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Abstract. We consider a class of equilibrium models including the im-
plicit Walras supply-demand and competitive models that, in general, is ill-
posed. We formulate such a model in the form a variational inequality hav-
ing certain monotonicity property which allows us to describe an algorithm
avoiding the ill-posedness by finding the equilibrium point that is nearest
to the given guessed or desired equilibrium price for the model. A main
difficulty of the problem is that its feasible domain is not given explicitly
as in a standard convex programming problem. The proposed algorithm
is a combination between the gradient one and the Mann-Krashnoschelskii
fixed point procedure. The obtained computational results with many ran-
domly generated data show that the proposed algorithm works well for this
class of the equilibrium models.

1. Introduction

We consider equilibrium models, where there are two sectors with n - com-
modities (x1, ..., xn) ∈ Rn depending on a parameter p lying in a closed convex
set P . Examples for such models are the Walras [12] or competitive equilib-
rium price ones. As usual, we suppose that each sector has a strategy set
S(p) ⊂ X ⊆ Rn

+ and D(p) ⊂ X ⊆ Rn
+, and, as usual, we call a point p∗

an equilibrium price of the model if there is s∗ ∈ S(p∗), d∗ ∈ D(p∗) such that
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⟨s∗−d∗, p−p∗⟩ ≥ 0 ∀p ∈ P , which means that p∗ is a solution of a multivalued
variational inequality problem. In the case when P is a closed convex cone, this
problem is reduced into a multivalued complementarity one. Complementarity
problems even in the linear case, in general, are difficult to solve.

In this paper we suppose that both strategies S and D are given implicitly
as the optimal solutions of certain parametric (in p) convex mathematical pro-
grams whose objective functions are depending on the benefits of the sectors
related. Such a model frequently arises in practice and has been considered
by several authors, see e.g. [5] and [8] Chapter 9. We employ the fact that
under some mild assumptions both maps S and D possess certain monotonic-
ity properties, which allow us to apply the available solution-methods e.g. [4]
Chap12, [7] to the variational inequality or complementarity problems for find-
ing an equilibrium point of the model. However, in general, this model may
have many solutions, so it is ill-posed. In order to overcome the ill-posedness,
we propose a regularization algorithm based upon the bilevel optimization for
finding an equilibrium price of the model that is the nearest to a given guessed
or desired equilibrium point.

The paper is organized as follows. The next section contains some defini-
tions for monotonicity properties for an operator and lemmas to be used in
the forthcoming sections. In the third section we describe the model in detail.
The section fourth is devoted to describe an algorithm for minimizing the dis-
tance from a guessed or desired equilibrium point to the equilibrium point-set
of the model. We close the paper with some reports on numerical results for
the model. The obtained computational results on many randomly generated
data show that the proposed algorithm works well for this bilevel problem.

2. Preliminaries

First, let us recall some definitions, see e.g. [11], pages 39, 40, and lemmas
that will be used in the forthcoming sections.

Let C ⊆ Rn be a convex set and f : Rn → R∪{+∞} such that f(x) < +∞
for all x ∈ C. The function f is said to be convex on C, if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) ∀x, y ∈ C, ∀λ ∈ [0, 1].

f is said to be strongly convex with modulus γ > 0 (shortly γ− strongly convex)
on C if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)− γ∥x− y∥2 ∀x, y ∈ C.
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The function f is said to be concave (resp. strongly concave) on C if −f is
convex (resp. strongly convex) on C.

The subdifferential of f at a point x, denoted by ∂f(x), is defined as

∂f(x) := {u ∈ Rn : ⟨u, y − x⟩+ f(x) ≤ f(y) ∀y}.

It is well known that if f is differentiable at x, then ∂f(x) ≡ {∇f(x)}.
Let T : Rn → Rn such that T (x) ̸= ∅ for every x ∈ C. The following

concepts for monotonicity of an operator can be found, for example, [1] page
293.

(i) T is said to be nonexpansive on C if

∥T (x)− T (y)∥ ≤ ∥x− y∥ ∀x, y ∈ C.

A typical example for nonexpansive mappings is the metric projection that
maps every x ∈ Rn onto C by taking

PC(x) := {y ∈ C : ∥x− y∥ ≤ ∥x− z∥ ∀z ∈ C}.

It is well known, see e.g. [1] page 61, that if C is closed, convex, then PC(x)
is singleton and nonexpansive on Rn, that is ∥PC(x) − PC(y)∥ ≤ ∥x − y∥ for
every x, y ∈ Rn.

(ii) T is said to be monotone on C if ⟨T (x)− T (y), x− y⟩ ≥ 0 ∀x, y ∈ C.

(iii) T is said to be strongly monotone on C with modulus η > 0 if ⟨T (x)−
T (y), x− y⟩ ≥ η∥x− y∥2 ∀x, y ∈ C.

A typical example for monotone (resp. strongly monotone) operators is the
gradient of a lower semi continuous convex (resp. strongly convex) function.

(iv) T is said to be co-coersive (inverse-strongly monotone ) [15] on C with
modulus β > 0 if ⟨T (x)− T (y), x− y⟩ ≥ β∥T (x)− T (y)∥2 ∀x, y ∈ C.

It is known [15] that the gradient of a convex function on an open convex set
containing C is inverse-strongly monotone whenever the gradient is Lipschitz
on C.

Below are the lemmas that will be used in the proof of the convergence
theorem for the algorithm to be described.

Lemma 2.1. [13] Suppose that {αk} is a sequence of nonnegative numbers
such that

αk+1 ≤ (1− λk)αk + λkδk + σk ∀k,
where

(i) 0 < λk < 1,
∑+∞

k=1 λk = +∞;

(ii) lim supk→+∞ δk ≤ 0;

(iii)
∑+∞

k=1 |σk| < +∞.

Then limαk = 0 as k → +∞.
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Lemma 2.2. ([1] Theorem 4.17) Let C be a nonempty closed subset in a Hilbert
space H and T : C → H be a nonexpansive mapping. Let {xk} be a sequence
in C such that xk → x, xk − T (xk) → u. Then x− T (x) = u.

Lemma 2.3. [9] Let φ be a strongly convex differentiable function with modulus
β and L-Lipschitz on C. Then, for any α > 0, it holds that

∥
(
x− 1

α
∇φ(x)

)
−
(
y − 1

α
∇φ(y)

)
∥2 ≤ (1− 2β

α
+

L2

α2
)∥x− y∥2 ∀x, y ∈ C.

3. The model

As we have mentioned, the model to be solved has two agents, each of
them has a strategy set depending on a parameter p laying in a closed convex
set P . Given a vector p ∈ P , the first agent determines his/her strategies
S(p) ⊂ X ⊆ Rn

+, while the second one determines his/her strategies D(p) ⊂ X,
where X is a given closed convex set. Then we define the strategy F for the
model by taking F (p) = S(p)−D(p). We recall that vector p∗ ∈ P is said to be
an equilibrium point if it is a solution of the multivalued variational inequality
problem

Find p∗ ∈ P : q∗ ∈ F (p∗) : ⟨q∗, p− p∗⟩ ≥ 0 ∀p ∈ P. MV I(P, F )

In the case P is a closed convex cone, this problem is reduced to the comple-
mentarity one

p∗ ∈ P : ∃q∗ ∈ F (p∗), ⟨q∗, p∗⟩ = 0. MCP (P, F )

In what follows we suppose that both S and D are given respectively as the
optimal solution-sets of the parametric (in p) mathematical programs

(3.1) max{pTx− c(x) | s.t. x ∈ X}

and

(3.2) min{pTx+ t(x) | s.t. x ∈ X,u(x) ≥ M > 0},

respectively, where c(x) is the cost for strategy x, for example the producing
cost (including the environmental cost), while u(x) is the utility of the second
agent and t(x) is the tax for x. We suppose that the functions c, t and −u are
convex. The convexity of function c (resp. t) means that the cost for producing
(resp. the tax for using) a unique commodity increases as the amount gets
larger. Thus Problems (3.1) and (3.2) are convex.
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Note that, in [8], page 152, the mapping D has been defined as the optimal
solution-set of the mathematical program

(3.3) argmax{u(x) | s.t. pTx ≤ ω, x ∈ X},

where u is an α-positively homogeneous concave function and ω > 0 is the
budget. It is easy to see that the solution-set of problem (3.3) is just the
solution-set of the convex mathematical program

(3.4) min{pTx− ω

α
lnu(x) | s.t. x ∈ X},

which is a special form of (3.2).

4. A regularization algorithm by bilevel optimization

Consider the mapping [10]

(4.1) T := (I + λΦ)−1,

where Φ := F +NP , I is the identity, NP is the normal cone of P and λ > 0.
Since F is monotone and the normal cone NP is maximal monotone, Φ is
maximal monotone. If, in addition, F is single valued, the mapping T is single
valued nonexpansive, see [6, 10].

In order to develop an algorithm for minimizing the distance function over
the equilibrium points of the model, we consider a special case when both c
and t are differentiable, strongly convex. Then we can find an equilibrium of
the model by finding a fixed point of the projection mapping PrP

(
p− λF (p)

)
,

which is easy to compute when P has a simple structure such as Rn
+ or a

rectangle (often in practice). In fact, we have the following lemma.

Lemma 4.1. [5] Suppose that c and t are differentiable, strongly convex with
modulus µc and µt respectively on an open convex set containing X, then the
mappings S(·), −D(·) are single valued inverse-strongly monotone with modulus
µc and µt, and Lipschitz with constant Lc =

1
µc

and Lt =
1
µt

on P , respectively.

Then the projection mapping T (p) := PP

(
p−λF (p)

)
is nonexpansive for every

0 ≤ λ ≤ 2µF , with µF = 1
2 min{µc, µt} and its fixed point-set coincides with

the solution-set of variational inequality defined as

find p∗ ∈ P : ⟨F (p∗), p− p∗⟩ ≥ 0. V I(P, F )
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Note that the fixed point-set of the nonexpansive mapping T , in general, is
not a singleton, so the problem of finding its a fixed point is not well-posed. In
order to overcome this ill-posedness, we use a bilevel optimization approach.
This regularization approach has been used by several authors, see e.g. [2, 3].
For this purpose, one can choose a strongly convex continuously differentiable
function f on Rn, for example, f(p) := ∥p − p0∥2 with p0 being given (plays
as a guessed or desired) equilibrium price. Then we consider the following
mathematical programming problem

min f(p) s.t. p ∈ Fix(T ). (BOP )

Since Fix(T ) is closed convex and f is strongly convex, this problem always
has a unique optimal solution, however, since the constrained set of Problem
(BOP) is given implicitly as the fixed point-set of T , the existing algorithms
for convex programming cannot be applied directly to this problem.

Now we describe an algorithm for solving problems (BOP) and study its
convergence analysis. We suppose that the metric projection onto the closed
convex set P can be computed with a reasonable effort, for example, P = Rn

+

or a rectangle.

The following algorithm is a combination between the gradient one for min-
imizing the strongly convex function f and the Mann-Krasnosel’skii iterative
scheme for approximating a fixed point of the nonexpansive mapping T .

ALGORITHM

Initialization. Choose 0 ≤ η ≤ 2µF and two sequences of positive numbers
{λk}, {αk} decreasing to zero. In addition,∑+∞

k=1 λkαk = +∞;∑+∞
k=1 |λk+1 − λk| < +∞;∑+∞
k=1 |αk+1 − αk| < +∞.

Pick p1 ∈ P and let k = 1.

Iteration k = 1, 2... Having pk ∈ P , and gk = ∇f(pk), compute

qk := argmin{⟨gk, y − pk⟩+ 1

2αk
∥y − pk∥2 : y ∈ P} = PrP (p

k − αkg
k).

Define the next iterate

pk+1 := λkq
k + (1− λk)T (p

k)

with
T (pk) := PrP

(
pk − ηF (pk)

)
.

If pk = qk = pk+1, terminate: pk is a solution to (BOP), otherwise increase k
by one and go to iteration k.
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Theorem 4.1. (i) If the algorithm terminates at some iteration k, then pk is
the solution of (BOP).

(ii) If the algorithm does not terminate, then it generates an infinite se-
quence {pk} that converges to the unique solution of (BOP).

Proof. (i) According to the algorithm, pk = qk means that pk = PP

(
pk −

αk∇f(pk)
)
, which, by convexity of f , implies that pk is the minimizer of f on

P . In addition, if

pk = pk+1 = λkp
k + (1− λk)T (p

k),

then pk = T (pk), which means that pk is a fixed point of T .

(ii) The proof is divided into several steps.

Step 1. We show that {pk} is bounded. Indeed, let p∗ be the unique
solution of (BOP), then according to the algorithm and the nonexpansiveness
of the projection map, we have

(4.2)
∥pk+1 − p∗∥ = ∥λkq

k + (1− λk)T (p
k)− p∗∥

= ∥λk(q
k − p∗) + (1− λk)

(
T (pk)− T (p∗)

)
∥

≤ λk∥qk − p∗∥+ (1− λk)∥T (pk)− T (p∗)∥
= λk∥PrP

(
pk − αkg

k
)
− PrP (p

∗)∥+ (1− λk)∥T (pk)− T (p∗)∥
≤ λk∥pk − αkg

k − p∗∥+ (1− λk)∥pk − p∗∥.

Let g∗ = ∇f(p∗). Since gk = ∇f(pk) and the strong convexity of f with
modulus β > 0, by Lemma 2.3, we have

(4.3)
∥pk −p∗−αk(g

k − g∗)∥2 ≤ (1−2βαk +L2α2
k)∥pk −p∗∥2 = (1−γk)

2∥pk −p∗∥2,

where

0 < γk = 1−
√

1− 2βαk + L2α2
k < 1.

Thus

(4.4)
∥pk − αkg

k − p∗∥ ≤ ∥pk − p∗ − αk(g
k − g∗)∥+ αk∥g∗∥

≤ (1− γk)∥pk − p∗∥+ αk∥g∗∥.

It is easy to see that

(4.5) lim
k→∞

αk

γk
=

1

β
.



128 Nguyen Ngoc Hai and Le Dung Muu

From (4.5), it follows that there exists k0 ∈ N such that

αk

γk
≤ 2

β
, ∀k ≥ k0.

Combining (4.2)-(4.5), for all k ≥ k0, we obtain

∥pk+1 − p∗∥ ≤ λk(1− γk)∥pk − p∗∥+ λkαk∥g∗∥+ (1− λk)∥pk − p∗∥
= (1− λkγk)∥pk − p∗∥+ λkαk∥g∗∥

= (1− λkγk)∥pk − p∗∥+ λkγk

(αk

γk

)
∥g∗∥

≤ (1− λkγk)∥pk − p∗∥+ λkγk
2∥g∗∥
β

≤ max
{
∥pk − p∗∥, 2∥g

∗∥
β

}
,

from which, by induction, we obtain

∥pk+1 − p∗∥ ≤ max
{
∥pk0 − p∗∥, 2∥g

∗∥
β

}
.

Thus {pk} is bounded, and therefore {gk} and {qk}, {T (pk)} are bounded too.

Step 2. Now we prove that any cluster point of the sequence {pk} is a fixed
point of T . Indeed, by the definition, the boundedness of {qk}, {T (pk)} and
λk → 0 as k → ∞, we have

(4.6)
limk→∞ ∥pk+1 − T (pk)∥ = limk→∞ λk∥qk − T (pk)∥

= 0.

Now let
K := sup

k

(
max({∥qk−1∥+ ∥T (pk−1)∥, ∥gk−1∥})

)
,

then K < ∞.

By using the same techniques as above, we have

∥pk+1 − pk∥
= ∥λkq

k + (1− λk)T (p
k)− λk−1q

k−1 − (1− λk−1)T (p
k−1)∥

= ∥λk(q
k − qk−1) + (1− λk)(T (p

k)− T (pk−1))
+(λk−1 − λk)(−qk−1 + T (pk−1)∥

≤ λk∥PrP (p
k − αkg

k)− PrP (p
k−1 − αk−1g

k−1)∥+ (1− λk)∥pk − pk−1∥
+|λk − λk−1|(∥qk−1∥+ ∥T (pk−1)∥)

≤ λk∥pk − pk−1 − αk(g
k − gk−1)∥+ λk|αk − αk−1|∥gk−1∥

+(1− λk)∥pk − pk−1∥+K|λk − λk−1|
≤ (1− λkγk)∥pk − pk−1∥+K(|λk − λk−1|+ |αk − αk−1|).



An algorithm for minimizing a strongly convex function... 129

Using (4.5), and
∑+∞

k=1 λkαk = +∞, one has
∑+∞

k=1 λkγk = +∞. Moreover,

from the assumptions
∑+∞

k=1 |λk − λk−1| < +∞ and
∑+∞

k=1 |αk − αk−1| < +∞,
by Lemma 2.1, we have ∥pk+1 − pk∥ → 0, which together with (4.6) imply
∥pk −T (pk)∥ → 0 as k → ∞. Thus any cluster point of {pk} is a fixed point of
T .

Step 3. We show that {pk} converges to p∗. In fact, by definition of pk+1

and qk, the nonexpansiveness of the projection and T , we can write
(4.7)

∥pk+1 − p∗∥2
= ∥λkq

k + (1− λk)T (p
k)− p∗∥2

= ∥λk(q
k − p∗) + (1− λk)(T (p

k)− T (p∗))∥2

= ∥λk

(
PrP (p

k − αkg
k)− PrP (p

∗)
)
+ (1− λk)(T (p

k)− T (p∗))∥2

≤ λk∥pk − αkg
k − p∗∥2 + (1− λk)∥pk − p∗∥2

= λk∥pk − αkg
k − p∗ + αkg

∗ − αkg
∗∥2 + (1− λk)∥pk − p∗∥2

= λk∥pk − p∗ − αk(g
k − g∗)∥2 + λkα

2
k∥g∗∥2

+2λkαk⟨−g∗, pk − p∗ − αkg
k + αkg

∗⟩+ (1− λk)∥pk − p∗∥2
≤ λk∥pk − p∗ − αk(g

k − g∗)∥2 + 2λkαk⟨−g∗, pk − p∗ − αkg
k⟩

+(1− λk)∥pk − p∗∥2.

From (4.7), using (4.3) and recall that 0 < 1− γk < 1, we obtain

(4.8) ∥pk+1−p∗∥2 ≤ (1−λkγk)∥pk−p∗∥2+λkγk

(2αk

γk

)
⟨−g∗, pk−p∗−αkg

k⟩.

Let {pkj} be a subsequence of {pk} such that

lim sup
k→∞

⟨−g∗, pk − p∗⟩ = lim
j→∞

⟨−g∗, pkj − p∗⟩.

Using a subsequence of {pkj}, if necessary, we may assume that pkj → p̄ as
j → +∞. Then, by Step 2, p̄ is a fixed point of T . Recall that {gk} is bounded
and αk → 0, using (4.5), we obtain

lim sup
k→∞

2αk

γk
⟨−g∗, pk − p∗ − αkg

k⟩ = lim
j→∞

2αkj

γkj

⟨−g∗, pkj − p∗ − αkj
gkj ⟩

=
2

β
⟨−g∗, p̄− p∗⟩.(4.9)

Now, since p∗ is the solution of the strongly convex optimization problem:

min{f(p) : p ∈ Fix(T )}

and g∗ = ∇f(p∗), we have

⟨g∗, p− p∗⟩ ≥ 0 ∀p ∈ Fix(T ).
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In particular,
⟨g∗, p̄− p∗⟩ ≥ 0,

which together with (4.9) imply that

(4.10) lim sup
k→∞

2αk

γk
⟨−g∗, pk − p∗ − αkg

k⟩ ≤ 0.

Thus, from (4.8) and (4.10), by applying Lemma 2.1 with σk ≡ 0, we can
deduce that ∥pk − p∗∥ → 0 as k → ∞. ■

Remark 4.1. (i) Case (a) occurs only if the unique minimizer of f over P is
also a fixed point of T on P .

(ii) When P = Rn
+, the j-component of vector qk is given by

qkj =

{
pkj − αkg

k
j if pkj − αkg

k
j ≥ 0,

0 if pkj − αkg
k
j < 0.

(iii) When P is a rectangle given as P := {pT := (p1, ..., pn) : aj ≤ pj ≤
bj , ∀j}, then

qkj =


pkj − αkg

k
j if aj ≤ pkj − αkg

k
j ≤ bj ,

aj if pkj − αkg
k
j < aj ,

bj if pkj − αkg
k
j > bj .

5. Computational results

In this section we consider the model for two cases. For the first case we
take P := Rn

+, while for the second one P is a rectangle. For these cases
the projections onto them have the closed form. In both cases we take c(x) =
xTCx, t(x) = xTBx, u(x) = lTx and f(p) := ∥p−p0∥2, where all input data p0

is randomly generated in the interval [0, 100]. We take C := CT
1 C1, B := BT

1 B1

whose entries are randomly generated in the interval [−10, 10]. Clearly these
matrices are symmetric and positive definite. The feasible domain is given as
X := {x ≥ 0 : Ax ≤ b} where A is a m × n matrix, b ∈ Rm whose all entries
are randomly chosen in (0, 20).

For this model we choose the parameters λk = αk = 1√
k+1

for all k.

We tested the model with Python 3.10 on a computer with the processor:
AMD Ryzen 5 1600 Six- Core Processor 3.20 GHz with the installed memory
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(RAM): 16.0 GB.

We stopped the computation when ∥pk+1−pk∥
max{∥pk+1∥,1} < ϵ, with ϵ = 10−4.

The number of the tested problems is 10. In the tables below we use the
following headings:

• Average Times: the average CPU-computational times (in second);

• Average Iteration: the average number of iterations.

Table 1. Computed Results for P := Rn
+

n m Average Times Average Iteration
5 3 1.777 87.6
10 8 2.479 107.1
30 20 4.043 127.4
50 30 7.391 139.7
100 80 11.341 152.4

Table 2. Computed Results when P is a rectangle

n m Average Times Average Iteration
5 3 1.632 123.3
10 8 2.223 152.9
30 20 5.026 176.5
50 30 7.623 195.3
100 80 9.651 236.5

• The graph of ∥xk+1−xk∥
max{∥xk∥,1} with respect to Iteration when P := Rn

+.

0 20 40 60 80 100 120
0

20

40

60

Iteration

∥x
k
+

1
−
x
k
∥

m
a
x
{∥

x
k
∥,
1
}



132 Nguyen Ngoc Hai and Le Dung Muu

• The graph of ∥xk+1−xk∥
max{∥xk∥,1} with respect to Iteration when P is a rectangle.
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∥
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The computational results reported in the above tables show that the pro-
posed algorithm works well for this class of equilibrium models.

Conclusion remark We have considered a class of price equilibrium mod-
els in which there are two sectors whose strategy sets are implicitly defined as
the solution sets of certain parametric optimization problems. We have used
the fact that the equilibrium points coincide with the fixed points of a nonex-
pansive mapping. To avoid the ill-posedness of the model, we have proposed
an algorithm for optimizing the distance from a given point to the fixed point
set. Computational results obtained from randomly generated data show that
the algorithm performs well for this model.
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