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Abstract. In this paper we investigate the linear dependency of L-
functions and meromorphic functions sharing finite sets. As a consequence,
we present some classes of subsets S, T in C such that for a meromorphic
function f and an L-function L, the condition that f and L share S and T ,
respectively (counting multiplicity) implies f = hL for a non-zero constant
h. We discuss some applications of main result. The main result obtained
in this paper improves and extends a recent result due to the authors in
[32]. We extend previous results of Yuan, Li and Yi [32] by considering
distinct finite sets S, T and establishing linear dependency between f and
L. Our results are inspired by a work of Yuan, Li, and Yi in [32] and Khoai
et al. in [11] and [13].

1. Introduction. Main results

Let f be a non-constant meromorphic function in C, a ∈ C ∪ {∞}. Denote
by Ef (a) the set of all a− points of f where an a−point is counted with its
multiplicity, and by Ef (a) where an a−point is counted only one time. For a
non-empty subset S ⊂ C ∪ {∞}, define Ef (S) = ∪a∈SEf (a), and similarly for
Ef (S). Let F be a non-empty subset of M(C). Two non-constant meromorphic
functions f, g of F are said to share S, counting multiplicity, (share S CM), if
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Ef (S) = Eg(S), and to share S, ignoring multiplicity, (share S IM), if Ef (S) =
Eg(S). If the condition Ef (S) = Eg(S) (resp. Ef (S) = Eg(S)) implies f = g
for any two non-constant meromorphic (entire) functions f, g of F , then S is
called a unique range set for meromorphic (entire) functions of F counting
multiplicity (resp. ignoring multiplicity).
The uniqueness problem for entire or meromorphic functions sharing sets was
initiated by a famous question of Gross in [6]. Since, many results have been
obtained for this and related topics (see [7, 9, 10, 17, 20, 24, 25, 26, 29]).
In the last few years, the value distribution and uniqueness of L-functions has
been studied extensively (see [1, 2, 3, 16, 11, 12, 13, 14, 18, 19, 22, 23, 30, 32]).

Let us recall some basic notations and known results on the value distribu-
tion of L-functions (see [3, 22, 20, 11, 32, 13]).

In this paper an L-function always means a non-constant L-function in the
Selberg class S, which is defined to be a Dirichlet series

L(s) =

∞∑
i=0

a(n)

ns
,

with the normalized condition a(1) = 1, satisfying the following axioms:

(i) Ramanujan hypothesis: for all positive ϵ, a(n) ≪ nϵ;

(ii) Analytic continuation: there exists a non-negative integer m such that
(s− 1)mL(s) is an entire function of finite order;

(iii) Functional equation: there are positive real numbers Q, λi, and there
exists a positive integer K, and there are complex numbers µi,ω with Reµi ≥ 0
and |ω| = 1 such that ΛL(s) = ωΛL(1− s), where ΛL(s) := L(s)Qs

∏K
i=1 Γ(λis+

µi);

(iv) Euler product hypothesis: L(s) satisfies L(s) =
∏

p Lp(s), where Lp(s) =

exp
(∑∞

k=1
b(pk)
pks

)
with coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1

2 ,
where the product is taken over all prime numbers p.

Note that the Riemann Zeta function is an L-function in the Selberg class.

In 2017 Yuan, Li, and Yi ([32]) posed the following question:

Question A. What can be said about the relationship between a meromor-
phic function f and an L-function L if Ef (S) = EL(S).

In this direction, they obtained the following result:

Theorem A. ([32]) Let f be a non-constant meromorphic function having
finitely many poles, and let L be an L-function. Let P (z) = zn+azm+b, where
m,n are positive integers, satisfying n > 2m+ 4, and (m,n) = 1, a, b ∈ C are
nonzero constants. Denote by S the zero set of P. If f and L share S CM, then
f = L.
From Theorem A it follows the existence of a class of subsets S with 7 elements,
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which are zero sets of Yi’s polynomials, such that if Ef (S) = EL(S), then
f = L, where f is a non-constant meromorphic function having finitely many
poles, L is an L-function.
In 2023, Khoai et al. [13] improved Theorem A. By using a class of polynomials,
which are not Yi’s polynomials, they showed the existence of a new class of
subset S of 5 elements, such that if Ef (S) = EL(S), then f = L, where f is a
meromorphic functions having finitely many poles.
Concerning Question A, Pakovitch posed the following question:
Question B. Under what conditions on compact subsets S, T and polynomials
f, g, the following relation holds:

(1.1) f−1(S) = g−1(T ).

In the case S = T = {1,−1} Question B posed by Yang ([26]), and in
[24, 25] it is proved that for any compact set K ∈ C containing at least two
points and polynomials f, g of the same degree, the equality f−1(K) = g−1(K)
implies that f = h(g) for some h = az+ b, a, b ∈ C, such that h(K) = K. Dinh
([4]) obtained some results for polynomials of arbitrary degree.
In response to Question B, the authors ([10]) showed the following theorem for
meromorphic functions having finitely many poles and L-functions.
Let S, T be zero sets of polynomials, having no multiple zeros, of the following
form

(1.2) P (z) = azn + bzn−m + c.

Note that these polynomials, introduced by Yi ([29]), play an important
role in the uniqueness theory for meromorphic functions. A polynomial of the
form (1.2) is called a Y(n,m)-polynomial.

In response to Question B, the authors ([11]) showed following theorem.

Theorem B. ([11, Theorem 1.1]) Let n,m be positive integers, n ≥ 2m+8,
and let P,Q be Y(n,m)-polynomials, S, T be the zero sets of P,Q, respectively.
Suppose L−1(S) = f−1(T ) for a non-constant meromorphic function f with
finitely many poles in the complex plane, and a non-constant L-function L,
then we have:

1. There exists a non-zero constant h such that f = hL.

2. If (n,m) = 1, then f = L.

Regarding Theorem A and Theorem B it is natural to ask the following
question which motivates us to write this paper.

Question 1. What can be said about the relationship between a meromor-
phic function f and an L-function L if EL(S) = Ef (T ), where S, T are the
zero sets of P,Q in Theorem B, respectively.
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In this paper, we apply the arguments used in [2], [11] and [13] to answer
to Question 1.

Now let us describe main results of the paper. Consider polynomials P (z), Q(z)
∈ C[z] of degree n of the form:

(1.3) P (z) = azn + bzn−m + c, where a, b, c ̸= 0;

(1.4) Q(z) = uzn + vzn−m + t, where u, v, t ̸= 0.

Assume that:

(1.5)
an−mcm

bn
̸= (−1)n(n−m)n−mmm

nn
,

(1.6)
un−mtm

vn
̸= (−1)n(n−m)n−mmm

nn
.

Note that polynomial P (z) (resp. Q(z)) has n distinct simple zeros if and only
if the condition (1.5) (resp. (1.6)) is satisfied (see ([17], Lemma 2.7)).

We shall prove the following main theorems.
Theorem 1. Let m,n be positive integers, n ≥ 2m + 3, let P (z), Q(z) be
polynomials of the form (1.3) and (1.4) with conditions (1.5) and (1.6), and
let S, T be the zero sets of P,Q, respectively. Let f be a non-constant mero-
morphic function having finitely many poles in the complex plane and L be a
non-constant L−function. Then we have:

1. EL(S) = Ef (T ) if and only if f = hL and hS = T , where h is a non-zero

constant satisfying hn =
at

cu
and hm =

av

ub
.

2. In particular, EL1
(S) = EL2

(T ) if and only if L1 = L2 and
a

u
=

b

v
=

c

t
and S = T , where L1, L2 are non-constant L-functions.

Noting that proof of Theorem 1 is different from Khoai et al.’s ([11]).

Applications. We discuss some applications of Theorem 1. Noting that the
identity relationship between an L-function and a meromorphic function is a
specific instance of a linear dependency between the same functions.
1/ Theorem 2. Let m,n be positive integers such that (n,m) = 1 and n ≥
2m + 3, let P (z) be polynomial of the form (1.3) with condition (1.5), and
let S be the zero set of P . Suppose that EL(S) = Ef (S) for an non-constant
L-function L and a non-constant meromorphic function having finitely many
poles f . Then we have: f = L.
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Indeed, applying Theorem 1 with P (z) = Q(z), S = T, we get: f = hL and
hS = S, where h is a non-zero constant satisfying hn = 1 and hm = 1. By
(n,m) = 1 we obtain h = 1. So f = L.

2/ Examples. Let L be an non-constant L−function and let f be a non-
constant meromorphic function having finitely many poles, S, T are the zero
sets of the polynomials P (z) and Q(z), respectively.
Example 2.1. Let

P (z) = z5 − 5

4
z4 + 1, S = {a1, ..., a5}, Q(z) = z5 − 5

2
z4 + 25, T = {b1, ..., b5}.

Then
EL(S) = Ef (T ) if and only if f = 2L, 2S = T.

Now we show the necessary condition. We investigate conditions (1.5), (1.6).
We have

a = u = 1, b = −5

4
, c = 1, v = −5

2
, t = 25,−45

55
̸= −44

55
, 5 = 2.1 + 3.

Then, applying Theorem 1 with n = 5, m = 1, a = u = 1, b = −5

4
, c = 1,

v = −5

2
, t = 25, we obtain:

f = 2L, 2S = T, where 25 =
at

cu
= 25,

av

ub
= 2.

Now we show the sufficient condition. Assume that

f = 2L, and 2S = T, where 25 =
at

cu
= 25,

av

ub
= 2.

By

Q(f) = f5 − 5

2
f4 + 25 = 25(L5 − 5

4
L4 + 1) = 25P (L),

we get
25(L− a1) · · · (L− a5) = (f − b1) · · · (f − b5).

Example 2.2. Let P (z) = z5 − 5

4
z4 + 1. Then

EL(S) = Ef (S) if and only if f = L.

Now we show the necessary condition. We have P (z) has 5 distinct simple
zeros. Then, applying Theorem 2 with n = 5, m = 1, and noticing that
(5, 1) = 1, we obtain: f = L.
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Now we show the sufficient condition. Assume that f = L. By

P (f) = f5 − 5

4
f4 + 1 = L5 − 5

4
L4 + 1 = P (L), we get

(L− a1) · · · (L− a5) = (f − b1) · · · (f − b5).

From this it follows that EL(S) = Ef (S).

2. Preliminaries

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, [8], [5], [29]).
Let f(z) be a meromorphic function. The number of poles of f(z) in the disc
{|z| ≤ r} will be denoted by n(r, f), and we assume that a pole of order m
contributes m to the value of n(r, f). Then the counting function is defined as

N(r, f) =

∫ r

o

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

and N(r, f) is defined in the same way with n(t, f) being replaced by the
number of poles of f (ignoring multiplicity) in {|z| < t}. The approximating
function is defined as

m(r, f) =
1

2π

∫ 2π

o

log+ |f(reiθ)dθ, log+ |x| = max(0, log |x|).

The characteristic function is defined as

T (r, f) = N(r, f) +m(r, f).

We have other forms of two Fundamental Theorems of the Nevanlinna theory:

Another form of the First Fundamental Theorem (see [29], Theorem 1.2,
p. 8). Let f(z) be a non-constant meromorphic function in C and let a ∈ C.
Then

T (r,
1

f − a
) = T (r, f) +O(1),

where O(1) is a bounded quantity when r → +∞.

Another form of the Second Fundamental Theorem (see [29], Theorem
1.6’, p. 22). Let f be a non-constant meromorphic function on C and let
a1, a2, ..., aq be distinct points of C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),
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where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not zeros

of the function (f − a1)...(f − aq), and S(r, f) = o(T (r, f)) for all r except for
a set of finite Lebesgue measure.
A meromorphic function a is said to be a small function with respect to a
meromorphic function f if T (r, a) = o(T (r, f)) when r → +∞.

Lemma 2.1. ([28] and [5]) Let f(z) be a non-constant meromorphic function
and P (z) be a non-constant polynomial and let a0, a1, a2, · · · , an be distinct
meromorphic functions on C and let

P (f) = anf
n + an−1f

n−1 + an−2f
n−2 + · · ·+ a1f + a0, where an ̸≡ 0.

Assume that ai are small functions with respect to f for all i = 0, 1, · · · , n.
Then

T (r, P (f)) = nT (r, f) + S(r, f).

For the convenience of the reader, we recall Second Fundamental Theorem
of the Nevanlinna theory for moving targets (see, for example, [31], [21]).

Lemma 2.2. (Second Fundamental Theorem for moving targets) Let
f be a non-constant meromorphic function and let a1, a2, · · · , aq be distinct
meromorphic functions on C. Assume that ai are small functions with respect
to f for all i = 1, · · · , q. Then, the inequality

(q − 2)T (r, f) ≤
q∑

i=1

N(r,
1

f − ai
) + S(r, f)

holds for all r except for a set of finite Lebesgue measure.

Lemma 2.3. ([5]) Let f be an entire function of finite order ρ. If f has no
zeros, then f(z) = eh(z), where h(z) is a polynomial of degree less than ρ.

We shall use the following lemmas on L−functions. We denote the order of
a meromorphic function f by ρ(f).

Lemma 2.4. ([22]) Let L be an non-constant L−function. Then

i) T (r, L) = dL

π r log r + O(r), where dL = 2
∑K

i=1 λi is the degree of L,
and K,λi are respectively the positive integer and positive real number in the
functional equation of the definition of L-functions.

ii) N(r, 1
L ) =

dL

π r log r +O(r), N(r, L) = S(r, L).

iii) ρ(L) = 1.

Lemma 2.5. ([19]) Suppose L is a non-constant L-function, there is no gen-
eralized Picard exceptional value of L in the complex plane.

Lemma 2.6. ([14]) Let L1, ..., LN be distinct non-constant L-functions. Then
L1, ..., LN are linearly independent over C.
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3. Proof of Theorem 1

Recall that

P (z) = azn + bzn−m + c, Q(z) = uzn + vzn−m + t,

a, b, d, u.v, t ̸= 0.

Then, we get:

(3.1) P (z) = a(z − a1)...(z − an), Q(z) = u(z − b1)...(z − bn),

(3.2) P (L) = a(L− a1)...(L− an), Q(f) = u(f − b1)...(f − bn).

1/ The necessary condition.

Proof. Let n ≥ 2m+ 3 and EL(S) = Ef (T ).

Lemma 3.1. We have

(n− 1)T (r, L) + S(r, L) ≤ nT (r, f) + S(r, f),

(n− 1)T (r, f) + S(r, f) ≤ nT (r, L) + S(r, L), in particular, S(r, f) = S(r, L).

Proof. Noting that L has only one possible pole at s = 1 and f has finitely
many poles and by Lemma 2.4, we have

N(r, L) = O(log r), N(r, f) = O(log r), N(r, L) = o(T (r, L)),

= S(r, L), N(r, f) = o(T (r, L)) = S(r, L).

Applying another form of the two Fundamental Theorems and noting that
N(r, L) = S(r, L) = N(r, f), EL(S) = Ef (T ), we obtain

(n− 1)T (r, L) ≤ N(r, L) +

n∑
i=1

N(r,
1

L− ai
) + S(r, L),

(n− 1)T (r, L) + S(r, L) ≤
n∑

i=1

N(r,
1

f − bi
)

≤ nT (r, f) + S(r, f).

Similarly,

(n− 1)T (r, f) ≤ N(r, f) +

n∑
i=1

N(r,
1

f − bi
) + S(r, f),

(n− 1)T (r, f) ≤ S(r, L) +

n∑
i=1

N(r,
1

L− ai
) + S(r, f),

(n− 1)T (r, f) + S(r, f) ≤ nT (r, L) + S(r, L).
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Combining the above inequalities, we get

n− 1

n
T (r, L) + S(r, L) ≤ T (r, f) + S(r, f) ≤ n

n− 1
T (r, L) + S(r, L),

n− 1

n
T (r, f) + S(r, f) ≤ T (r, L) + S(r, L) ≤ n

n− 1
T (r, f) + S(r, f).

Therefore S(r, f) = S(r, L).
Lemma 3.1 is proved. ■

Set S(r) = S(r, f) = S(r, L). From Lemma 3.1 and because f has finitely
many poles and by Lemma 2.4 we obtain

(3.3) N(r, L) = S(r) = N(r, f), ρ(f) = ρ(L) = 1.

Write
P (z) = zn−mR(z) + c, Q(z) = zn−mR1(z) + t

where R(z) = azm + b, R1(z) = uzm + v are polynomials of degree m. Recall
that n ≥ 2m+ 3.
Since f and L share S CM, we have

(3.4)
Q(f)

P (L)
=

fn−mR1(f) + t

Ln−mR(L) + c
= R2e

φ(z),

where R2 ̸≡ 0 is a rational function and φ(z) is an entire function. Then
ρ(R2) = 0, by ([5], Theorem 1.4) and (3.3) we get

(3.5) ρ(Q(f)) = ρ(f) = 1, ρ(P (L)) = ρ(L) = 1.

From (3.4), (3.5), and Lemma 2.3 we have

ρ(eφ(z)) = ρ(
Q(f)

R2P (L)
) ≤ max{ρ(R2), ρ(Q(f)), ρ(P (L))} = ρ(L) = 1,

φ(z) = Az +B,

where A,B are constants. Set

(3.6) l(z) = R2e
φ(z).

Claim 1. We have:

l(z) =
t

c
.

From (3.6) it leads

T (r, l) ≤ T (r,R2) + T (r, eφ) =
|A|
π

r +O(log r).
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Therefore, from Lemma 2.4 it follows that T (r, l) = o(T (r, L)), and by Lemma
3.1, T (r, l) = o(T (r, f), too. This means that l is a small function for the
functions f and L. Therefore

Q(f) = ufn + vfn−m + t = lP (L) = l(aLn + bLn−m + c),

T (r, l) = S(r), T (r,Q(f)) = nT (r, f) +O(1) = nT (r, L) + S(r).

So

(3.7) T (r, f) + S(r) = T (r, L) + S(r),

(3.8) fn−m(ufm + v)− (lc− t) = lLn−m(aLm + b).

Suppose l ̸≡ t
c . Then lc−t ̸≡ 0. Applying another form of the First Fundamental

Theorem and Second Fundamental Theorem for moving targets to the function
fn−m(ufm + v) and the values 0, lc − t, and by using (3.3), (3.7), (3.8) and
Lemma 3.1, we get

N(r,
1

l
) ≤ T (r, l) +O(1) = S(r),

nT (r, f) +O(1) = T (r, fn−mR1(f))

≤ N(r, fn−mR1(f)) +N(r,
1

fn−mR1(f)
) +N(r,

1

fn−mR1(f)− (lc− t)
) + S(r)

≤ N(r, f) +N(r,
1

f
) +N(r,

1

R1(f)
) +N(r,

1

l
) +N(r,

1

Ln−mR(L)
) + S(r)

≤ (1 +m)T (r, f) +N(r, L) +N(r,
1

L
) +N(r,

1

R(L)
) + S(r)

≤ (1 +m)(T (r, f) + T (r, L)) + S(r)

≤ (2m+ 2)T (r, f) + S(r).

Therefore
(n− 2m− 2)T (r, f) ≤ S(r).

This is a contradiction to the assumption that n ≥ 2m+ 3. Thus l ≡ t
c , and

(3.9) fn−mR1(f) =
t

c
Ln−mR(L), ufn + vfn−m =

t

c
(aLn + bLn−m).

For simplicity, set h =
f

L
, and α = at

cu ̸= 0;β = bt
vc ̸= 0. Then we obtain

uLm(hn − at

cu
) = −v(hn−m − bt

vc
),
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(3.10) Lm(hn − α) = − v

u
(hn−m − β), Lm = − v

u

hn−m − β

hn − α
.

Claim 2. h is a constant.
Suppose by contradiction that h is non constant. We consider the following
possible cases:
Case 1. Polynomials zn − α and zn−m − β have no common zeros.
Then equation zn−α = 0 has n simple zeros α1,..., αn, and equation zn−m−β =
0 has n−m simple zeros β1, ..., βn−m such that βi ̸= αj .
Write

zn − α = (z − α1)(z − α2) · · · (z − αn),

zn−m − β = (z − β1)(z − β2) · · · (z − βn−m),

hn − α = (h− α1)(h− α2) · · · (h− αn),

hn−m − β = (h− β1)(h− β2) · · · (h− βn−m).

Applying another forms of the two Fundamental Theorems to the function h
and the values α1,..., αn, β1, ..., βn−m, and noting that

mT (r, L) +O(1) = T (r, Lm) = T (r, hn) = nT (r, h) +O(1),

S(r) = S(h, r) = N(r, L),

n∑
i=1

N(r,
1

h− αi
) ≤ N(r, L) = S(r),

we get

(2n−m− 2)T (r, h) ≤
n∑

i=1

N(r,
1

h− αi
) +

n−m∑
i=1

N(r,
1

h− βi
) + S(h, r),

(2n−m− 2)T (r, h) ≤ (n−m)T (r, h) + S(h, r), (n− 2)T (r, h) ≤ S(h, r).

This is a contradiction to the assumption that n ≥ 2m+ 3.
Case 2. Polynomials zn − α and zn−m − β have common zeros.
Let z0 be a common zero of zn − α and zn−m − β, then we have zn0 = α and
zn−m
0 = β. From this and (3.10) we get

zn−m − β

zn − α
=

β

α

( z
z0
)n−m − 1

( z
z0
)n − 1

,
hn−m − β

hn − α
=

β

α

( h
z0
)n−m − 1

( h
z0
)n − 1

,

(3.11) Lm = −βv

αu

( h
z0
)n−m − 1

( h
z0
)n − 1

, Lm = −βv

αu

Hn−m − 1

Hn − 1
, where H =

h

z0
.

We see that H is non constant from suppose that h is non constant. Set
(n,m) = t, we have t ≤ m and polynomials zn−1 and zn−m−1 have t common
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zeros. Then, the roots of zn−m − 1 = 0 are different the roots of zn − 1 = 0,
except t common zeros. So equation zn−m − 1 = 0 has n−m− t simple zeros
β1,..., βn−t, and equation zn − 1 = 0 has n − t simple zeros α1, ..., αn−t such
that βi ̸= αj .
From (3.11) and by similar arguments as in the proof of Case 1 and noting that
S(H, r) = S(h, r) = S(r), we get

(2n−m− 2t− 2)T (r,H) ≤
n−t∑
i=1

N(r,
1

H − αi
)+

n−m−t∑
i=1

N(r,
1

H − βi
)+S(H, r),

(2n−m−2t−2)T (r,H) ≤ (n−m−t)T (r,H)+S(H, r), (n−t−2)T (r,H) ≤ S(H, r),

which is a contradiction since n ≥ 2m+ 3.
Hence from Case 1 and Case 2 we have that h is a constant and Claim 2 is
proved.
That leads

l(aLn + bLn−m + c) = ufn + vfn−m + t, l =
t

c
,

(3.12) alLn + blLn−m + cl = uhnLn + vhn−mLn−m + t.

Now we return proof the necessary condition of Theorem 1.
By equation (3.12) we get

l =
t

c
, hn =

al

u
, hm =

lv

b

at

uc
.

Therefore hn =
at

cu
, hm =

av

ub
. Now we prove hS = T. Take ai ∈ S, i = 1, ..., n.

By Lemma 2.5, there exists z0 ∈ C such that L(z0) − ai = 0. Moreover, from
lP (L) = Q(f) and (3.2) we obtain

P (L) = a(L− a1)...(L− an), u(f − b1)...(f − bn) = Q(f);

(3.13) la(L− a1)...(L− an) = u(f − b1)...(f − bn).

By (3.13) we see that: L(z0) − ai = 0 if and only if z0 is a zero of P (L) and
L(z0)− aj ̸= 0 with i ̸= j, and therefore, there exists a unique bk ∈ {b1, ..., bn}
such that f(z0) − bk = 0. Because f = hL, we have hL(z0) − bk = 0, and
therefore hai = bk. From this and cardinalities of S, T are n it follows that
hS = T.
The sufficient condition. We have:

P (L) = aLn + bLn−m + c, Q(f) = ufn + vfn−m + t,
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f = hL, hn =
at

cu
, hm =

av

ub
,Q(f) = uhnLn + vhn−mLn−m + t.

Therefore,

tP (L) = cQ(f) and at(L− a1)...(L− an) = cu(f − b1)...(f − bn).

From this it leads EL(S) = Ef (T ).

2/ The necessary condition. We have: EL1
(S) = EL2

(T ). Then, by 1/ we

get: L2 = hL1 and hS = T , where h is a non-zero constant satisfying hn =
at

cu
,

hm =
av

ub
. By Lemma 2.6, we get L1 = L2, and then h = 1,

a

u
=

b

v
=

c

t
, and

S = T .

The sufficient condition. By using the arguments similar to the ones in the
sufficient condition of 1/ we get the sufficient condition of 2/.
Theorem 1 is proved. ■
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