The linear dependency of L-functions and meromorphic functions sharing finite sets

Vu Hoai An (Hai Duong, Vietnam) Nguyen Duy Phuong (Thai Nguyen, Vietnam)

(Received Sept. 23, 2025; accepted Nov. 4, 2025)

Abstract. In this paper we investigate the linear dependency of L-functions and meromorphic functions sharing finite sets. As a consequence, we present some classes of subsets S, T in $\mathbb C$ such that for a meromorphic function f and an L-function L, the condition that f and L share S and T, respectively (counting multiplicity) implies f = hL for a non-zero constant h. We discuss some applications of main result. The main result obtained in this paper improves and extends a recent result due to the authors in [32]. We extend previous results of Yuan, Li and Yi [32] by considering distinct finite sets S, T and establishing linear dependency between f and L. Our results are inspired by a work of Yuan, Li, and Yi in [32] and Khoai et al. in [11] and [13].

1. Introduction. Main results

Let f be a non-constant meromorphic function in \mathbb{C} , $a \in \mathbb{C} \cup \{\infty\}$. Denote by $E_f(a)$ the set of all a— points of f where an a—point is counted with its multiplicity, and by $\overline{E}_f(a)$ where an a—point is counted only one time. For a non-empty subset $S \subset \mathbb{C} \cup \{\infty\}$, define $E_f(S) = \bigcup_{a \in S} E_f(a)$, and similarly for $\overline{E}_f(S)$. Let \mathcal{F} be a non-empty subset of $\mathcal{M}(\mathbb{C})$. Two non-constant meromorphic functions f, g of \mathcal{F} are said to share S, counting multiplicity, (share S CM), if

Key words and phrases: L-function, linear dependency, shared sets, Meromorphic function 2020 Mathematics Subject Classification: 30D05

The Project is supported by the Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam.

 $E_f(S) = E_g(S)$, and to share S, ignoring multiplicity, (share S IM), if $\overline{E}_f(S) = \overline{E}_g(S)$. If the condition $E_f(S) = E_g(S)$ (resp. $\overline{E}_f(S) = \overline{E}_g(S)$) implies f = g for any two non-constant meromorphic (entire) functions f, g of \mathcal{F} , then S is called a unique range set for meromorphic (entire) functions of \mathcal{F} counting multiplicity (resp. ignoring multiplicity).

The uniqueness problem for entire or meromorphic functions sharing sets was initiated by a famous question of Gross in [6]. Since, many results have been obtained for this and related topics (see [7, 9, 10, 17, 20, 24, 25, 26, 29]).

In the last few years, the value distribution and uniqueness of L-functions has been studied extensively (see [1, 2, 3, 16, 11, 12, 13, 14, 18, 19, 22, 23, 30, 32]).

Let us recall some basic notations and known results on the value distribution of L-functions (see [3, 22, 20, 11, 32, 13]).

In this paper an L-function always means a non-constant L-function in the Selberg class S, which is defined to be a Dirichlet series

$$L(s) = \sum_{i=0}^{\infty} \frac{a(n)}{n^s},$$

with the normalized condition a(1) = 1, satisfying the following axioms:

- (i) Ramanujan hypothesis: for all positive ϵ , $a(n) \ll n^{\epsilon}$;
- (ii) Analytic continuation: there exists a non-negative integer m such that $(s-1)^m L(s)$ is an entire function of finite order;
- (iii) Functional equation: there are positive real numbers Q, λ_i , and there exists a positive integer K, and there are complex numbers μ_i, ω with $Re\mu_i \geq 0$ and $|\omega| = 1$ such that $\Lambda_L(s) = \omega \overline{\Lambda_L(1-\overline{s})}$, where $\Lambda_L(s) := L(s)Q^s \prod_{i=1}^K \Gamma(\lambda_i s + \mu_i)$;
- (iv) Euler product hypothesis: L(s) satisfies $L(s) = \prod_p L_p(s)$, where $L_p(s) = \exp\left(\sum_{k=1}^{\infty} \frac{b(p^k)}{p^{ks}}\right)$ with coefficients $b(p^k)$ satisfying $b(p^k) \ll p^{k\theta}$ for some $\theta < \frac{1}{2}$, where the product is taken over all prime numbers p.

Note that the Riemann Zeta function is an L-function in the Selberg class. In 2017 Yuan, Li, and Yi ([32]) posed the following question:

Question A. What can be said about the relationship between a meromorphic function f and an L-function L if $E_f(S) = E_L(S)$.

In this direction, they obtained the following result:

Theorem A. ([32]) Let f be a non-constant meromorphic function having finitely many poles, and let L be an L-function. Let $P(z) = z^n + az^m + b$, where m, n are positive integers, satisfying n > 2m + 4, and (m, n) = 1, $a, b \in \mathbb{C}$ are nonzero constants. Denote by S the zero set of P. If f and L share S CM, then f = L.

From Theorem A it follows the existence of a class of subsets S with 7 elements,

which are zero sets of Yi's polynomials, such that if $E_f(S) = E_L(S)$, then f = L, where f is a non-constant meromorphic function having finitely many poles, L is an L-function.

In 2023, Khoai et al. [13] improved Theorem A. By using a class of polynomials, which are not Yi's polynomials, they showed the existence of a new class of subset S of 5 elements, such that if $E_f(S) = E_L(S)$, then f = L, where f is a meromorphic functions having finitely many poles.

Concerning Question A, Pakovitch posed the following question:

Question B. Under what conditions on compact subsets S,T and polynomials f,g, the following relation holds:

(1.1)
$$f^{-1}(S) = g^{-1}(T).$$

In the case $S = T = \{1, -1\}$ Question B posed by Yang ([26]), and in [24, 25] it is proved that for any compact set $K \in \mathbb{C}$ containing at least two points and polynomials f, g of the same degree, the equality $f^{-1}(K) = g^{-1}(K)$ implies that f = h(g) for some $h = az + b, a, b \in \mathbb{C}$, such that h(K) = K. Dinh ([4]) obtained some results for polynomials of arbitrary degree.

In response to Question B, the authors ([10]) showed the following theorem for meromorphic functions having finitely many poles and L-functions.

Let S,T be zero sets of polynomials, having no multiple zeros, of the following form

$$(1.2) P(z) = az^n + bz^{n-m} + c.$$

Note that these polynomials, introduced by Yi ([29]), play an important role in the uniqueness theory for meromorphic functions. A polynomial of the form (1.2) is called a $Y_{(n,m)}$ -polynomial.

In response to Question B, the authors ([11]) showed following theorem.

Theorem B. ([11, Theorem 1.1]) Let n, m be positive integers, $n \geq 2m + 8$, and let P, Q be $Y_{(n,m)}$ -polynomials, S, T be the zero sets of P, Q, respectively. Suppose $L^{-1}(S) = f^{-1}(T)$ for a non-constant meromorphic function f with finitely many poles in the complex plane, and a non-constant L-function L, then we have:

- 1. There exists a non-zero constant h such that f = hL.
- 2. If (n, m) = 1, then f = L.

Regarding Theorem A and Theorem B it is natural to ask the following question which motivates us to write this paper.

Question 1. What can be said about the relationship between a meromorphic function f and an L-function L if $E_L(S) = E_f(T)$, where S,T are the zero sets of P,Q in Theorem B, respectively.

In this paper, we apply the arguments used in [2], [11] and [13] to answer to Question 1.

Now let us describe main results of the paper. Consider polynomials $P(z), Q(z) \in \mathbb{C}[z]$ of degree n of the form:

(1.3)
$$P(z) = az^n + bz^{n-m} + c$$
, where $a, b, c \neq 0$;

(1.4)
$$Q(z) = uz^n + vz^{n-m} + t$$
, where $u, v, t \neq 0$.

Assume that:

(1.5)
$$\frac{a^{n-m}c^m}{b^n} \neq \frac{(-1)^n(n-m)^{n-m}m^m}{n^n},$$

(1.6)
$$\frac{u^{n-m}t^m}{v^n} \neq \frac{(-1)^n (n-m)^{n-m}m^m}{n^n}.$$

Note that polynomial P(z) (resp. Q(z)) has n distinct simple zeros if and only if the condition (1.5) (resp. (1.6)) is satisfied (see ([17], Lemma 2.7)).

We shall prove the following main theorems.

Theorem 1. Let m, n be positive integers, $n \geq 2m + 3$, let P(z), Q(z) be polynomials of the form (1.3) and (1.4) with conditions (1.5) and (1.6), and let S, T be the zero sets of P, Q, respectively. Let f be a non-constant meromorphic function having finitely many poles in the complex plane and L be a non-constant L-function. Then we have:

- 1. $E_L(S) = E_f(T)$ if and only if f = hL and hS = T, where h is a non-zero constant satisfying $h^n = \frac{at}{cu}$ and $h^m = \frac{av}{ub}$.
- 2. In particular, $E_{L_1}(S) = E_{L_2}(T)$ if and only if $L_1 = L_2$ and $\frac{a}{u} = \frac{b}{v} = \frac{c}{t}$ and S = T, where L_1, L_2 are non-constant L-functions.

Noting that proof of Theorem 1 is different from Khoai et al.'s ([11]).

Applications. We discuss some applications of Theorem 1. Noting that the identity relationship between an L-function and a meromorphic function is a specific instance of a linear dependency between the same functions.

1/ **Theorem 2.** Let m, n be positive integers such that (n, m) = 1 and $n \ge 2m + 3$, let P(z) be polynomial of the form (1.3) with condition (1.5), and let S be the zero set of P. Suppose that $E_L(S) = E_f(S)$ for an non-constant L-function L and a non-constant meromorphic function having finitely many poles f. Then we have: f = L.

Indeed, applying Theorem 1 with P(z) = Q(z), S = T, we get: f = hL and hS = S, where h is a non-zero constant satisfying $h^n = 1$ and $h^m = 1$. By (n, m) = 1 we obtain h = 1. So f = L.

2/ **Examples.** Let L be an non-constant L-function and let f be a non-constant meromorphic function having finitely many poles, S, T are the zero sets of the polynomials P(z) and Q(z), respectively.

Example 2.1. Let

$$P(z)=z^5-\frac{5}{4}z^4+1,\ S=\{a_1,...,a_5\},\ Q(z)=z^5-\frac{5}{2}z^4+2^5,\ T=\{b_1,...,b_5\}.$$

Then

$$E_L(S) = E_f(T)$$
 if and only if $f = 2L, 2S = T$.

Now we show the necessary condition. We investigate conditions (1.5), (1.6). We have

$$a = u = 1, \ b = -\frac{5}{4}, \ c = 1, \ v = -\frac{5}{2}, \ t = 2^5, -\frac{4^5}{5^5} \neq -\frac{4^4}{5^5}, \ 5 = 2.1 + 3.$$

Then, applying Theorem 1 with $n=5,\ m=1,\ a=u=1,\ b=-\frac{5}{4},\ c=1,$ $v=-\frac{5}{2},\ t=2^5,$ we obtain:

$$f = 2L, \ 2S = T, \text{ where } 2^5 = \frac{at}{cu} = 2^5, \frac{av}{ub} = 2.$$

Now we show the sufficient condition. Assume that

$$f = 2L$$
, and $2S = T$, where $2^5 = \frac{at}{cu} = 2^5, \frac{av}{ub} = 2$.

By

$$Q(f) = f^5 - \frac{5}{2}f^4 + 2^5 = 2^5(L^5 - \frac{5}{4}L^4 + 1) = 2^5P(L),$$

we get

$$2^{5}(L-a_1)\cdots(L-a_5) = (f-b_1)\cdots(f-b_5).$$

Example 2.2. Let $P(z) = z^5 - \frac{5}{4}z^4 + 1$. Then

$$E_L(S) = E_f(S)$$
 if and only if $f = L$.

Now we show the necessary condition. We have P(z) has 5 distinct simple zeros. Then, applying Theorem 2 with n=5, m=1, and noticing that (5,1)=1, we obtain: f=L.

Now we show the sufficient condition. Assume that f = L. By

$$P(f) = f^5 - \frac{5}{4}f^4 + 1 = L^5 - \frac{5}{4}L^4 + 1 = P(L), \text{ we get}$$

 $(L - a_1) \cdots (L - a_5) = (f - b_1) \cdots (f - b_5).$

From this it follows that $E_L(S) = E_f(S)$.

2. Preliminaries

We assume that the reader is familiar with the notations of Nevanlinna theory (see, for example, [8], [5], [29]).

Let f(z) be a meromorphic function. The number of poles of f(z) in the disc $\{|z| \leq r\}$ will be denoted by n(r, f), and we assume that a pole of order m contributes m to the value of n(r, f). Then the *counting function* is defined as

$$N(r,f) = \int_{0}^{r} \frac{n(t,f) - n(0,f)}{t} dt + n(0,f) \log r,$$

and $\overline{N}(r, f)$ is defined in the same way with n(t, f) being replaced by the number of poles of f (ignoring multiplicity) in $\{|z| < t\}$. The approximating function is defined as

$$m(r, f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |f(re^{i\theta})d\theta, \quad \log^{+} |x| = \max(0, \log |x|).$$

The characteristic function is defined as

$$T(r, f) = N(r, f) + m(r, f).$$

We have other forms of two Fundamental Theorems of the Nevanlinna theory: **Another form of the First Fundamental Theorem** (see [29], Theorem 1.2, p. 8). Let f(z) be a non-constant meromorphic function in \mathbb{C} and let $a \in \mathbb{C}$. Then

$$T(r, \frac{1}{f-a}) = T(r, f) + O(1),$$

where O(1) is a bounded quantity when $r \to +\infty$.

Another form of the Second Fundamental Theorem (see [29], Theorem 1.6', p. 22). Let f be a non-constant meromorphic function on \mathbb{C} and let $a_1, a_2, ..., a_q$ be distinct points of \mathbb{C} . Then

$$(q-1)T(r,f) \le \overline{N}(r,f) + \sum_{i=1}^{q} \overline{N}(r,\frac{1}{f-a_i}) - N_0(r,\frac{1}{f'}) + S(r,f),$$

where $N_0(r, \frac{1}{f'})$ is the counting function of those zeros of f', which are not zeros of the function $(f - a_1)...(f - a_q)$, and S(r, f) = o(T(r, f)) for all r except for a set of finite Lebesgue measure.

A meromorphic function a is said to be a *small function* with respect to a meromorphic function f if T(r, a) = o(T(r, f)) when $r \to +\infty$.

Lemma 2.1. ([28] and [5]) Let f(z) be a non-constant meromorphic function and P(z) be a non-constant polynomial and let $a_0, a_1, a_2, \dots, a_n$ be distinct meromorphic functions on $\mathbb C$ and let

$$P(f) = a_n f^n + a_{n-1} f^{n-1} + a_{n-2} f^{n-2} + \dots + a_1 f + a_0$$
, where $a_n \not\equiv 0$.

Assume that a_i are small functions with respect to f for all $i = 0, 1, \dots, n$. Then

$$T(r, P(f)) = nT(r, f) + S(r, f).$$

For the convenience of the reader, we recall Second Fundamental Theorem of the Nevanlinna theory for moving targets (see, for example, [31], [21]).

Lemma 2.2. (Second Fundamental Theorem for moving targets) Let f be a non-constant meromorphic function and let a_1, a_2, \dots, a_q be distinct meromorphic functions on \mathbb{C} . Assume that a_i are small functions with respect to f for all $i = 1, \dots, q$. Then, the inequality

$$(q-2)T(r,f) \le \sum_{i=1}^{q} \overline{N}(r,\frac{1}{f-a_i}) + S(r,f)$$

holds for all r except for a set of finite Lebesgue measure.

Lemma 2.3. ([5]) Let f be an entire function of finite order ρ . If f has no zeros, then $f(z) = e^{h(z)}$, where h(z) is a polynomial of degree less than ρ .

We shall use the following lemmas on L-functions. We denote the order of a meromorphic function f by $\rho(f)$.

Lemma 2.4. ([22]) Let L be an non-constant L-function. Then

i) $T(r,L) = \frac{d_L}{\pi} r \log r + O(r)$, where $d_L = 2 \sum_{i=1}^K \lambda_i$ is the degree of L, and K, λ_i are respectively the positive integer and positive real number in the functional equation of the definition of L-functions.

(ii)
$$N(r, \frac{1}{L}) = \frac{d_L}{\pi} r \log r + O(r), \ N(r, L) = S(r, L).$$

 $iii) \rho(L) = 1.$

Lemma 2.5. ([19]) Suppose L is a non-constant L-function, there is no generalized Picard exceptional value of L in the complex plane.

Lemma 2.6. ([14]) Let $L_1, ..., L_N$ be distinct non-constant L-functions. Then $L_1, ..., L_N$ are linearly independent over \mathbb{C} .

3. Proof of Theorem 1

Recall that

$$P(z) = az^{n} + bz^{n-m} + c, \ Q(z) = uz^{n} + vz^{n-m} + t,$$

 $a, b, d, u.v, t \neq 0.$

Then, we get:

(3.1)
$$P(z) = a(z - a_1)...(z - a_n), \ Q(z) = u(z - b_1)...(z - b_n),$$

(3.2)
$$P(L) = a(L - a_1)...(L - a_n), \ Q(f) = u(f - b_1)...(f - b_n).$$

1/ The necessary condition.

Proof. Let $n \geq 2m + 3$ and $E_L(S) = E_f(T)$.

Lemma 3.1. We have

$$(n-1)T(r,L) + S(r,L) \le nT(r,f) + S(r,f),$$

$$(n-1)T(r,f) + S(r,f) \le nT(r,L) + S(r,L), \text{ in particular, } S(r,f) = S(r,L).$$

Proof. Noting that L has only one possible pole at s=1 and f has finitely many poles and by Lemma 2.4, we have

$$N(r, L) = O(\log r), \quad N(r, f) = O(\log r), \quad N(r, L) = o(T(r, L)),$$

= $S(r, L), N(r, f) = o(T(r, L)) = S(r, L).$

Applying another form of the two Fundamental Theorems and noting that $\overline{N}(r,L) = S(r,L) = \overline{N}(r,f), \ E_L(S) = E_f(T)$, we obtain

$$(n-1)T(r,L) \le \overline{N}(r,L) + \sum_{i=1}^{n} \overline{N}(r,\frac{1}{L-a_i}) + S(r,L),$$

$$(n-1)T(r,L) + S(r,L) \le \sum_{i=1}^{n} \overline{N}(r,\frac{1}{f-b_i})$$

$$\le nT(r,f) + S(r,f).$$

Similarly,

$$\begin{split} (n-1)T(r,f) &\leq \overline{N}(r,f) + \sum_{i=1}^n \overline{N}(r,\frac{1}{f-b_i}) + S(r,f),\\ (n-1)T(r,f) &\leq S(r,L) + \sum_{i=1}^n \overline{N}(r,\frac{1}{L-a_i}) + S(r,f),\\ (n-1)T(r,f) + S(r,f) &\leq nT(r,L) + S(r,L). \end{split}$$

Combining the above inequalities, we get

$$\frac{n-1}{n}T(r,L) + S(r,L) \le T(r,f) + S(r,f) \le \frac{n}{n-1}T(r,L) + S(r,L),$$

$$\frac{n-1}{n}T(r,f) + S(r,f) \le T(r,L) + S(r,L) \le \frac{n}{n-1}T(r,f) + S(r,f).$$

Therefore S(r, f) = S(r, L).

Lemma 3.1 is proved.

Set S(r) = S(r, f) = S(r, L). From Lemma 3.1 and because f has finitely many poles and by Lemma 2.4 we obtain

(3.3)
$$N(r,L) = S(r) = N(r,f), \ \rho(f) = \rho(L) = 1.$$

Write

$$P(z) = z^{n-m}R(z) + c, \ Q(z) = z^{n-m}R_1(z) + t$$

where $R(z) = az^m + b$, $R_1(z) = uz^m + v$ are polynomials of degree m. Recall that $n \ge 2m + 3$.

Since f and L share S CM, we have

(3.4)
$$\frac{Q(f)}{P(L)} = \frac{f^{n-m}R_1(f) + t}{L^{n-m}R(L) + c} = R_2 e^{\varphi(z)},$$

where $R_2 \not\equiv 0$ is a rational function and $\varphi(z)$ is an entire function. Then $\rho(R_2) = 0$, by ([5], Theorem 1.4) and (3.3) we get

(3.5)
$$\rho(Q(f)) = \rho(f) = 1, \ \rho(P(L)) = \rho(L) = 1.$$

From (3.4), (3.5), and Lemma 2.3 we have

$$\rho(e^{\varphi(z)}) = \rho(\frac{Q(f)}{R_2 P(L)}) \le \max\{\rho(R_2), \rho(Q(f)), \rho(P(L))\} = \rho(L) = 1,$$

$$\varphi(z) = Az + B,$$

where A, B are constants. Set

$$(3.6) l(z) = R_2 e^{\varphi(z)}.$$

Claim 1. We have:

$$l(z) = \frac{t}{c}.$$

From (3.6) it leads

$$T(r, l) \le T(r, R_2) + T(r, e^{\varphi}) = \frac{|A|}{\pi} r + O(\log r).$$

Therefore, from Lemma 2.4 it follows that T(r,l) = o(T(r,L)), and by Lemma 3.1, T(r,l) = o(T(r,f)), too. This means that l is a small function for the functions f and L. Therefore

$$Q(f) = uf^{n} + vf^{n-m} + t = lP(L) = l(aL^{n} + bL^{n-m} + c),$$

$$T(r, l) = S(r), \ T(r, Q(f)) = nT(r, f) + O(1) = nT(r, L) + S(r).$$

So

(3.7)
$$T(r, f) + S(r) = T(r, L) + S(r),$$

(3.8)
$$f^{n-m}(uf^m + v) - (lc - t) = lL^{n-m}(aL^m + b).$$

Suppose $l \neq \frac{t}{c}$. Then $lc-t \neq 0$. Applying another form of the First Fundamental Theorem and Second Fundamental Theorem for moving targets to the function $f^{n-m}(uf^m+v)$ and the values 0, lc-t, and by using (3.3), (3.7), (3.8) and Lemma 3.1, we get

$$\begin{split} \overline{N}(r,\frac{1}{l}) &\leq T(r,l) + O(1) = S(r), \\ nT(r,f) + O(1) &= T(r,f^{n-m}R_1(f)) \\ &\leq \overline{N}(r,f^{n-m}R_1(f)) + \overline{N}(r,\frac{1}{f^{n-m}R_1(f)}) + \overline{N}(r,\frac{1}{f^{n-m}R_1(f) - (lc - t)}) + S(r) \\ &\leq \overline{N}(r,f) + \overline{N}(r,\frac{1}{f}) + N(r,\frac{1}{R_1(f)}) + \overline{N}(r,\frac{1}{l}) + \overline{N}(r,\frac{1}{L^{n-m}R(L)}) + S(r) \\ &\leq (1+m)T(r,f) + \overline{N}(r,L) + \overline{N}(r,\frac{1}{L}) + N(r,\frac{1}{R(L)}) + S(r) \\ &\leq (1+m)(T(r,f) + T(r,L)) + S(r) \\ &\leq (2m+2)T(r,f) + S(r). \end{split}$$

Therefore

$$(n-2m-2)T(r, f) < S(r).$$

This is a contradiction to the assumption that $n \geq 2m + 3$. Thus $l \equiv \frac{t}{c}$, and

(3.9)
$$f^{n-m}R_1(f) = \frac{t}{c}L^{n-m}R(L), \ uf^n + vf^{n-m} = \frac{t}{c}(aL^n + bL^{n-m}).$$

For simplicity, set $h = \frac{f}{L}$, and $\alpha = \frac{at}{cu} \neq 0; \beta = \frac{bt}{vc} \neq 0$. Then we obtain

$$uL^{m}(h^{n} - \frac{at}{cu}) = -v(h^{n-m} - \frac{bt}{uc}),$$

(3.10)
$$L^{m}(h^{n} - \alpha) = -\frac{v}{u}(h^{n-m} - \beta), \ L^{m} = -\frac{v}{u}\frac{h^{n-m} - \beta}{h^{n} - \alpha}.$$

Claim 2. h is a constant.

Suppose by contradiction that h is non constant. We consider the following possible cases:

Case 1. Polynomials $z^n - \alpha$ and $z^{n-m} - \beta$ have no common zeros.

Then equation $z^n - \alpha = 0$ has n simple zeros $\alpha_1, ..., \alpha_n$, and equation $z^{n-m} - \beta =$ 0 has n-m simple zeros $\beta_1, ..., \beta_{n-m}$ such that $\beta_i \neq \alpha_j$. Write

$$z^{n} - \alpha = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n),$$

$$z^{n-m} - \beta = (z - \beta_1)(z - \beta_2) \cdots (z - \beta_{n-m}),$$

$$h^{n} - \alpha = (h - \alpha_1)(h - \alpha_2) \cdots (h - \alpha_n),$$

$$h^{n-m} - \beta = (h - \beta_1)(h - \beta_2) \cdots (h - \beta_{n-m}).$$

Applying another forms of the two Fundamental Theorems to the function hand the values $\alpha_1,..., \alpha_n, \beta_1, ..., \beta_{n-m}$, and noting that

$$mT(r, L) + O(1) = T(r, L^m) = T(r, h^n) = nT(r, h) + O(1),$$

 $S(r) = S(h, r) = N(r, L), \sum_{i=1}^{n} \overline{N}(r, \frac{1}{h - \alpha_i}) \le N(r, L) = S(r),$

we get

$$(2n - m - 2)T(r, h) \le \sum_{i=1}^{n} \overline{N}(r, \frac{1}{h - \alpha_i}) + \sum_{i=1}^{n-m} \overline{N}(r, \frac{1}{h - \beta_i}) + S(h, r),$$

$$(2n - m - 2)T(r, h) \le (n - m)T(r, h) + S(h, r), (n - 2)T(r, h) \le S(h, r).$$

This is a contradiction to the assumption that $n \geq 2m + 3$.

Case 2. Polynomials $z^n - \alpha$ and $z^{n-m} - \beta$ have common zeros. Let z_0 be a common zero of $z^n - \alpha$ and $z^{n-m} - \beta$, then we have $z_0^n = \alpha$ and $z_0^{n-m} = \beta$. From this and (3.10) we get

$$\frac{z^{n-m} - \beta}{z^n - \alpha} = \frac{\beta}{\alpha} \frac{\left(\frac{z}{z_0}\right)^{n-m} - 1}{\left(\frac{z}{z_0}\right)^n - 1}, \ \frac{h^{n-m} - \beta}{h^n - \alpha} = \frac{\beta}{\alpha} \frac{\left(\frac{h}{z_0}\right)^{n-m} - 1}{\left(\frac{h}{z_0}\right)^n - 1},$$

(3.11)
$$L^m = -\frac{\beta v}{\alpha u} \frac{(\frac{h}{z_0})^{n-m} - 1}{(\frac{h}{z_0})^n - 1}, L^m = -\frac{\beta v}{\alpha u} \frac{H^{n-m} - 1}{H^n - 1}, \text{ where } H = \frac{h}{z_0}.$$

We see that H is non constant from suppose that h is non constant. Set (n,m)=t, we have $t \le m$ and polynomials z^n-1 and $z^{n-m}-1$ have t common zeros. Then, the roots of $z^{n-m}-1=0$ are different the roots of $z^n-1=0$, except t common zeros. So equation $z^{n-m}-1=0$ has n-m-t simple zeros $\beta_1,..., \beta_{n-t}$, and equation $z^n-1=0$ has n-t simple zeros $\alpha_1, ..., \alpha_{n-t}$ such that $\beta_i \neq \alpha_j$.

From (3.11) and by similar arguments as in the proof of Case 1 and noting that S(H,r) = S(h,r) = S(r), we get

$$(2n-m-2t-2)T(r,H) \leq \sum_{i=1}^{n-t} \overline{N}(r,\frac{1}{H-\alpha_i}) + \sum_{i=1}^{n-m-t} \overline{N}(r,\frac{1}{H-\beta_i}) + S(H,r),$$

$$(2n-m-2t-2)T(r,H) \le (n-m-t)T(r,H) + S(H,r), (n-t-2)T(r,H) \le S(H,r),$$

which is a contradiction since $n \ge 2m + 3$.

Hence from Case 1 and Case 2 we have that h is a constant and Claim 2 is proved.

That leads

$$l(aL^{n} + bL^{n-m} + c) = uf^{n} + vf^{n-m} + t, \ l = \frac{t}{c},$$

(3.12)
$$alL^{n} + blL^{n-m} + cl = uh^{n}L^{n} + vh^{n-m}L^{n-m} + t.$$

Now we return proof the necessary condition of Theorem 1. By equation (3.12) we get

$$l = \frac{t}{c}, h^n = \frac{al}{u}, h^m = \frac{lv}{b} \frac{at}{uc}.$$

Therefore $h^n = \frac{at}{cu}$, $h^m = \frac{av}{ub}$. Now we prove hS = T. Take $a_i \in S, i = 1, ..., n$. By Lemma 2.5, there exists $z_0 \in \mathbb{C}$ such that $L(z_0) - a_i = 0$. Moreover, from lP(L) = Q(f) and (3.2) we obtain

$$P(L) = a(L - a_1)...(L - a_n), \ u(f - b_1)...(f - b_n) = Q(f);$$

(3.13)
$$la(L-a_1)...(L-a_n) = u(f-b_1)...(f-b_n).$$

By (3.13) we see that: $L(z_0) - a_i = 0$ if and only if z_0 is a zero of P(L) and $L(z_0) - a_j \neq 0$ with $i \neq j$, and therefore, there exists a unique $b_k \in \{b_1, ..., b_n\}$ such that $f(z_0) - b_k = 0$. Because f = hL, we have $hL(z_0) - b_k = 0$, and therefore $ha_i = b_k$. From this and cardinalities of S, T are n it follows that hS = T.

The sufficient condition. We have:

$$P(L) = aL^{n} + bL^{n-m} + c, \ Q(f) = uf^{n} + vf^{n-m} + t,$$

$$f = hL, h^n = \frac{at}{cu}, h^m = \frac{av}{ub}, Q(f) = uh^nL^n + vh^{n-m}L^{n-m} + t.$$

Therefore,

$$tP(L) = cQ(f)$$
 and $at(L - a_1)...(L - a_n) = cu(f - b_1)...(f - b_n)$.

From this it leads $E_L(S) = E_f(T)$.

2/ The necessary condition. We have: $E_{L_1}(S) = E_{L_2}(T)$. Then, by 1/ we get: $L_2 = hL_1$ and hS = T, where h is a non-zero constant satisfying $h^n = \frac{at}{cu}$, $h^m = \frac{av}{ub}$. By Lemma 2.6, we get $L_1 = L_2$, and then h = 1, $\frac{a}{u} = \frac{b}{v} = \frac{c}{t}$, and S = T.

The sufficient condition. By using the arguments similar to the ones in the sufficient condition of 1/ we get the sufficient condition of 2/. Theorem 1 is proved.

Acknowledgement The authors are very grateful to the referees for carefully reading the manuscript and for the valuable suggestions.

References

- [1] V. H. An and P. Chanthaphone, Uniqueness of L-functions sharing finite sets with meromorphic functions having Deficient Poles, J. Math. Math. Sci., Vol. 3, No. 2, pp. 1-15, 2024.
- [2] V. H. An and P. Chanthaphone, Value distribution of L-functions and meromorphic functions sharing finite sets, South East Asian J. of Mathematics and Mathematical Sciences, Vol. 20, No. 3, pp. 147-164, 2024.
- [3] A. Banerjee and A. Kundu, On uniqueness of L-functions in terms of zeros of strong uniqueness polynomial, Cubo, A Mathematical Journal, Vol. 25, no. 03, pp. 497-514, 2023.
- [4] **T. Dinh**, Ensemble d'unicité pour les polynômes, Ergodic Theory Dynam. Systems, 22:1, 171-186, 2022.

- [5] A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, vol. 236, 2008.
- [6] **F. Gross**, Factorization of meromorphic functions and some open problems, Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Ky. 1976), pp. 51-69, Lecture Notes in Math. Vol. 599, Springer, Berlin, 1977.
- [7] **H. Fujimoto**, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math. 122, 1175-1203, 2000.
- [8] W. K. Hayman, Meromorphic Functions, Clarendon, Oxford (1964).
- [9] A. Kundu and A. Banerjee, Sufficient conditions to determine the linear dependency of two meromorphic functions, Mathematica bohemica, Doi: 10.21136/Mb.2024.0140-23.
- [10] H. H. Khoai, V. H. An and N. X. Lai, Strong uniqueness polynomials of degree 6 and unique range sets for powers of meromorphic functions, Int. J. Math., Vol. 29, N. 5, pp. 122-140, 2018.
- [11] H. H. Khoai, V. H. An, and L. Q. Ninh, Value-sharing and uniqueness for L-functions, Ann. Polon. Math., vol. 126, no. 3, pp. 265-278, 2021.
- [12] **H. H. Khoai** and **V. H. An**, Determining an L-function in the extended Selberg class by its preimages of subsets, Ramanujan J., vol. 58, no. 1, pp. 253-267, 2022.
- [13] H. H. Khoai, V. H. An, and N. D. Phuong, On value distribution of L-functions sharing finite sets with meromorphic functions, Bull. Math. Soc. Sci. Math. Roumanie, vol. 66(114), no. 3, pp. 265-280, 2023.
- [14] J. Kaczorowski, G. Molteni, A. Perelli, Linear independence of L-functions, Forum Math., 18, 1-7, 2006.
- [15] X.-M. Li and H.-X. Yi, Meromorphic functions sharing three values, J. Math. Soc. Japan, Vol. 56, No. 1, 147-167, 2024.
- [16] P.-C. Hu and B. Q. Li, A simple proof and strengthening of a uniqueness theorem for L-functions, Canad. Math. Bull., 59, 119-122, 2016.
- [17] B.Q. Li, A result on value distribution of L-functions, Proc. Amer. Math. Soc., Vol. 138, N. 6, 2071-2077, 2010.
- [18] **B.Q. Li**, A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation, Adv. Math., 226, 4198-4211, 2011.

- [19] P. Lin and W. Lin, Value distribution of L-functions concerning sharing sets, Filomat, 30:16, 3975-3806, 2016.
- [20] Y. Li, W. Lin, Set sharing results for derivatives of meromorphic functions, J. Math. Res. Appl. 42, 587–598, 2022.
- [21] N. Steinmetz, Nevanlinna Theory, Normal Families, and Algebraic Differential Equations, Springer, 2017.
- [22] **J. Steuding**, Value-Distribution of L-functions, Lecture Notes in Mathematics, 1877, Springer, 2007.
- [23] P. Sahoo and S. Halder, Results on L-functions and certain uniqueness questions of Gross, Lith. Math. J., 60(6), 80-91, 2020.
- [24] I. Ostrovskii, F. Pakovitch and M. Zaidenberg, A remark on complex polynomials of least derivation, Internat. Math. Res. Notices, 14, 699-703, 1996.
- [25] **F. Pakovich**, On polynomials sharing preimages of compact sets, and related questions, Geometric and Functional Analysis 18(1), 163-183, 2008.
- [26] C. C. Yang, Open problems, in: S. S. Miller (ed.), Complex Analysis (Brockport, NY, 1976), Lecture Notes in Pure Appl. Math. 36, Dekker, New York, 169-170, 1978.
- [27] C. C. Yang, On deficiencies of differential polynomials, Math. Z. 116, 197-204 (1970).
- [28] C. C. Yang, On deficiencies of differential polynomials, Math. Z. 125, 107-112 (1972).
- [29] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Publ. (2003).
- [30] A.-D. Wu and P.-C. Hu, Uniqueness theorems for Dirichlet series, Bull. Aust. Math. Soc. 91, 389-399, 2015.
- [31] **K. Yamanoi**, The second main theorem for small functions and related problems, Acta Math. 192, 225–294, 2024.
- [32] Q.-Q. Yuan, X.-M. Li, and H.-X. Yi, Value distribution of L-functions and uniqueness questions of F. Gross, Lith. Math. J., 58(2), 249-262, 2018.

Vu Hoai An

Hai Duong University Hai Phong Vietnam vuhoaianlinh@gmail.com

Nguyen Duy Phuong Thai Nguyen University Thai Nguyen Vietnam phuongnd@tnu.edu.vn