, L2 (Q) x L5 (H")) x L2 (H")) x
L% (H"))) with respect to the norm
(3.16)
w1
¢

g1
h1

—_

@] = ler @l g NGO g HIVG O Lo+ lgr DNl 5 +A (D] 5, t € R

and (w2, (2, g2, ho) satisfying

|| |42
1 G2
1 _— =
L1—>H;<>2L/_L 92 (B dt =0
ha

t
ut) = - / DAY [(wr + ws) V(¢ + Co)](s)ds
t
+/ "2 (g1 + ga)(s)ds
= - / t eI TIAY - (w1 VG ) (s)ds + / t =98 gy (s)ds

t

- /t eUAY L w1 Vs + wa V(] (s)ds —|—/ (=92 g, (s)ds
BAT) = wi(f) +us(t), o

(3.18) uy(t) = — / eBAY - (w1 V¢ (s)ds + / =92, (s)ds
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and
¢ ¢
us(t) = —/ e(t_s)AV~[w1VC2+w2V(](s)ds+/ =92 g5 (s)ds.
Inserting (3.15) and (3.17) into (3.3), we get
t ¢
o) = / =)A= (1 oy (5)ds + / =B (4 poy(5)ds
—too . —00
= / e(tfs)(A*Id)ul(s)der/ e(tfs)(A*Id)hl(s)ds

t t
+/ e(t—s)(A—Id)u2(s)dS+/ e(t—s)(A_Id)h2(s)dS
(3.20) = vi(t) + va(t),

where
¢ ¢

(3.21) v1(t) :/ e(t_s)(A_Id)ul(s)ds—i—/ (=)A= (5)ds
— 0o — 0o

and
¢ ¢

(3.22) wa(t) = / (=)A= () ds + / et A1), (5)ds.

Now, we prove that the function [Zl] is almost periodic in X with repsect
1

to the norm

(3.23) ‘

[Zi] (”H =l ®ll, 5 + 1@l 5 + [Vor Ol ¢ € R

U2

and the function [
V2

} satisfying that

. 1 L U2
(3.24) nggoﬁ[L [vz] (t)H‘dt = 0.

Combining these with equation (3.14), we complete the proof. In particular,
we establish the above properties by the following two steps:
Step 1: Since the function (wy, ¢1, g1, k1) is almost periodic in Cy(R, L% (H™)) x
L% (H")) x L% (H")) x L% (H"))) with respect to the norm (3.16), we have that:
for each € > 0, there exists [, > 0 such that every interval of length [, contains
at least a number T satisfying

lwi(t+T) —wi(@®)ll 5 +GE+T) =GO,z + IVGE+T) = VGO

2
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Hgrt+T) =gl g + [t +T) = @),z <e tER.
(3.25)

Using (3.25) and the similar estimates as (3.10) in the proof of Lemma 3.1 we
can obtain that

Jur(t+T) —wi (O]l 5

/_too He(t—s)AV @1 VQ) (s +T) - (wlvgl)(s)}‘

N

» ds

L2

+ /; He(t—s)A(gl(S +T)— gl(s))‘ Ly ds

t
kQ/ (1 . s)—%—%) o= (=) (1 5.0/2)

x (Il wrls + T) = wn(5)VC(s + )] g
Hwr () V(s +T) = G(s)l, g ) ds
th [ gy £ T) a0l 5
Ballr(+T) = n ()l 3 IVl
+00

X <1 + 27%72L> —(t=5)(7p/3, p/Z)dZ
0
+hallonll 2 IVGE+T) = VGOl Lo

+o0 N
X/ <1+Z_§ 2L> —(t—s) 'Yp/3p/2)dz
0

ef(tfs)(%/zp/z)dz

N

N

| o0,

+kllgr (- +T) — g1 ()l

P
oco,L 2

k
(326) < ko (fwnll_ 5 +IVClarn+ 25 ) e,
OOL2 Al

where the constant C' is given as in the proof of Lemma 3.1. By the same way
as (3.11) in the proof of Lemma 3.1 we have

[or(t+T) =01 (D)l
t+T t
< / e(tJrTfs)(AfId)ul(s) _ / e(tfs)(Afld)ul(S) ds
—oo — 0 L3
t+T t
+ / e(t+T—s)(A—Id)h1(s)d8 _ / e(t—s)(A—Id)hl( )
: —00 —00 L%
< / e=ATD (4 (s + T) —ui(s))||  ds
7oot L%
+ / =)A= (h (s +T) — hy(s))ds
—o0 L%
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t
< k‘1/ e_(AlH)(t—S)Hul(s—&—T)—u1(3)||Lgds

— 00

t
+k1/ =MDy (5 4 T) = hy(s)]] g ds

— 00

Alki C (€ +7) = Ol g I +T) = Ol ,z)

k1koC k1
. < p )
30 < {38 (ol g + 1960 in) + iy e

where the last holds by using estimation (3.26) and inequality (3.25). Moreover,
we also have that

VoLt +T) = Vo (8)|] s

N

t
< / Hve(t—s)(A_Id)(ul(s +7T) - ul(s))‘ . ds
—tOO
+ / HVe(t’s)(A’Id)(hl(s+T) —hl(s))( s
!
<k2/ (1+(t—s)—§—%) “OADE g (s + T) — ua ()|, g ds

t
—H@/ (1 + (t — S)*T%) 6_()‘1+1)(t_s)Hh1(8 +T)— h1(8)||Lgd8

< kO (IIUl( +T) —wO)ll g HIC+T) =)l 5

k
328) < {0C" (ol g + 1961 + 32 ) + 1" e

Combining estimations (3.26), (3.27) and (3.28) we get

(3.29) ‘ {“1} t+T)— {“1} (t)H < Ce t€R,
U1 U1
where
~ ky
G = kO (il gz +1VG s + 5
klkg kl
oy (el s 16 o) + 577
k
(3.30) RO <||wlom I ;) ",

Therefore, the function {Zl} is almost periodic in X.
1

Step 2: We remain to prove the limit (3.24) which is equivalent to

L
o Jin o [ (el + Il + 190],,) d =0,
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Below, we prove in detail that
1 /L
(3.32) lim 7/L Jus(t)], 5 dt = 0.

The same limits of v2(f) and Vws(t) hold by the same way amd we obtain the
limit (3.24). Now, by using formula (3.32) we have

luz(®)]l 5
t

<
—o0

t
e[ sl
—o0

elt=9)Ay . [w1V o + wa VI (s)

p ds
L2

p ds
Lz

—L
I (S AT e e R I T
[ (9 e v, + e, ) o
(3.33) = (1) + (1),
where
O (o O s [ MR T
o0 = [ ([ v wa] ¢ o], o

under the assumption that ws, (s, go € PAPy(R, L% (H")). Indeed, using ar-
guments analogous to those employed in Lemma 3.1, we obtain the following
estimate

o(t)

t
< k/ 1+ (t—s)727%
2 (1+-siE)
x e~ (=) (W/s.p/2) (II(wl(S))V@(S)HLg + ||w2(8)V(C(S))||L§) ds
t
+k1/ 6—(2&—5)(%/2,;;/2)HgQ(S)HL%ds
—
< k/ 14 (t—s)727%
2 (1H—s7EH)

xe= =007 (|l (i ()] 5 (VG ()l o + a3, 5 V()50 ) ds

t
[ e IO g5,y ds

—L
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t
< kollwnll g / (1 ) ) O (VG5 s

1

t
+k2 [Vl oo, 10 / (1 + (t— s)—i—%) ef(tfs)(vp/s,p/z)||w2(s)||L%d8
-L
t
+hy /Le—(t—s)(wp/z,p/z)Hg2(8)||L%ds

1

t+L "
ballonll, g [ (142738 €000 [(VGatt - )] d
0

/A

t+L 1 n
+h2 [Vl oo 1 / (1 + z‘é‘ﬁ) e n/3.0/2) ||wo (t — 2,z dz
t+L 0
Jrkl/ 672(71)/2,1#2)”92@ _ Z)||Lgd2~
0

Consequently, we estimate

1 L
S o7 t)dt
0 5T %SD()
IR A e L a
< el giop [ ([ (L) e 0 (Gt - )0 de )
oo, L2 9], I 0
1 r t+L . ( :
il 3735 ) o= 2(Vp/3,p _ »
o Vel gz [ ([ (142748 ) e (e = 2)l s |
1 L t+L
+k12L/ /O e 2022 || go(t — 2)|| g dz | dt
I 1 n ( ) [F
= ko|lw]| 3—/ (1—&—2’_5_%)6727?/3”2/ [(VCa(t = 2)||;p dt | dz
L2 2L Jo 2L k
1 2L oo L
+/€2HVC||DO,L;7E/O (1+Z 2 21’)6747?/3’“2) /z—L lwa(t = 2)| g dt | dz
1 2L ( : L
+ki— e #Tr/2p/2 / g2t —2)||, edt | dz
= [ ot
2L . 1 (b=
= ]g2||w1HOO’L%/O (14_3*5*%) efz(vp/s,p/z)ﬁ[L |(VCG(7))|| o dT | dz
2L . ( )1 L—z
+k2HV<”oo,LP/O (1+Z 2 2p>€ #Yp/3.p/2 ﬁ[L ||w2('r))||Lng dz
2L ( ) 1 L—=z
k —#Yp/2.p/2) Bd
[ 5 | el e
> —3735 ) o207 ) gy L "
< k2||w1Hoo,L%/0 <1+z 2 2p>e p/3,p/2 dzﬁ /_L (V¢ () Lo dr
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L
1

o0 n 1
ko HVCHOO,LP/O (1 + Z*rg) e—z(w)/a,p/z)dzﬁ /_L w2 (Tl 2 dT
o) L
e [ ez [ ) dr
0 2L I L2
L

1
= kolwll ,2Cor [ (VG0 dr
co.L2 2L |

o V¢ 1o O [ (o g 4 —E [
, C— wo(T p dr —
? oL oL J_ o, 2 L Tps2,p/2 2L J_ L

g2 ()l 5 dr.

2

Since wa, (2, g2 € PAPy(R, L% (H™)) it implies that

1 L
. lim — = .
(3.34) Jim o /_L pt)dt =0 Vs >0
Using arguments analogous to those employed in Lemma 3.1 again, we have
—L
v) < ke[ (14 (- s EE) e 0

S}

% (1 ()Yl 5 +lw2() V), g ) ds

—L
+’“1/ e 00202 | ga (s)|| g ds

— 00

< el g [ (1 (= 8B E ) ) (Vo) ds
o L
+k2 V¢l oo 1r / (1 +(t— 5)_%_%) e*(t—s)(vp/a,p/z)||w2(5)||L%d$
- ’ t+L
b [ e ga(s)] g ds
t+L
> 1 n
< hallwill, 5 VGl pn / (1427375 ) e =Onmna
’ ’ 2L

M

Fk2 [[VCll oo, Lo le2l _ ;2 /L (1 +z- 7%) e=*On/sw/2) 4z
’ 2

o0

Jrl/v'1Hg2||oo,Lg /2L 673(’Yp/2,p/2)dz.

Hence, we clearly have

1 L
0 < — t)dt
5z v
1R L
< kallwrll g ||v<2||w7Lp2L/L</2L <1+z_2_2p>ezwp/s,p/2)dz> ”

Ll L
+k2 [VClloo Lo llo2ll 5 ﬁ/ ( . (1 + Z—E—ﬁ) e—z(vp/z,p/z)dz> dt
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I
+k1H‘g2||OO,L%ﬁ/L (/2L e_z('YP/Q,P/Z)d:&,) dt

n —2L(Yp/3,p/2)
< kel oy 19l g (14 @L)THH) S

Vp/3,p/2
k HVCH [lwa]| 1+ (2L) 1w\ e 2L0/ap/2)
e wall ;2 ( + *rg) e e/3e/2)
oo, LP oco,L2 ’yp/&p/2
e~ 2L(p/2,p/2)
Fhalgal g

Vp/2,p/2
This leads to the limit

1 [F
(3.35) im /_ (vt =o.

Combining equations (3.34) and (3.35), we conclude the desired limit (3.32).
A similar argument applies to the remaining terms on the right-hand side of
(3.31). Our proof is complete. [ ]

Similar to the linear system, we define the mild solutions of semi-linear
system (2.1) by the solutions of the following integral equations

¢ ¢
(3.36) u(t) = —/ =AY . (uVv)(s)ds +/ =902 (s)ds
oo 0
and
t t
(3.37) v(t) :/ e(t_s)(A_Id)u(s)ds—i—/ =)A= p(5)ds
—00 0

for u satisfies (3.2). In the matrix form, these equations are equivalent to

s [o-s({er (i)

where
(3.39) B (M) (s) = — /; e (t=9)A [V ' %‘V“)} (s)ds
540

) R e e RO

We state and prove the main results of this section in the following theorem.
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Theorem 3.2. Let 2 < n and max{3,n} < p. For a given PAP-function
Lﬂ € Cy(R, L3 (Q) x L7 (). If the norm [g] is small enough, then
) LExLE

there exists a unique PAP-mild solution (,v) of Keller-Segel (P-P) system
(2.1) satisfying integral equations (3.36) and (3.37).

Proof. We denote Bf AP which is a ball centered at 0 and radius p > 0 and

consists of all PAP-function in X. For each given function [Lg] € B;‘AP we

consider the following linear integral equation

s [us(Eos (o

By Theorem 3.1, this integral has a unique solution {ﬂ and we can set a

mapping P : BfAP — BEAP by

()~

which is a unique solution of (3.41). Now, we prove that ® maps
itself and is contraction. Indeed, by using Lemma 3.1 we have

BfAP into

2

o({)ol < ol
H ¢ CHlx h1IL8<r%
< O+ 0 H m |
LExLE
(3.43) < P
provided that p and H Lﬂ , , are small enough. Hence, the mapping &
L2xL2
map BEAP into itself.

w2

G2

Now, for given functions [Lgl] , { } € BEAP we have
1

o([a])-=(l2])
= e(le))o-n (s
(5] e-(5])
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_ /t e_(t—s)-A _v . (7w1V(C)1 +WQVC2):| (S)ds
oo, L ]
. 0
+[we (t=s)A 4y — ) (s)ds
_ /t o (t=3)A [V [— (w1 — w2)VC(1) + w2V (=C1 + 42)]] (s)ds
- L ]
—(t—5)A 0
+[we e — ) (s)ds
_ /t o~ (t=9)A V'[—(wlo— w2)VClq (s)ds
+/too o~ (t—5)A :V : [W2V(0—§1 + C2)]] (s)ds
. L
R A I [

where we set ) <[L511]> _ [zﬂ and @ (Eﬂ) = {Zﬂ '

By the same way as in the proof of Lemma 3.1 we can estimate from (3.44)

F(ED-+ED, < () )

w1 w2
3.45 < 4C —
649 o (6] L
: : . . 1
Hence, the mapping @ is contraction provided that p < o
1

0
clearly solution of integral equation (3.38). Therefore, the Keller-Segel system
(2.1) has a mild solution. The uniqueness holds by using core estimate (3.45).

By using fixed point arguments, there is a fixed point [ﬂ of ® which is

Remark 3.2. In this paper, we prove the existence and uniqueness of
pseudo almost periodic mild solutions for the parabolic—parabolic Keller—Segel
system (1.1). Their exponential stability follows from earlier results (see [34,
Theorem 3.2(ii), Theorem 4.3(iii)]), and the remaining details are left to the
reader.

Data statement. Not applicable.
Conflicts of interest. The authors declare no conflicts of interest.
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