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Abstract. In this paper we investigate the linear dependency of L-
functions and meromorphic functions sharing finite sets. As a consequence,
we present some classes of subsets S, T in C such that for a meromorphic
function f and an L-function L, the condition that f and L share S and T,
respectively (counting multiplicity) implies f = hL for a non-zero constant
h. We discuss some applications of main result. The main result obtained
in this paper improves and extends a recent result due to the authors in
[32]. We extend previous results of Yuan, Li and Yi [32] by considering
distinct finite sets S, T and establishing linear dependency between f and
L. Our results are inspired by a work of Yuan, Li, and Yi in [32] and Khoai
et al. in [11] and [13].

1. Introduction. Main results

Let f be a non-constant meromorphic function in C, a € CU {oo}. Denote
by E¢(a) the set of all a— points of f where an a—point is counted with its
multiplicity, and by E¢(a) where an a—point is counted only one time. For a
non-empty subset S C CU {oo}, define E;(S) = UsesEy(a), and similarly for
E4(S). Let F be a non-empty subset of M(C). Two non-constant meromorphic
functions f, g of F are said to share S, counting multiplicity, (share S CM), if
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Ef(S) = Ey4(S), and to share S, ignoring multiplicity, (share S IM), if E¢(S) =
E,4(S). If the condition E¢(S) = E,(S) (resp. E¢(S) = E4(S)) implies f =g
for any two non-constant meromorphic (entire) functions f,g of F, then S is
called a unique range set for meromorphic (entire) functions of F counting
multiplicity (resp. ignoring multiplicity).
The uniqueness problem for entire or meromorphic functions sharing sets was
initiated by a famous question of Gross in [6]. Since, many results have been
obtained for this and related topics (see [7, 9, 10, 17, 20, 24, 25, 26, 29]).
In the last few years, the value distribution and uniqueness of L-functions has
been studied extensively (see [1, 2, 3, 16, 11, 12, 13, 14, 18, 19, 22, 23, 30, 32]).
Let us recall some basic notations and known results on the value distribu-
tion of L-functions (see [3, 22, 20, 11, 32, 13]).
In this paper an L-function always means a non-constant L-function in the
Selberg class S, which is defined to be a Dirichlet series

L(S) — Z Cb(n)7

ns
=0

with the normalized condition a(1) = 1, satisfying the following axioms:

(i) Ramanujan hypothesis: for all positive €, a(n) < n¢;

(ii) Analytic continuation: there exists a non-negative integer m such that
(s — 1)™L(s) is an entire function of finite order;

(iii) Functional equation: there are positive real numbers @, \;, and there
exists a positive integer K, and there are complex numbers p;,w with Regu; > 0
and |w| = 1 such that Ay (s) = wAL(1 —3), where Ar(s) := L(s)Q* H1K:1 INOYERS
14i);

(iv) Euler product hypothesis: L(s) satisfies L(s) = [[, Ly(s), where L, (s) =
exp (X oey b;it)) with coefficients b(p") satisfying b(p*) < p*? for some 6 < 3,
where the product is taken over all prime numbers p.

Note that the Riemann Zeta function is an L-function in the Selberg class.

In 2017 Yuan, Li, and Yi ([32]) posed the following question:

Question A. What can be said about the relationship between a meromor-
phic function f and an L-function L if Ef(S) = EL(S).

In this direction, they obtained the following result:

Theorem A. ([32]) Let f be a non-constant meromorphic function having
finitely many poles, and let L be an L-function. Let P(z) = z"+az™+b, where
m,n are positive integers, satisfying n > 2m +4, and (m,n) =1, a,b € C are
nonzero constants. Denote by S the zero set of P. If f and L share S CM, then
f=1L.

From Theorem A it follows the existence of a class of subsets S with 7 elements,
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which are zero sets of Yi’s polynomials, such that if E¢(S) = Er(5), then
f = L, where f is a non-constant meromorphic function having finitely many
poles, L is an L-function.

In 2023, Khoai et al. [13] improved Theorem A. By using a class of polynomials,
which are not Yi’s polynomials, they showed the existence of a new class of
subset S of 5 elements, such that if E¢(S) = Er(S), then f = L, where f is a
meromorphic functions having finitely many poles.

Concerning Question A, Pakovitch posed the following question:

Question B. Under what conditions on compact subsets S,T and polynomials
1, g, the following relation holds:

(1.1) F7HS8) =g7H(D).

In the case S = T = {1,—1} Question B posed by Yang ([26]), and in
[24, 25] it is proved that for any compact set K € C containing at least two
points and polynomials f, g of the same degree, the equality f~!(K) = g~ *(K)
implies that f = h(g) for some h = az +b,a,b € C, such that h(K) = K. Dinh
([4]) obtained some results for polynomials of arbitrary degree.

In response to Question B, the authors ([10]) showed the following theorem for
meromorphic functions having finitely many poles and L-functions.

Let S, T be zero sets of polynomials, having no multiple zeros, of the following
form

(1.2) P(z)=az"+b2""" +c.

Note that these polynomials, introduced by Yi ([29]), play an important
role in the uniqueness theory for meromorphic functions. A polynomial of the
form (1.2) is called a Y{;, ;,)-polynomial.

In response to Question B, the authors ([11]) showed following theorem.

Theorem B. ([11, Theorem 1.1]) Let n,m be positive integers, n > 2m+ 8,
and let P,Q be Yy, m)-polynomials, S, T be the zero sets of P,Q, respectively.
Suppose L~1(S) = f~YT) for a non-constant meromorphic function f with
finitely many poles in the complex plane, and a non-constant L-function L,
then we have:

1. There exists a non-zero constant h such that f = hL.
2. If (n,m) =1, then f = L.

Regarding Theorem A and Theorem B it is natural to ask the following
question which motivates us to write this paper.

Question 1. What can be said about the relationship between a meromor-
phic function f and an L-function L if Er(S) = Ef(T), where S,T are the
zero sets of P,Q in Theorem B, respectively.
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In this paper, we apply the arguments used in [2], [11] and [13] to answer
to Question 1.

Now let us describe main results of the paper. Consider polynomials P(z), Q(z)
€ C[z] of degree n of the form:

(1.3) P(z) = az" +bz""™ + ¢, where a, b, c # 0;

(1.4) Q(z) = uz" +vz""™ 4+ t, where u,v,t # 0.

Assume that:

qn—mem (71)71(” _ m)nfmmm
(1.5) 7 — ,

ynmym (—1)”(71 _ m)nfmmm
(1.6) — 7

Note that polynomial P(z) (resp. Q(z)) has n distinct simple zeros if and only
if the condition (1.5) (resp. (1.6)) is satisfied (see ([17], Lemma 2.7)).

We shall prove the following main theorems.
Theorem 1. Let m,n be positive integers, n > 2m + 3, let P(z),Q(z) be
polynomials of the form (1.3) and (1.4) with conditions (1.5) and (1.6), and
let S, T be the zero sets of P,Q, respectively. Let f be a non-constant mero-
morphic function having finitely many poles in the complex plane and L be a
non-constant L— function. Then we have:

1. Er(S) = E¢(T) if and only if f = hL and hS =T, where h is a non-zero
av
%.

b
2. In particular, Ey, (S) = Er,(T) if and only if L1 = Lo and - %
u v

constant satisfying h'™ = L nd hm =
cu

and S =T, where Ly, Ly are non-constant L-functions.

Noting that proof of Theorem 1 is different from Khoai et al.’s ([11]).

Applications. We discuss some applications of Theorem 1. Noting that the
identity relationship between an L-function and a meromorphic function is a
specific instance of a linear dependency between the same functions.

1/ Theorem 2. Let m,n be positive integers such that (n,m) =1 and n >
2m + 3, let P(z) be polynomial of the form (1.3) with condition (1.5), and
let S be the zero set of P. Suppose that Er(S) = E¢(S) for an non-constant
L-function L and a non-constant meromorphic function having finitely many
poles f. Then we have: f = L.
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Indeed, applying Theorem 1 with P(z) = Q(z),S =T, we get: f = hL and
hS = S, where h is a non-zero constant satisfying A = 1 and A" = 1. By
(n,m) =1 we obtain h = 1. So f = L.

2/ Examples. Let L be an non-constant L—function and let f be a non-
constant meromorphic function having finitely many poles, S,T are the zero
sets of the polynomials P(z) and Q(z), respectively.

Example 2.1. Let

P(z) =2° — Zz4 +1, S={a1,...,a5}, Q(z) = 2° — 224 +2°, T = {by,...,b5}.

Then
Er(S)=E¢(T) if and only if f=2L,25=T.

Now we show the necessary condition. We investigate conditions (1.5), (1.6).
We have

5 5 5 4° 44
a=u=1, b:_Z’ c=1, v:—i, t=2 T T T 5=21+43.
. . 5
Then, applying Theorem 1 withn =5, m =1, a=u=1, b = 7 c=1,
5
V=3 t = 25, we obtain:
=4 t
f=2L, 25 =T, where 20 =2 =95 %Y _o
cu ub
Now we show the sufficient condition. Assume that
t
f=2L, and 25 =T, where 25 = & :25,%:2.
cu ub
By
5 5
Q) = £ = S +2° = 2(1° =TI +1) = 2°P(L),
we get

2°(L—a1)--~ (L —as) = (f —b1) -~ (f —bs).
Example 2.2. Let P(z) = 2° — 224 + 1. Then
Er(S)=E;(S) if and only if f= L.

Now we show the necessary condition. We have P(z) has 5 distinct simple
zeros. Then, applying Theorem 2 with n = 5, m = 1, and noticing that
(5,1) = 1, we obtain: f = L.
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Now we show the sufficient condition. Assume that f = L. By
P(f)=f° - gf4+ 1=1L°— §L4+ 1 =P(L), we get

(L—a1)---(L—as) = (f =b1) - (f = bs).
From this it follows that Er(S) = Ef(S5).

2. Preliminaries

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, [8], [5], [29]).
Let f(z) be a meromorphic function. The number of poles of f(z) in the disc
{]z] < r} will be denoted by n(r, f), and we assume that a pole of order m
contributes m to the value of n(r, f). Then the counting function is defined as

"n(t, f) —n(0
Nirp) = [0 D gy o, s,
and N(r, f) is defined in the same way with n(t, f) being replaced by the
number of poles of f (ignoring multiplicity) in {|z| < t}. The approximating
function is defined as

1 27‘!‘ .
m(r, f) = %/ log™ \f(re“g)dﬁ, log™ |2| = max(0,log |z|).

The characteristic function is defined as

T(r,f) = N(r, f) +m(r f).
We have other forms of two Fundamental Theorems of the Nevanlinna theory:

Another form of the First Fundamental Theorem (see [29], Theorem 1.2,
p. 8). Let f(z) be a non-constant meromorphic function in C and let a € C.

Then 1
=2 =Tl ) +00),

where O(1) is a bounded quantity when r — +00.

Another form of the Second Fundamental Theorem (see [29], Theorem
1.6, p. 22). Let f be a non-constant meromorphic function on C and let
ai,as, ..., aq be distinct points of C. Then

T(r,

(4= DT ) < N f) + YN 5) = Nl 77) + S(r. ),
i=1 ¢
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where Ny(r, +) is the counting function of those zeros of f’, which are not zeros

of the function (f —a1)...(f —aq), and S(r, f) = o(T'(r, f)) for all r except for
a set of finite Lebesgue measure.

A meromorphic function a is said to be a small function with respect to a
meromorphic function f if T(r,a) = o(T(r, f)) when r — +oo.

Lemma 2.1. ([28] and [5]) Let f(z) be a non-constant meromorphic function
and P(z) be a non-constant polynomial and let ag,ai,as, - ,a, be distinct
meromorphic functions on C and let

P(f) =anf" + 1"V ap of P4 arf +ao, where a, #0.
Assume that a; are small functions with respect to f for alli=0,1,--- n.
Then
T(r,P(f)) =nT(r, f)+ S(r, f).

For the convenience of the reader, we recall Second Fundamental Theorem
of the Nevanlinna theory for moving targets (see, for example, [31], [21]).

Lemma 2.2. (Second Fundamental Theorem for moving targets) Let
f be a non-constant meromorphic function and let ai,as, - ,a, be distinct
meromorphic functions on C. Assume that a; are small functions with respect
to f foralli=1,---,q. Then, the inequality

(@= 2T ) < 3Nl 5=0) +50.1)
i=1 v

holds for all r except for a set of finite Lebesque measure.

Lemma 2.3. ([5]) Let f be an entire function of finite order p. If f has no
zeros, then f(z) = e"®), where h(z) is a polynomial of degree less than p.

We shall use the following lemmas on L—functions. We denote the order of
a meromorphic function f by p(f).
Lemma 2.4. ([22]) Let L be an non-constant L—function. Then

i) T(r,L) = ‘%rlogr + O(r), where d, = 225(:1 A; is the degree of L,
and K, \; are respectively the positive integer and positive real number in the
functional equation of the definition of L-functions.

ii) N(r, 1) = “Lrlogr+ O(r), N(r,L) = S(r,L).

i) p(L) = 1.
Lemma 2.5. ([19]) Suppose L is a non-constant L-function, there is no gen-
eralized Picard exceptional value of L in the complex plane.

Lemma 2.6. ([14]) Let L1, ..., Ly be distinct non-constant L-functions. Then
Ly, ..., Ly are linearly independent over C.
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3. Proof of Theorem 1

Recall that
P(z) =az" +bz""" 4 ¢, Q(z) = uz" + 02" 4 1,
a,b,d,u.v,t #0.
Then, we get:
(3.1) P(z)=a(z —a1)...(z — an), Q(z) =u(z — b1)...(2 — bp),

(32)  P(L) = a(L — 1)L — an), Q) = ulf = b1).w(f — ba).
1/ The necessary condition.
Proof. Let n > 2m + 3 and E(S) = Ef(T).
Lemma 3.1. We have
(n—=1)T(r,L)+ S(r,L) < nT(r, f)+ S(r, f),
(n—1T(r,f)+ S(r, f) < nT(r,L) + S(r,L), in particular, S(r, f) = S(r, L).

Proof. Noting that L has only one possible pole at s = 1 and f has finitely
many poles and by Lemma 2.4, we have

N(r,L)=O(logr), N(r,f)=0(ogr), N(r,L)=o(T(r,L)),
=S(r,L),N(r,f)=o(T(r,L)) = S(r,L).

Applying another form of the two Fundamental Theorems and noting that

N(r,L)=S(r,L) = N(r, f), EL(S) = E;(T), we obtain

! )+ S(r, L),

(n—1)T(r,L) < N(r,L) + Zﬁ(h I—a

n

(n—1T(r,L)+ S(r,L) < N(r,

Similarly,
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Combining the above inequalities, we get

n—1

T(r,L) + S(r.L) < T(r. ) + S(r.f) < = T(r.L) + S(r. L),

n —

T f) + S0, ) S T(, L)+ 80, L) < T, ) + 50, )

Therefore S(r, f) = S(r, L).
Lemma 3.1 is proved. |

Set S(r) = S(r, f) = S(r,L). From Lemma 3.1 and because f has finitely
many poles and by Lemma 2.4 we obtain

(3.3) N(r,L) = 5(r) = N(r, f), p(f) = p(L) = 1.

Write
P(z)=2"""R(z)4+¢, Q(z) =2"""Ry(2) + t

where R(z) = az™ + b, R1(z) = uz™ + v are polynomials of degree m. Recall
that n > 2m + 3.
Since f and L share S CM, we have

QU) _ MRS+t

_ — (2)
P(L) ~ L mR(L) +e 2

(3.4)

b

where Ry # 0 is a rational function and ¢(z) is an entire function. Then
p(Rz2) =0, by ([5], Theorem 1.4) and (3.3) we get

(3.5) p(Q(f)) = p(f) =1, p(P(L)) = p(L) = 1.
From (3.4), (3.5), and Lemma 2.3 we have

Q(f)

p(ef®) = p(RQP(L)

) < max{p(Rz), p(Q(f)), p(P(L))} = p(L) =1,

p(z) = Az + B,
where A, B are constants. Set
(3.6) I(z) = Rpe?®),

Claim 1. We have:

From (3.6) it leads

T(r,l) <T(r,R2) +T(r,e?) = IA'?“ + O(log ).

™
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Therefore, from Lemma 2.4 it follows that T'(r,1) = o(T'(r, L)), and by Lemma
3.1, T(r,1) = o(T(r, f), too. This means that [ is a small function for the
functions f and L. Therefore

Q(f) = uf" +of""" +t =1IP(L) = (aL" + L™ +¢),

T(r,l)=S(r), T(r,Q(f)) =nT(r,f)+ O(1) =nT(r,L) + S(r).

So
(3.7) T(r,f)+ S(r) =T(r, L) + S(r),
(3.8) M uf™ +v) = (le—t) =IL""™(aL™ +b).

Suppose | #£ f Then lc—t # 0. Applying another form of the First Fundamental
Theorem and Second Fundamental Theorem for moving targets to the function
fP(uf™ 4 v) and the values 0,lc — ¢, and by using (3.3), (3.7), (3.8) and
Lemma 3.1, we get

N(r.3) < T(.1) + 0(1) = 5(r),
WT(r, ) +O() = T(r, f* " Ba(f)

N n—m 770 1 7,,, 1 r
SN(Tuf Rl(f))+N( 7fn,mR1(f))+N( 7fn7mR1(f)f(107t))+S( )

_ — 1 1 — 1 — 1
gN(r,f)+N(r,?)+N(r,Tm)+N(r,7)+N(T,m)+5(r)
<A +m)T(r,f)+ N(r,L) + N(r, %) + N(r, R(L)) +S(r)

(T+m)(T(r, f)+T(r,L)) + S(r)

<
< @2m+2)T(r, f)+ S(r).

Therefore
(n—2m—2)T(r, f) < S(r).

This is a contradiction to the assumption that n > 2m + 3. Thus [ = %, and

(3.9)  f"MRi(f) = %L”"”R(LL wf" ot = z(aL" + L™,

For simplicity, set h = %, and o = % #0;08= % # 0. Then we obtain

at bt
LR — 22y = —y(pn—™ — =
ul™( cu) o vc)’
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m(n Virn—m m At — 6
(3.10) L™(h a) = u(h B8), L™ = P T
Claim 2. h is a constant.
Suppose by contradiction that A is non constant. We consider the following
possible cases:
Case 1. Polynomials 2™ — o and 2"~™ — (8 have no common zeros.
Then equation 2" —a = 0 has n simple zeros ay,..., a;,, and equation z" =" —f =

0 has n — m simple zeros 31, ..., Bn—m such that §; # a;.
Write
M—a=(z-a)(z—a2) (2 - an),
2T =B = (2= 01)(z—B2) (2 = Bu-m)s
" —a=(h—a1)(h—a2) - (h—ap),
R"" =B = (h—B1)(h—B2) - (h = Bn-m)

Applying another forms of the two Fundamental Theorems to the function A
and the values ag,..., ay, B1, ---, Bn—m, and noting that

T(Tv L) + 0(1) = T(T’, Lm) = T(Tv hn) = nT(Tv h) + O(l)a

S(r) = S(h,r) = N(r,L) ZN —— Yy < N(r,L) = S(r),
we get
(2n—m —2)T Z —i—i:N(r,h_lﬁ_)—l-S(h,T),
i=1 i=1 v

2n—m —2)T(r,h) < (n—m)T(r,h) + S(h,r),(n —2)T(r,h) < S(h,r).

This is a contradiction to the assumption that n > 2m + 3.

Case 2. Polynomials z" — a and 2"~ — 8 have common zeros.

Let zp be a common zero of 2™ — «a and 2"~™ — 3, then we have z' = o and
2y~ ™ = f. From this and (3.10) we get

B IB(L) m_1 pn-m _ B_é(%)n_m_l

Z Z)n ’ 0 Ay _q1
2" — «@ (z = h" — « @ (ZO)” 1
h \n—m _
Bo ()" ™ —1 Bv HM ™™ — h
3.11 "= ——= "= hi H=—.
(3:11) ou (Lyn 17 au Hv—1 ' e 20

We see that H is non constant from suppose that h is non constant. Set
(n,m) = t, we have t < m and polynomials 2" —1 and z"~™ —1 have ¢ common
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zeros. Then, the roots of 2"~ — 1 = 0 are different the roots of 2 — 1 = 0,

except t common zeros. So equation z"~™ — 1 =0 has n — m — t simple zeros
B1seees Brn—t, and equation z™ — 1 = 0 has n — ¢ simple zeros aq, ..., a,_t such
that Bi 7é Q.

From (3.11) and by similar arguments as in the proof of Case 1 and noting that
S(H,r) = S(h,r) = 5(r), we get

n—t 1 n—m-—t 1

(2n—m—2t—2)T(r,H) < Y N(r, m) + N(r, H—5

1 i=1

)+ S(H,r),

(2

2n—m—2t—-2)T(r,H) < (n—m—t)T(r, H)+S(H,r),(n—t—2)T(r, H) < S(H, r),

which is a contradiction since n > 2m + 3.
Hence from Case 1 and Case 2 we have that h is a constant and Claim 2 is

proved.
That leads
t
l(aLn +bLnim +C) = ufn +'Ufn7m +ta l =
c
(3.12) alL™ +blL"™™ 4+ ¢l = uh™ L™ +vh"™™L" ™™ + t.

Now we return proof the necessary condition of Theorem 1.
By equation (3.12) we get

t al pm lfvaft
c U b uc
at av )
Therefore i = —, k™ = e Now we prove hS =T. Take a; € S;i=1,...,n.
U

c U
By Lemma 2.5, there exists zp € C such that L(z9) — a; = 0. Moreover, from
IP(L) = Q(f) and (3.2) we obtain

P(L) = a(L = a1)...(L = an), u(f = b1)...(f = bn) = Q(f);

(3.13) la(L —a1)...(L —ap) =u(f —b1)...(f —bn).

By (3.13) we see that: L(zp) —a; = 0 if and only if zy is a zero of P(L) and
L(z9) — aj # 0 with i # j, and therefore, there exists a unique by € {b1,...,b,,}
such that f(z0) — by = 0. Because f = hL, we have hL(zy) — by = 0, and
therefore ha; = by. From this and cardinalities of S,T are n it follows that
hS =T.

The sufficient condition. We have:

P(L) = aL™ +bL™™ + ¢, Q(f) = uf™ + vf"™ +1,
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t
F=RL = S = S Q) = uh™ L + oL

Therefore,
tP(L) =cQ(f) and at(L —ay)...(L —a,) = cu(f —by)...(f — bn).

From this it leads E(S) = E;(T).

2/ The necessary condition. We have: Er,(S) = Er,(T). Then, by 1/ we

get: Lo = hlq and hS = T, where h is a non-zero constant satisfying h"™ = a—,

cu
av a b ¢

h™ = —. By Lemma 2.6, we get L1 = Lo, and then h =1, — = — = -, and
ub v vt

S=T.

The sufficient condition. By using the arguments similar to the ones in the

sufficient condition of 1/ we get the sufficient condition of 2/.

Theorem 1 is proved. |
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