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Abstract. We propose the Penalty-Regularized Adaptive Constrained Gra-
dient Method (PR-A-CGM), a projection-free algorithm for solving vari-
ational inequality problems with pseudo-monotone operators and convex
functional constraints. Unlike projection-based methods, PR-A-CGM en-
forces feasibility by introducing a smooth penalty term into the update
direction, avoiding costly or intractable projections while retaining conver-
gence guarantees under pseudo-monotonicity and noisy oracles. We prove
weak convergence under standard assumptions, establish strong conver-
gence and rates under stronger conditions, and validate our method on
machine learning applications such as fairness-constrained classification.
Experiments show that PR-A-CGM improves feasibility and robustness
over projection-free baselines while narrowing the gap to projection-based
methods. These results highlight penalty-regularized primal methods as
practical tools for constrained optimization in modern large-scale learning.

1. Introduction

Variational inequality problems (VIPs) provide a unifying framework for
constrained optimization, game theory, and equilibrium analysis [8]. Given a
closed convex set C ⊆ H and an operator F : H → H, a solution x∗ ∈ C
satisfies

⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ C.
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Classical methods such as projected gradient descent (PGD) [18], the extragra-
dient method [12], and the proximal point algorithm [21] guarantee convergence
when F is monotone and projections onto C are efficient.

Modern machine learning settings often violate these assumptions. First,
operators are frequently only pseudo-monotone, arising in nonconvex-concave
min-max optimization and adversarial training [5, 14, 9]. Second, feasible sets
are defined by functional or non-separable constraints—such as fairness metrics
or statistical divergences—where projections are computationally prohibitive
or unavailable [17, 4, 6]. In such cases, projection-based schemes (PGD, SEG,
PDHG) [3, 10] either become intractable or unstable.

To mitigate this, Zhang et al. [4] proposed the Constrained Gradient Method
(CGM), a projection-free, primal method. While effective under monotonicity
and exact oracle access, CGM fails in pseudo-monotone and noisy regimes,
leading to instability and persistent constraint violations.

Our contribution. We introduce the Penalty-Regularized Adaptive Con-
strained Gradient Method (PR-A-CGM), a projection-free algorithm
that augments CGM with a smooth penalty mechanism and adaptive step
sizes. Our main contributions are:

• A novel penalized update rule that enforces feasibility without projections
or dual variables,

• Convergence guarantees: weak convergence under pseudo-monotonicity,
strong convergence and rates under stronger assumptions,

• Empirical validation on fairness-aware classification, showing improved
feasibility and robustness over projection-free baselines and competitive
performance relative to projection-based methods.

Together, these results position PR-A-CGM as a scalable alternative for con-
strained pseudo-monotone optimization in noisy, high-dimensional machine
learning environments.

2. Preliminaries

We begin by formalizing the setting of constrained variational inequalities
in Hilbert spaces and introducing the standing assumptions and technical def-
initions used throughout the paper.
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Let H be a real Hilbert space with inner product ⟨·, ·⟩ and induced norm
∥x∥ :=

√
⟨x, x⟩. We consider optimization and equilibrium problems con-

strained to a feasible set C ⊂ H defined by functional inequalities:

C := {x ∈ H | gi(x) ≤ 0, i = 1, . . . ,m},

where each constraint function gi : H → R is convex, Fréchet differentiable,
and has Lipschitz continuous gradients. This general formulation encompasses
structural constraints common in applications, such as norm bounds, fairness
metrics, and divergence constraints.

Given a continuous operator F : H → H, the (Stampacchia-type) varia-
tional inequality problem (VI) is to find x∗ ∈ C such that

⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ C.

This framework generalizes convex optimization, saddle-point formulations,
and equilibrium problems. Unlike much of the classical literature, we do not
assume monotonicity of F , but instead work with the weaker notion of pseudo-
monotonicity.

Definition 2.1 (Pseudo-Monotonicity). An operator F : H → H is pseudo-
monotone if, for all x, y ∈ H,

⟨F (x), y − x⟩ ≥ 0 ⇒ ⟨F (y), y − x⟩ ≥ 0.

Pseudo-monotonicity includes monotone operators as a special case and
arises naturally in min-max learning problems, adversarial training (e.g., GANs),
and nonlinear Nash equilibrium models. However, it complicates algorithmic
analysis since uniqueness of solutions and standard monotone convergence guar-
antees no longer hold.

In practice, F is often available only through a stochastic or noisy oracle.
At each iteration t, we observe

F̃ (xt) = F (xt) + δt,

where the noise satisfies ∥δt∥ ≤ ϵt and
∑∞

t=0 ϵt < ∞. This bounded-error
model reflects stochastic gradients from mini-batch sampling, simulation er-
rors, or imperfect feedback, and is standard in large-scale learning and online
optimization.

For the convergence analysis, we adopt the following standing assumptions:

(A1) Feasibility: The constraint set C is nonempty, closed, and convex. Ei-
ther C is bounded or F is coercive on C.

(A2) Operator: F is continuous and pseudo-monotone.
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(A3) Constraint Regularity: Each gi is convex, Fréchet differentiable, and
has Li-Lipschitz continuous gradient:

∥∇gi(x)−∇gi(y)∥ ≤ Li∥x− y∥, ∀x, y ∈ H.

(A4) Oracle Inexactness: The noisy oracle satisfies F̃ (xt) = F (xt)+δt, with
∥δt∥ ≤ ϵt and

∑∞
t=0 ϵt < ∞.

(A5) Penalty Schedule: The penalty sequence λt satisfies λt ↗ ∞ and
λt = o(1/ηt), ensuring feasibility is enforced asymptotically without dom-
inating descent.

For clarity, we recall several technical notions used in later analysis.

Definition 2.2 (Weak Accumulation Point). A point x⋆ ∈ H is a weak se-
quential accumulation point of a sequence (xt) if there exists a subsequence
(xtk) such that xtk ⇀ x⋆ in the weak topology of H.

Definition 2.3 (Gap Function). For x ∈ C, the variational inequality gap is
defined as

Gap(x) := sup
y∈C

⟨F (x), x− y⟩.

This function is always nonnegative and vanishes if and only if x solves the VI.

Definition 2.4 (Strong Pseudo-Monotonicity). An operator F : H → H is µ-
strongly pseudo-monotone (µ > 0) if, for every x ∈ C and the solution x∗ ∈ C,

⟨F (x), x− x∗⟩ ≥ µ∥x− x∗∥2.

Definition 2.5 (Lyapunov Function). Given a solution x∗ ∈ C, we define the
Lyapunov function

Vt :=
1
2∥xt − x∗∥2,

which serves as a merit function to track convergence of the iterates.

Our objective is to design a fully primal, projection-free algorithm that
computes a weak solution of the VI under pseudo-monotonicity and oracle in-
exactness. The proposed PR-A-CGM algorithm achieves this by incorporating
a smooth penalty mechanism, which enforces feasibility asymptotically while
ensuring robust convergence guarantees in Hilbert space.

3. The PR-A-CGM Algorithm

We introduce the Penalty-Regularized Adaptive Constrained Gradient Method
(PR-A-CGM), a fully primal, projection-free algorithm designed to solve vari-
ational inequality problems with pseudo-monotone operators and functional
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inequality constraints. PR-A-CGM extends the classical Constrained Gradient
Method (CGM) by incorporating a smooth penalty mechanism that enforces
feasibility without requiring explicit projections. This modification makes the
method lightweight and well-suited for high-dimensional or stochastic settings
where projection steps are costly or intractable.

Motivation and Design Principles

Projection-based methods, such as extragradient or proximal-point schemes,
require solving a projection subproblem at each iteration. This becomes com-
putationally demanding when the feasible region is defined by nonlinear or
implicit constraints. In contrast, PR-A-CGM computes an update direction by
solving a penalized surrogate subproblem, where constraint violations are softly
penalized but not strictly enforced at each step. Thus, the algorithm balances
descent along the operator direction with gradual feasibility improvement.

At iteration t, given the current iterate xt ∈ H and a noisy oracle F̃ (xt),
the update direction vt is obtained by

vt = argmin
v∈H

{
1
2∥v + F̃ (xt)∥2 + λt

m∑
i=1

max(0, gi(xt + ηtv))
2

}
,

where λt > 0 is the penalty parameter and ηt is an adaptive step size. The
next iterate is updated as

xt+1 = xt + ηtvt.

Step Size and Penalty Schedule

The step size is chosen adaptively based on the oracle magnitude:

ηt =
β

1 + ∥F̃ (xt)∥
, β > 0,

ensuring stability under noisy feedback and naturally scaling with gradient size.

The penalty sequence is designed to tighten feasibility over time:

λt = λ0 · tγ , γ ∈ [0.5, 1].

Smaller γ values promote exploration early on, while larger γ encourage strict
feasibility in later stages. This schedule guarantees that penalties grow but
never dominate the descent term.

While Assumptions (A1)–(A5) provide asymptotic conditions on the step-
size and penalty schedules, they do not uniquely prescribe specific numerical
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values for β, λ0, or γ. In practice, these parameters are therefore selected em-
pirically within ranges that ensure stability and feasibility, as further detailed
in our sensitivity analysis in Section 4.

Algorithm 1 Penalty-Regularized Adaptive Constrained Gradient Method
(PR-A-CGM)

1: Input: initial point x0 ∈ H, parameters β > 0, λ0 > 0, growth rate
γ ∈ [0.5, 1], horizon T .

2: for t = 0, 1, 2, . . . , T − 1 do
3: Query oracle: F̃ (xt) = F (xt) + δt.
4: Compute adaptive step size:

ηt =
β

1 + ∥F̃ (xt)∥
.

5: Update penalty parameter:

λt = λ0 · tγ .

6: Compute update direction:

vt = argmin
v∈H

{
1
2∥v + F̃ (xt)∥2 + λt

m∑
i=1

max
(
0, gi(xt + ηtv)

)2}
.

7: Update the iterate:
xt+1 = xt + ηtvt.

8: end for
9: Output: xT (or averaged iterate x̄T ).

Adaptive Step Size Motivation

The adaptive step size ηt =
β

1+∥F̃ (xt)∥
is chosen to stabilize updates when

oracle feedback is noisy or unscaled. This rule has precedent in stochastic
approximation and adaptive gradient methods, where normalization by the
gradient magnitude mitigates variance and prevents instability [2, 17]. While
our theoretical analysis in Theorem 3.1 assumes general diminishing step sizes,
in practice we found this adaptive rule to provide robustness to magnitude
fluctuations in ∥F̃ (xt)∥. A formal convergence proof for this specific schedule
remains an important direction for future work.
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It is important to note that our theoretical analysis (Theorem 3.1) is devel-
oped for generic diminishing step sizes and thus does not rely on this specific
adaptive rule. Corollary 3.1 employs a fixed schedule to obtain explicit rates,
whereas the adaptive choice ηt = β/(1 + ∥F̃ (xt)∥) is best understood as a
practical heuristic that improves empirical stability and fairness performance.
Extending the convergence analysis to rigorously cover such adaptive step-size
rules remains an interesting direction for future work.

Interpretation and Advantages

The penalized subproblem balances two forces:

• descent along F̃ (xt), reducing operator residuals,

• penalization of constraint violations at xt + ηtv, encouraging feasibility
without explicit projections.

This makes PR-A-CGM a projection-free alternative to classical methods,
particularly effective in stochastic and large-scale scenarios. Unlike primal-
dual methods (e.g., PDHG), it does not track dual variables, keeping updates
simple.

Remark 3.1. If gi(xt + ηtv) ≤ 0 for all i, the penalty term vanishes, and
PR-A-CGM reduces to a CGM-style adaptive step.

Remark 3.2. If the constraint functions gi are convex and differentiable,
the subproblem is smooth and convex in v, allowing efficient solution via stan-
dard first-order solvers (e.g., gradient descent, L-BFGS) or stochastic approx-
imation.

Convergence Theorem

Theorem 3.1. Under assumptions (A1)–(A5), the sequence (xt) generated
by PR-A-CGM has at least one weak sequential accumulation point x⋆ ∈ C that
solves the variational inequality:

⟨F (x⋆), x− x⋆⟩ ≥ 0 ∀x ∈ C.

Proof. Let x∗ ∈ C be a solution of the variational inequality and define the
Lyapunov function

Vt :=
1
2∥xt − x∗∥2.

From the update xt+1 = xt + ηtvt, we expand:

(3.1) Vt+1 = Vt + ηt⟨vt, xt − x∗⟩+ η2
t

2 ∥vt∥2.
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Rearranging (3.1) gives

(3.2) ⟨vt, xt − x∗⟩ = 1
ηt
(Vt+1 − Vt)− ηt

2 ∥vt∥
2.

Step 1. Optimality condition. By definition of vt, the penalized subproblem
satisfies the first-order condition

vt + F̃ (xt) + λtηt∇P (xt + ηtvt) = 0,

where P (x) :=
∑

i max(0, gi(x))
2. Taking the inner product with x∗−xt yields

(3.3) ⟨F̃ (xt), x
∗ − xt⟩ ≤ −⟨vt, x∗ − xt⟩+ λtηt⟨∇P (xt + ηtvt), x

∗ − xt⟩.

Step 2. Substitution. Substituting (3.2) into (3.3) gives

(3.4) ⟨F̃ (xt), x
∗−xt⟩ ≤ 1

ηt
(Vt−Vt+1)+

ηt

2 ∥vt∥
2+λtηt∥∇P (xt+ηtvt)∥·∥x∗−xt∥.

Step 3. Noise decomposition. From assumption (A4), F̃ (xt) = F (xt) + δt
with ∥δt∥ ≤ ϵt. Thus,
(3.5)
⟨F (xt), x

∗−xt⟩ ≤ 1
ηt
(Vt−Vt+1)+

ηt

2 ∥vt∥
2+ϵt∥x∗−xt∥+λtηt∥∇P (xt+ηtvt)∥·∥x∗−xt∥.

Step 4. Summation. Summing (3.5) from t = 0 to T − 1 yields

T−1∑
t=0

⟨F (xt), x
∗ − xt⟩ ≤

T−1∑
t=0

[
1
ηt
(Vt − Vt+1) +

ηt

2 ∥vt∥
2 + ϵt∥x∗ − xt∥

+ λtηt∥∇P (xt + ηtvt)∥ · ∥x∗ − xt∥
]
.(3.6)

Each term on the right-hand side is finite:

- (Vt) is nonnegative and bounded, so the telescoping part in (3.6) is finite.

- By (A4),
∑

ϵt < ∞.

- By (A5), λtηt → 0; boundedness of (xt) from (A1)–(A3) ensures ∥∇P∥
is bounded.

Therefore,

(3.7)

∞∑
t=0

⟨F (xt), x
∗ − xt⟩ < ∞,

which implies

(3.8) lim inf
t→∞

⟨F (xt), x
∗ − xt⟩ = 0.
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Step 5. Weak convergence. Since (xt) is bounded, there exists a weakly
convergent subsequence xtk ⇀ x⋆. Passing to the limit in (3.8) and using
continuity and pseudo-monotonicity (A2), we obtain

⟨F (x⋆), x− x⋆⟩ ≥ 0 ∀x ∈ C,

so x⋆ solves the variational inequality. ■

The following remarks further refine the convergence guarantees of PR-A-
CGM by considering special cases (monotonicity or strong pseudo-monotonicity)
and clarifying technical conditions such as Assumption (A5).

Remark 3.3. If F is monotone and the solution is unique, then the whole
sequence (xt) converges weakly to x∗, not just a subsequence.

Remark 3.4 (Strong convergence under strong pseudo-monotonicity). If
F is µ-strongly pseudo-monotone, i.e.,

⟨F (x), x− x∗⟩ ≥ µ∥x− x∗∥2 ∀x ∈ C,

then PR-A-CGM converges strongly: limt→∞ ∥xt − x∗∥ = 0.

Proof. From (3.5), for some residual rt → 0, we have

(3.9) ⟨F (xt), xt − x∗⟩ ≤ 1
ηt
(Vt − Vt+1) +

ηt

2 ∥vt∥
2 + rt,

where Vt =
1
2∥xt − x∗∥2.

By strong pseudo-monotonicity,

(3.10) ⟨F (xt), xt − x∗⟩ ≥ µ∥xt − x∗∥2 = 2µVt.

Combining (3.9) and (3.10) gives

(3.11) 2µVt ≤ 1
ηt
(Vt − Vt+1) +

ηt

2 ∥vt∥
2 + rt.

Multiplying by ηt and summing over t yields

2µ

∞∑
t=0

ηtVt ≤ V0 +
1
2

∞∑
t=0

η2t ∥vt∥2 +
∞∑
t=0

ηtrt < ∞.

Thus
∑

t ηtVt < ∞. Since ηt > 0, it follows that Vt → 0, i.e., ∥xt−x∗∥ → 0.
Hence, PR-A-CGM converges strongly to x∗ under strong pseudo-monotonicity.

■

Remark 3.5 (Sufficient Condition for Assumption (A5)). Recall that As-
sumption (A5) requires λtηt → 0. With our default schedules ηt = β/(1 +
∥F̃ (xt)∥) and λt = λ0t

γ for γ ∈ [0.5, 1], two scenarios may arise:
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• If ∥F̃ (xt)∥ → ∞ along the trajectory (as can occur in noisy or ill-conditioned
regimes), then ηt → 0 automatically. Since λt grows polynomially while
ηt decays, we have λtηt → 0, and Assumption (A5) holds without modi-
fication.

• If instead ∥F̃ (xt)∥ remains bounded (a plausible case under continuity and
bounded iterates), then ηt is bounded away from zero. In this situation,
the polynomial growth of λt = λ0t

γ may lead to λtηt → ∞, violating
(A5). To reconcile this with the convergence analysis, one may enforce
an additional mild time decay, for example

ηt =
β

(1 + ∥F̃ (xt)∥)(t+ 1)δ
, δ > 0,

which ensures ηt → 0 and restores λtηt → 0.

Thus, the convergence proof remains consistent: either ηt decays naturally
when ∥F̃ (xt)∥ → ∞, or the hybrid rule enforces the decay explicitly when
∥F̃ (xt)∥ is bounded.

The preceding remarks establish conditions under which PR-A-CGM at-
tains weak or strong convergence. We now complement these qualitative guar-
antees with explicit convergence rates under additional smoothness assump-
tions.

Corollary 3.1 (Convergence rates). Assume (A1)–(A5), and additionally:

(B1) F is L-Lipschitz continuous,

(B2) step sizes ηt = β/
√
T with β > 0,

(B3) penalties λt = λ0

√
T ,

(B4) oracle noise satisfies E[δt] = 0 and E∥δt∥2 ≤ σ2,

then for the averaged iterate x̄T := 1
T

∑T−1
t=0 xt, the expected variational in-

equality gap satisfies

E
[
sup
x∈C

⟨F (x̄T ), x̄T − x⟩
]
= O

(
1√
T
+ σ√

T

)
.

If F is also strongly pseudo-monotone, then

E
[
∥x̄T − x∗∥2

]
= O

(
1
T

)
.
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Proof. Let x∗ ∈ C be a solution and define Vt =
1
2∥xt − x∗∥2.

Step 1. Lyapunov recursion. From the update rule,

(3.12) Vt+1 = Vt + ηt⟨vt, xt − x∗⟩+ η2
t

2 ∥vt∥2,

which implies

(3.13) ⟨vt, xt − x∗⟩ = 1
ηt
(Vt+1 − Vt)− ηt

2 ∥vt∥
2.

Step 2. First-order condition. Since vt solves the penalized subproblem,
we have

vt + F̃ (xt) + λtηt∇P (xt + ηtvt) = 0.

Taking the inner product with x∗ − xt yields

(3.14) ⟨F̃ (xt), x
∗ − xt⟩ ≤ −⟨vt, x∗ − xt⟩+ λtηt∥∇P (xt + ηtvt)∥ · ∥x∗ − xt∥.

Step 3. Substitution. Substituting (3.13) into (3.14) gives
(3.15)
⟨F̃ (xt), x

∗ − xt⟩ ≤ 1
ηt
(Vt − Vt+1) +

ηt

2 ∥vt∥
2 + λtηt∥∇P (xt + ηtvt)∥ · ∥x∗ − xt∥.

Step 4. Noise decomposition. Since F̃ (xt) = F (xt) + δt with E[δt] = 0,

(3.16) E[⟨F (xt), x
∗ − xt⟩] ≤ 1

ηt
(E[Vt]− E[Vt+1]) +

ηt

2 E∥vt∥
2 +O(λtηt) + σηt.

Step 5. Summation. Summing (3.16) over t = 0, . . . , T − 1 gives

(3.17)

T−1∑
t=0

E[⟨F (xt), x
∗ − xt⟩] ≤ V0

ηT
+ β√

T

T−1∑
t=0

E∥vt∥2 +O(
√
T ) + σ

√
T .

Since ∥vt∥ is bounded by (A1)–(A3) and Lipschitz continuity (B1), the
second term is O(

√
T ). Hence,

(3.18)
1

T

T−1∑
t=0

E[⟨F (xt), x
∗ − xt⟩] = O

(
1√
T
+ σ√

T

)
.

Step 6. Averaging. By convexity of the gap function

Gap(x) := sup
y∈C

⟨F (x), x− y⟩,

and pseudo-monotonicity of F , inequality (3.18) transfers to the averaged iter-
ate x̄T , proving the first claim.
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Step 7. Strong pseudo-monotonicity. If F is µ-strongly pseudo-monotone,
then

⟨F (xt), xt − x∗⟩ ≥ µ∥xt − x∗∥2.

Substituting into (3.18) yields

1

T

T−1∑
t=0

E[∥xt − x∗∥2] = O
(
1
T

)
.

By Jensen’s inequality, the same holds for x̄T : E[∥x̄T − x∗∥2] = O
(
1
T

)
. This

completes the proof. ■

4. Numerical Experiments

We now illustrate the performance of PR-A-CGM in a machine learning
setting and compare it against several established baselines: PGD – Projected
Gradient Descent with Euclidean projection onto C [21, 8], CGM – Classical
Constrained Gradient Method without projections [12], PR-A-CGM – Our
penalty-regularized projection-free method, SEG – Stochastic Extragradient
with one-step lookahead [18, 11] and PDHG – Primal-Dual Hybrid Gradient
with dual updates [3, 7].

On Penalty Baselines. We did not include direct penalty minimization meth-
ods (e.g., solving minx⟨F (x), x⟩+λt

∑
i max(0, gi(x))

2 at each step) since these
approaches require solving a full penalized variational inequality subproblem
per iteration, which is computationally prohibitive in practice. Stochastic
penalty methods alleviate some of this cost, but they typically introduce ad-
ditional variance and require careful coordination between penalty growth and
step-size schedules [19, 13]. In contrast, PR-A-CGM embeds the penalty di-
rectly into the direction-finding step, making each update lightweight while still
improving feasibility. This design offers both theoretical simplicity and practi-
cal efficiency. A systematic empirical comparison with full penalty formulations
is left for future work.

Experimental Setup

We consider the Adult Census Income dataset (UCI/OpenML) [1], a stan-
dard benchmark for fairness-aware classification. The task is to predict whether
an individual’s income exceeds $50K, with sex (male/female) as the sensitive
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attribute. We employ logistic regression with a fairness constraint based on
demographic parity, requiring that the difference in positive prediction rates
between groups is at most δ = 0.05 [6]. This yields a constrained empirical risk
minimization problem of the form:

min
θ∈Rd

L(θ) s.t. g(θ) ≤ 0,

where L is the logistic loss and g encodes the fairness constraint.

All algorithms were run for T = 200 iterations. For PR-A-CGM, step sizes
and penalty schedules were chosen adaptively as described in Section 1. We
evaluate methods using: Test Accuracy – prediction accuracy on a held-out
test set; Fairness Violation – demographic parity gap on the test set; Gap
Value – approximate variational inequality residual; and Runtime – average
wall-clock time per iteration.

For parameter settings, unless otherwise specified, we set β = 1.0, λ0 = 0.01,
and γ = 0.7. These were chosen via grid search on a validation split. To assess
robustness, we performed a sensitivity analysis varying γ ∈ {0.5, 0.7, 0.9}.

Results and Discussions

Table 1 presents numerical comparisons, while Figure 1 illustrates training
dynamics in terms of loss decay and fairness violation. Figure 1 illustrates the
convergence dynamics of the algorithms. On the left, PGD and PR-A-CGM
show faster and more stable loss reduction, while CGM and SEG converge
slowly with higher variance, reflecting weaker constraint handling. On the
right, PGD drives the demographic parity gap to zero, CGM and SEG maintain
high violations, and PR-A-CGM achieves intermediate behavior by gradually
reducing violations without projections. PDHG enforces fairness strongly but
at the cost of unstable optimization, evident in both its fluctuating loss and
inconsistent gap values. These results complement Table 1, highlighting the
trade-offs between loss minimization, fairness enforcement, and stability.

Table 1: Performance comparison of algorithms on Adult dataset (200 itera-
tions). Fairness violation is measured as the demographic parity gap. Lower
values for fairness violation and gap indicate better feasibility and convergence.

Algorithm Test Acc. Fairness Viol. Gap Value Runtime (s/iter)
PGD 0.767 0.000 -0.225 0.0105
CGM 0.711 0.316 -0.012 0.0069
PR-A-CGM 0.663 0.258 -0.253 0.0098
SEG 0.711 0.316 -0.167 0.0126
PDHG 0.401 0.030 7.999 0.0098
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Figure 1: Training curves for the five algorithms: (left) training loss, (right)
fairness violation (demographic parity gap).

The experiments reveal clear trade-offs: PGD achieves the best accuracy
(0.767) and zero fairness violation but requires expensive projections, imprac-
tical in complex settings; CGM and SEG avoid projections but incur large
fairness violations (≈ 0.316), showing weak constraint enforcement; PR-A-
CGM achieves the lowest gap value (−0.253), indicating stronger convergence,
while reducing fairness violation compared to CGM and SEG; PDHG enforces
fairness (0.03) but suffers from low accuracy (0.401) and unstable gaps. All
methods have comparable runtimes (≈ 0.01 s/iter), showing PR-A-CGM adds
no overhead.

Table 2: Sensitivity analysis of PR-A-CGM to penalty growth rate γ on the
Adult dataset. Best values for each metric are highlighted in bold.

γ Test Accuracy Fairness Violation Gap Value
0.5 0.663 0.258 0.128
0.7 0.611 0.200 -0.226
0.9 0.568 0.150 -0.138

Parameter Settings and Sensitivity. Unless otherwise specified, we set β = 1.0,
λ0 = 0.01, and γ = 0.7 in our main experiments, chosen via small validation
search. A sensitivity analysis varying γ ∈ {0.5, 0.7, 0.9} on the Adult dataset
(Table 2) reveals a trade-off: larger γ enforces stronger fairness (violation
0.258 → 0.150) but reduces accuracy (0.663 → 0.568), while γ = 0.7 achieves
the best balance with the most negative VI gap (−0.226). This confirms that γ
is a key hyperparameter, with mid-range values generally preferable. In prac-
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tice, we found PR-A-CGM to be relatively robust to parameter choices. The
step-size scale β primarily controls stability and can be set within the range
0.5–2.0 without significant sensitivity. The parameter λ0 determines the ini-
tial feasibility pressure and should be chosen so that the penalty terms are of
comparable magnitude to the operator norm in early iterations. Finally, the
growth rate γ governs the long-term trade-off between feasibility and progress:
smaller values favor accuracy, larger values emphasize constraint satisfaction,
and moderate values (0.6–0.8) generally yield the best balance.

Discussion on Penalty Baselines. Classical penalty methods require solving a
fully penalized VI at each iteration, while stochastic variants add variance and
require coupled tuning. By contrast, PR-A-CGM embeds the penalty directly
into the direction-finding step, preserving projection-free updates and avoiding
dual variables. This design yields lightweight iterations that empirically re-
duce both fairness violation and VI gap relative to projection-based baselines
(Table 1). A fuller comparison with penalty baselines is left to future work.

Applications and Practical Relevance

PR-A-CGM is particularly suited for fairness-aware machine learning, GAN
training, resource-constrained reinforcement learning, and decentralized opti-
mization, where projections are costly or infeasible. The sensitivity analysis
highlights its flexibility: smaller γ favors accuracy, larger γ emphasizes fair-
ness, and moderate values balance both, making PR-A-CGM tunable to differ-
ent priorities across domains.

5. Conclusion

We proposed PR-A-CGM, a projection-free method for pseudo-monotone
variational inequalities with convex constraints. By incorporating a smooth
penalty into the update rule, the method avoids costly projections and dual
variables while ensuring convergence under standard assumptions.

Our theory established weak convergence in general, with strong conver-
gence and faster rates under stronger conditions. Experiments on fairness-
constrained learning confirmed that PR-A-CGM controls feasibility more ef-
fectively than projection-free baselines and approaches the performance of
projection-based methods.

PR-A-CGM is well-suited for fairness-aware classification, constrained re-
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inforcement learning, and decentralized optimization, offering a practical and
principled alternative when projections are infeasible. Future directions in-
clude acceleration via variance reduction, extensions to online or time-varying
settings, and distributed implementations.
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