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Abstract. Photon-photon interaction, an essential ingredient for opti-
cal quantum technologies, is indirect actually, i.e., often mediated via a
nonlinear medium. In this work, we consider a single photon interacting
with a weak coherent state in a one-dimensional waveguide coupled to a
two-level quantum emitter. We present a general input-output framework
that applies to an arbitrary input Fock state and various types of quan-
tum emitters. We then use this to compute the relevant scattering pro-
cesses between the single photon and the weak coherent state. We analyse
in detail the characteristics of the output state taking into account the
continuous-mode nature of the input and output states which are treated
as appropriate photon wavepackets.

1. Introduction

Single photons, despite being ideal carriers of quantum information with
low decoherence and ease of transmission, hardly interact with each other,
which introduces a major bottleneck in implementing two-qubit gates needed
for universal quantum computation [1, 2]. Interaction and manipulation at the
single-photon level are thus mostly indirect, relying on measurement-induced
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nonlinearity [3, 4] or a mediate nonlinear medium [5, 6]. The emerging field of
waveguide quantum electrodynamics (QED) follows the latter approach, where
photons interact with localised quantum emitters embedded in one-dimensional
(1D) waveguides. Physical platforms to implement waveguide QED primarily
include ultracold atoms trapped in optical fibers [7, 8], quantum dots embedded
in photonic crystal waveguides [9, 10], and superconducting qubits coupled to
transmission lines [11, 12]. In these systems, due to the confined dimensions
quantum emitters couple strongly to only a few propagating photon modes [13],
which can lead to strong effective photon-photon interaction [14]. Harnessing
this effect, single-photon transistors [15], switches [16], and quantum nonlinear
optics with single photons [17, 18] have been demonstrated.

Photon scattering processes are central to the studies of waveguide QED,
most of which have so far considered scattering of either Fock states [19, 20,
21, 22, 23, 24] or coherent states [25, 26] but not a pair of input states of both
types. However, interaction between a single photon and a coherent state is
of potential use in optical quantum technologies. In particular, via a weak
cross-Kerr medium a single photon could impart a detectable phase shift on a
strong coherent state. This effect can be exploited to implement nondemolition
photon-number detection and controlled-phase gates between individual pho-
tons [27, 28]. Despite initial criticism due to an idealised single-mode quantum
treatment of the cross-phase modulation [29, 30, 31], it was shown in Refs.
[32, 33] using a general theory of continuous-mode photonic pulses that such
cross-Kerr scheme can achieve high fidelity, provided that the input pulses fully
pass through each other. In addition, single photons and coherent states can
be combined to construct hybrid discrete-continuous qubits [34, 35]. This hy-
brid approach to optical quantum information processing can outperform its
discrete and continuous counterparts in various quantum tasks [36, 37, 38].

In this paper, we study the interaction between a single-photon state |1)
and a coherent state |n) in a 1D waveguide coupled to a two-level emitter. The
two input states are necessarily in orthogonal modes, for example, with respect
to polarisation or spatial modes, so that they can be treated independently
in a mutual form of a product state. As light-emitter interaction is of dipole
coupling nature [39] (i.e., Hip o< —d.E with d the emitter’s electric dipole and
E the field operator), the photons interact significantly with the emitter only
when their polarisation aligns with that of the two-level atom’s only transition
(lg) <> le), with |g) and |e) the emitter’s ground and excited states). Therefore,
in our analysis the input single photon and the input coherent state have the
same polarisation set by the two-level emitter but counter-propagate to each
other, as shown in Fig. 1. Furthermore, we consider the coherent state with a
small amplitude (i.e., with 7 such that |n|? < 1) to avoid unwanted saturation
effects on the emitter due to strong coherent drives in realistic experiments
[40]. This also simplifies the relevant scattering calculations.
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Figure 1: Diagram of a single photon [1) and a coherent state |n) counter-
propagating in a non-chiral 1D waveguide coupled a general quantum emitter.
In our work, the emitter is chosen to be a two-level atom with a transition
frequency ).

We organise this work as follows. In Section 2, we introduce a generalised
input-output formalism that computes the scattering of input states with an
arbitrary photon number [22, 41], with discrete examples applied for one- and
two-photon scatterings. We then address the interaction between a single-
photon state and a coherent state in Section 3. Using Fock-state representation
of a weak coherent state |n) ~ cg|0) + c¢1|1) with proper coefficients ¢g and ¢;
for |n|> << 1, the interested scattering scenario is well reduced to sum of
two processes: one is single-photon scattering due to the term ¢|0)|1) and the
other is two-photon one due to the term ¢1|1)|1). We then use the input-output
formalism introduced in Section 2 to compute the output state. Based on this,
we numerically analyse the characteristics of the output state, including its
fidelity to the ideal phase-shifted output state and its photon distribution. We
conclude our work in Section 4 and include Appendix A and Appendix B to
complement the results in the main text.

2. Generalised input-output formalism

2.1. Hamiltonians and input-output relation

We consider a localised quantum emitter coupled to a non-chiral (i.e., two-
mode) waveguide. The total Hamiltonian for this setup is given by

(2.1) H = Hoi + Hyg + Hing,

where ﬁcmi (to be specified later) is the emitter Hamiltonian, H’Wg is the waveg-
uide Hamiltonian, and Hj, is the emitter-waveguide interaction Hamiltonian.
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The latter two are given by

(2.2) Hyy = > /_ h dwwb!, (w)ba (w),

(2.3) e = Z'Z\/E/_m dw(b] (w)é — &g (w)).

In Egs. (2.2) and (2.3), a € {r, 1} denotes right-moving and left-moving modes,
bo(w) and b (w) are waveguide bosonic operators with the commutation rela-
tion [ba (w), I;L, ()] = ba.ard(w—w'), & and ¢é' (to be specified later) are emitter
operators that couple to the waveguide, and 7, is the emitter-waveguide cou-
pling strength. For a non-chiral waveguide, both propagating directions, o = r
or a = [, are equivalent such that ~,. = v, = 7, i.e., there is only one coupling
strength ~. However, in the expression of Hiy we include v, and 7y, as if they
are different in general, which is useful in recovering the chiral (or one-mode)
waveguide case by setting either ~,. or 7; to zero.

We note that in deriving the interaction Hiy the rotating wave approxima-
tion was utilised to remove counter-rotating terms as well as Markov approxi-
mation to simplify the coupling strength 7, as independent of w [42]. Another
idealisation is that the waveguide frequency range was extended to (—o0, +00),
which does not affect the total system’s dynamics that is only significant in a
narrow bandwidth centred around the emitter’s transition frequency [43]. Also,
in this paper we set i = 1 for convenience.

We define the input and output fields for both right- and left-moving modes

1 . ~
Var / dwe™ 1 (w, 1),
~ 1 . ~
(2.4b) bronlt) = = / duse= ] (1),

(2.4a) be,in(t)

where ty and t; are the initial time in a distant past and the final time in a
distant future, respectively. The input and output fields obey the commutation
relations

(2:58)  [Bain(0), Bl i 1] = [Pasont (8,8l e (1)

(2.5b) [Ba,in(t),éa,,in(t’)]:[ba,out(t),ba/,om(t’)} — 0,

S, d(t — 1),

and are related to each other via the response by the emitter [43]
(26) I;a,out (t) = Ba,in (t) + Pyaé(t)

Here ¢(t) = eifitee=iflt ig o Heisenberg operator, with H given in Eq. (2.1).
Furthermore, given an arbitrary emitter operator § we can prove the following
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causality relations [43, 44]
(2.7a) [3(0),bn®)] = [3(2), 8], (1)] =0 fore <’
@270)  [3(0),bao(t)] = [3(2), Bl ouet)] =0 fort > 1.

Equations (2.7a) and (2.7b), respectively, indicate that the dynamics of the
emitter depends on neither the input fields in the future nor the output fields
in the past.

2.2. Multi-photon scattering

Scattering of an input state into an output state is described by the (uni-
tary) S-matrix operator S. In particular, we consider an input state consist-
ing of n photons k) = |ki,ay,-- - kn,a,) With frequencies k; (j = 1,...,n)
and propagating directions «; € {r,l}. We are interested in the composite
emitter-waveguide system that conserves the total excitation number and as-
sume that the emitter was and will be again in its ground state prior to and
after the scattering. By this, the output state is also given by an m-photon
state |p) = |p1.8,,P2,855 - -1 Pn,B8,) With generally different frequencies p; sat-
isfying the energy conservation Z?zl Dj = Z?Zl k; and different propagating
directions 3;. Scattering between these input and output states is represented
by the S-matrix element [25]

(2.8) ST = (p|Slk) = mH%mmHa

j=1 Jj=1

where Bayin(k) and lA)a,out (p) are the input and output fields in the frequency
domain, which are related to those in the time domain as

~ 1 ~ .
(29) boz,in/out(k) = E/dtba,in/out(t)ezkt-

We follow Refs. [22, 44] to introduce a general scheme to compute SI()T;LIZ for

an arbitrary n. We first use Eq. (2.9) to recast 51(37;111 to

n
(2.10) oy = F 0 T] bs, out (t5 H bl an (]
Jj=1

where F(™) denotes a multi-dimensional Fourier transform given by

(2.11) F = _—_ G / /Hdt jdt)ePits kst
7T
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We then use the input-output and causality relations in Egs. (2.6) and (2.7) to
represent the field correlation function in Eq. (2.10)

(2.12) (O TT b5, 0ut () TT B, (210,
j=1 j=1

in terms of the emitter correlation functions, which is the key idea in the scheme
of interest. This includes the following steps:

(i) The output operators lA)gjput commute with each other, so that we introduce
the time-ordering operator T to freely order them by decreasing times. We also
use Eq. (2.6) to rewrite the operator product in Eq. (2.12) as

(2.13)

T((Bgyin(t1) + /A5 (81)) oo (g, im (tn) + /A5 ()O3 (1)L 0 (81,).

We expand this product and label different terms by the number of times, m,
that the emitter operator é(t,,) appears in each term.

(ii) Owing to the causality relation [é(t), ba,in(t')] = 0 for ¢ > ¢ in Eq. (2.7a),
all the input operators bg, i, can be moved to the right of the emitter operators

¢ and put outside of the time-ordering operator T. The m'-order term in Eq.
(2.13) is then

(214)  (OIT(&(t2)---(tm) bg,. 1 in(Em1) D in(En)BL, 5 (11)---BL, 5u(27,)10))-
(iii) We further reduce Eq. (2.14) by considering

bﬂnk{»l ,in (tm"l'l ) o 'bﬁn ,in (tn)b;l.)/l ,in (tll ) . 'bln ,in (t;’L) |0> .

We move b

o.in 1O the left of bg, in using the commutation relation in Eq. (2.5a)
and successively eliminate any residual bg, i in the expression. This manipu-
lation decomposes Eq. (2.14) into in a number of terms, each in the form of a

product of n — m (Dirac) delta functions and a correlation function given by
(2.15) (OFT(E(t)-wse(tm )DL, (1) (tms £,)10)-

(iv) Since [é(t), 5L7in(t’)} =0 for ¢t < t’ following Eq. (2.7a), we can expand the
time-ordering operator T to all the operators in Eq. (2.15). We also use the
Hermitian conjugate of Eq. (2.6), i.e., ?)L’in(t) = lA)Lyout(t) —/Tall(t), to rewrite
Eq. (2.15) as

(2.16)

(OIT(E(t1)-&(tm) (B, o (1) = VAar € (1)) -+ (B, ot (trn) = VA € (,))]]0).

Due to the causality relation [¢(t), b (t)] =0 for ¢ > ' in Eq. (2.7b), the

» Yaj,out

output operators 3£j7out commute with all the system operators ¢ to their left.
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This implies that upon fully expanding Eq. (2.16) the only term that remains
is

(2.17) (O|T[E(t1)...e(tm )ET(E))...¢T(2],)]]0).

After the above steps, one sees that n-photon S-matrix element SI(;:& can be
computed via Fourier transform of the emitter’s correlation functions

(2.18) ST = FOS™ £ O T[e(tr)-t(tm )& (11).2 (£,)]]0),

where each coefficient f,,, contains coupling constants and delta functions.

We note that in Eq. (2.18) the emitter operators é(t) are Heisenberg op-
erators governed by the total emitter-waveguide Hamiltonian H. Using the
quantum regression formula [22, 43] or the Green’s function technique [44], we
can eliminate the waveguide degrees of freedom in the total evolution and prove
that the correlation functions in Eq. (2.18) can be evaluated via an effective
emitter evolution in the form
(2.19) R R R R

(OIT[e(tr)..etm)el (#1)-." (t1,)]0) = (OIT[e(tr)...e(tm) el (t1)...cT (27,)110),

where
(2.20) ft) = etHertpemiflent
(2.21) g — Iffcmifz'géfé’

with T' = 7, +v; the total decaying rate of the emitter. Equation (2.18) is thus
recast to

(222) S0 = FOV ST 0TIt (e )E (1)1 (2, )][0)

This is the core result that will be used repeatedly in what follows.
2.3. The simplest quantum emitter

So far we have kept the emitter Hamiltonian ﬁemi and its operator ¢ un-
specified with an implication that the input-output formalism presented above
is general and can be applied to various types of quantum emitters. In the fol-
lowing, we consider the simplest quantum emitter model, which is a two-level
atom, and exemplify the above-introduced input-output technique in comput-
ing one-photon and two-photon scattering processes. Discretely, for a two-level
emitter, we have

(2.23) Homi=—06., ¢=06_, &' =6,
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where ) is the emitter transition frequency, 6, = |e)(e| — |g9){g|, - = |g){e|,
and 64 = |e)(g|. We thus also have

. Q. T, .
(2.24) Hypg = 50z —i5040-,
(2.25) Go(t) = (92t

(2.26) D ous () bain(t) + v/Aad—(t).
2.3.1. One-photon scattering
We consider one photon transmitting through the emitter, so the input and

output photons co-propagate in the same direction, say, «. The one-photon
S-matrix element in this case is given by

1 . , o ~
(2.27) qyk=§f[/%m¢@”“ﬂmmmﬁndm@w»
ke = ,

We expand the correlator <0|Isa70ut(t1)3;in(t’l)|0> following the four steps out-
lined in Subsection 2.2

(2:28)  (Ofba,out (b)), 1 (11)]0) = 8(t1 = 1)) = 32 (0T[5 (t1)6+(#)]]0).-
The first term in Eq. (2.28) contributes to Séi);ka as
(2.29) (p — k).

Meanwhile, the second term in Eq. (2.28) contributes

(2.30) “5(p— k)2,
dy,
where
I
(2.31) dp =k - Q+is.

In deriving the result in Eq. (2.30) we have replaced the time-ordering operator
T by the Heaviside function ©(¢; —t}), and used the identity [ dt'e”™“" O(t —
t') = e ™! (i/w+ 6(w)). We therefore find that

(2.32) Sk, = 8(p— k),
where

k*Q*Z‘(’Yoﬂ*'Y&)/2

( ) g kE—Q+i(va +7a)/2
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with & denoting the propagating direction opposite to a. The delta function
in Eq. (2.32) represents the energy conservation, while t;, represents the trans-
mission coefficient.

Setting 75 = 0 such that the (chiral) waveguide allows propagation in one
direction « only, t; is reduced to

i kE—Q—iv,/2
2.34 t(chlral) _ als
(2.34) k k—Q+iv4/2

One sces that [t{™"*"| = 1, implying the single photon is completely transmit-
ted through the emitter while experiencing some phase shift. Meanwhile for a
non-chiral waveguide with v, = 74, tx is of the form
(non-chiral) __ k—Q

(2:35) i BUECENIVE)

which shows that when the single photon is on resonance with the two-level
emitter (k = ) its transmission through the emitter is forbidden completely
or in other words the input photon is reflected completely. This complete
transmission blockage is a consequence of a destructive interference between a
single photon that intactly passes through the emitter and another one with
a m phase shift that is emitted from the re-emission of the emitter after being
excited to its excited state.

We consider the remaining case of one photon scattering, that is, reflection
off the emitter with the input and output photons propagating in opposite
directions. The S-matrix element for this reflection process is given by

(2.36) S = d(p — k),
where 7, is the reflection coefficient

—i\/iTa
2.37 = .
(2.37) T (e )2

In the chiral (y5 = 0) and non-chiral (7, = v5) cases, the reflection coefficient
ri is respectively given by

(2.38) pichiral) - —

(non-chiral) _’L]-—‘/2
2. = ——.
(2:39) " k—Q+il/2

It is evident the one-photon transmission and reflection coefficients, ¢; and 7y,
in both chiral and non-chiral cases satisfy

(2.40) [te]? + |rel® = 1,
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which reflects the conservation of one-photon scattering probability. When
there is no coupling between the waveguide and the emitter, i.e., v, = v5 =0,
we find ¢t =1 and r, = 0.

We can express a general one-photon scattering from an arbitrary input
photon in state |k,) into the output photon in state |pg) in terms of the S-
matrix element of the form

(2.41) S = 5(p— k) [dp.ate + (1 — 0p.a)r).

pgika
2.3.2. Two-photon scattering

We consider two input photons |ki q,k2 ) co-transmitting through the
emitter with the output photons [p1,4,p2,). The S-matrix element for this
two-photon scattering is given by

2 ]_ 7, _ /_ ’
Slgl,)apz,a;khakz‘a = (271-)2 //// dtldtzdtlldtée (prt1+pata—kit] —kats)

(2-42) X <0‘6a,0ut (tl)gmout (t2>b:ry m( )bL Jin (t2)|0>~
We follow the scheme in Subsection 2.2 to expand the correlator in Eq. (2.42)

(Olbecsont (£1)ba,out (£2)BY, 1 (£1)B], 1, (5)10)
= 5(t1 - t/1)5(t2 — t’2) + 5(t1 — t2)5(t2 — L‘ll)
~Yad(ts — )OI T[G— (t2)F4 (15)]10)  vad(tr — t5)(0T[G—(t2) 5+ (11)]0)
~Yad(tz = )OI T[G— (t1)64 (t)]|0) — Yad(t2 — t5) (0T[5 (t1)&+ (t;)]|0)
20| T (5 (1)G— (t2)54 (1) 54 (th >1|o>
(2.43)

The first and second terms in Eq. (2.43) contribute to S (2) the

P1,05P1,03k1, 00,1, 0
following
(2.44) d(p1 — k1)0(p2 — k2) + 0(p1 — k2)d(p2 — k1).
The third to sixth terms in Eq. (2.43) contribute respectively
Vo
(81— k1)5(p2 — ko) + 8(p1 — k2)3(p2 — k1)) 7
D2

(2.45) —(8(p2 = k1)3(p1 — ka) + 3(p2 — k2)d(p1 — 1)) 7

P1

Contribution of the last term in Eq. (2.43) to S, 2) is more involved

and given by a fourfold integral

aP2,03k1,a,k2,a

dtydtodt! dthe!Privtpatz =ity —kats)

(2.46) X (O1T[6— (t1)5— (t2)5+ (#)6+ (£)][0).
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Noting that (0|T[g_(t1)o (tg)A3+(t’1)5+(t'2)]|0> is non-zero only when it starts
with 6_ and terminates with o, we decompose Eq. (2.46) to four integrals

(2’y71?32(1p1k1p2k2 + Iy kopoky T Tpokipiks + Iposkopiky ),
where
Ly kypo o / / / / dtydtodt) dthe!(Prirtpate—kiti—kats)
(2.47) X (016 (t1)5 4 ()5 (t2)54 (5)[0) O (t1 — 1) O(t; —t2)O (2 —t5),

for the time ordering t1 > t] > to > 5 and similarly for Ip, kypokys Lpokspiks
and I, k.p k, With the corresponding time orderings. In fact, given Ik, pok,s
the other three integrals are obtained by permuting between k; and ks and/or
between p; and po. These integrals are explicitly given by

iy =~ (SRR ),
Tpikapoks = d;j:lpl (M(pl +,£2__ b k) m6 (k1 — p2)d (ke fp1))
s = g (B )
Tpskopiky = _dljgm <i5(p1 +k11)2—_ L) + mé(k1 — p1)o (ko —p2))

so the last term in Eq. (2.43) contributes to S( ) as

osP2,a3k1,0,k2,a

)
Z'Ya dpl +dp2
B ) — k1 —k
7w dy, dyyd, di, (p1 + p2 1 2)
2

V2 gt
(2.48) ———%—08(p1 — k1)d(p2 — k) — —
dpl dp2 dpl dpz

5(101 - k2)5(p2 - k1)-

Combining all contributions computed above yields

(2)

P1,aP2,a3k1,ak2,a

_ (1) (1) (1) (1) (2)
(2.49) - Spl oukl aSp2 s k? re% Spl a7k2 aSPZ o) kl o + Bpl,a:p2,a§k1,a7k2,a7
where S:z(z )B k.o 18 given in Eq. (2.41) and
v d d
(2.50) B> = Do G F st py ke — k).

P1,05P2,03k1, 0,2, a T dp1dp2dk1dk2
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Equation (2.49) shows that the transmission of two photons through the emitter
is composed of two types of processes. The first type is that the two photons
transmit independently such as |k1,o) — |p1,a) and |k2.o) = [P2,a) OF |k1,0) —
|p2,a) and |ks,o) — |p1,q), resulting in the first two products of one-photon
S-matrix elements in Eq. (2.49). The second type is that the two photons bind
with each other forming a two-photon bound state [25], which is represented by
the last single expression in Eq. (2.49). Such bound state can be explained via
stimulated emission in the following way. The first photon promotes the emitter
to its excited state. The second photon passing through cannot be absorbed by
the already excited emitter but can stimulate the emitter’s re-emission of the
first photon. The two photons appear together with the same phase forming
a joint two-photon bound state [26]. The bound state is characterised by a
common delta function §(p; + pa — k1 — ko) that indicates energy conservation
for the input and output pairs as a whole, but not for independent photons.
This is the origin of the so-called frequency mixing or spectral entanglement
in two-photon scattering, which introduces a major challenge in constructing a
controlled-phase gate for single photons from cross-Kerr nonlinearity [23, 24].

We consider more two-photon scattering scenarios in Appendix A and sum-
marise here the most general case with arbitrary two-photon input |k1,q, k2,a,)
and output states |p1,s,p2.8,)

(2) _ (1) (1) (1) (1)
P1,81P2,803k1,00 k2,00 SPLﬁI;kl,al P2,85ik2,a, +Spl,ﬁl;k2,a25p2,52;k1,a1
(2)
(2'51> +Bp1,ﬁ1 ,p2,52§k1,017k2,a27
where
(2.52) ‘
(2) W8 YB2 Ve Van dpl + dpz 5 ki —k
D161 ,p§752;k1,a1,k2,a2 T dp1 dpzdk1dk:2 (pl +p2 1 2).

Similar to Eq. (2.49), Eq. (2.51) consists of products of independent one-photon
scatterings as well as a two-photon bound state. This decomposition into non-
bound and bound states is an essential characteristic of multi-photon scattering.
In Appendix B, we show the n-photon S-matrix element S;(;;lll in the form of
cluster decomposition as well as a general expression for the n-photon bound
state.

3. Scattering between a single photon and a weak coherent state

In this section, we consider scattering between a pair of input states which
consists of a single photon and a weak coherent state counter-propagating to
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a two-level emitter embedded in a 1D waveguide, as depicted in Fig. 1. The
weak coherent state can be well approximated by a superposition of vacuum
and one-photon states, thus converting the scattering problem of interest into
one-photon and two-photon scatterings. In practical experiments, any photon
states with a finite photon number are of the form of a wavepacket [45], so we
adopt a continuous-mode treatment for both the input states which are thus
described by appropriate wavepackets.

3.1. Continuous-mode input and output states

In the continuous-mode treatment, a photon propagating in the direction «
is described by a wavepacket which is in turn considered as a Fock state |1p o)
with its boson creation operator given by [45]

(3.1) b, = / dkp (R)B (k)

where ¥ (n) is the wavepacket amplitude which due to the commutation re-
quirement [bgq, b}’a] = 1 satisfies the normalisation condition

(3.2) / dklpp (k) = 1.

Using this definition, a continuous-mode n-photon Fock state propagating to
the direction « is given by
(3.3)

IA)T n
Inpe) = (F\/%)|o> - %/dkl ook p(ky) . hr (k) ke Eona).

A continuous-mode coherent state |7,) of propagating direction « is of the
form [45]

_In?

(3.4) 1a) = €% ePna|0),

where |n|? represents the mean photon number and BIW is the coherent-state

wavepacket creation operator with the propagating direction «

(3.5) o = / ()DL (),

with the amplitude 1, (k) satisfying the normalisation condition

(3.6) /dk:lwn(k)l2 = [n|*.
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Unlike IA)F’Q and IA)}’Q, IA),W and l;;f?a obey the commutation relation [Bn’a, ija] =
[n|?. Since we are interested in a weak coherent state with |n|? < 1, we can
approximate |1,) as

In|2

_m2 A _Inl? \n\
(37 )~ e E Qb )[0) = / Aoty (K) o)

Therefore, the total input state with a single photon propagating to the
right and a weak coherent state propagating to the left is

W) = |Lplm) =~ e / Ayt (k) )
(3.8) — / ey eyt (kYo (k) )

This input state, after propagating in the 1D waveguide and interacting with
the two-level emitter, gives rise to an output state given by

Wow) = Slpdlm) =~ % /dkle k)8l
(3.9) i // ey dbyibp (ky )by (ko) S ko),

where the S-matrix operator S with its one-photon and two-photon S-matrix
elements was analysed in detail in Subsection 2.3.

For numerical simulations, we choose the wavepacket amplitudes ¥r and
1y, to have Gaussian profiles

1 (k — ko,p)?

(3.10) vrl) = e (- Sgets).
_ n (k = ko,n)?

(3.11) Yy(k) = mexp ( - T‘g)a

where ko 5 and ko, are the Fock and coherent-state central carrier frequencies
and o and o, are the corresponding bandwidths. Since interaction generally
is the strongest when the input photons are in resonance with the two-level
emitter, we further take ko r = ko, = 2. For non-chiral waveguides, we have

Yr=N=7-
3.2. Overlap with the ideal output state

In our waveguide QED scenario (see Fig. 1), the two-level emitter is ex-
pected to provide the needed nonlinearity to emulate a cross-Kerr interaction
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Figure 2: Overlap fidelity F defined in Eq. (3.14) between the output state
|Wout) and the ideal one |Widealy = |1 )|ei®n;) as a function of the coupling

strength v and the phase shift ¢ at n = 0.2 for a) op = 0, = 0.1, b) op =
l,0,=01,¢)op =0.1,0,=1,and d) op =0, = 1.

between the input photon and the input coherent state in such a way that the
former imparts a phase shift ¢ on the latter. Concretely, the ideal output state
resulting from such scattering process is given by

_ In|?

[Pani) = [padlena) = ™= [ dkatop(k1)lkia)

Inl

(3.12) et / / iyt (k) eion (o) 1 ko),

where (as a reminder) the photon |1r,) and the phase-shifted coherent state
le?®ns) should propagate in the opposite directions, a and @, to be treated
independently. As « € {r, [}, there are two possible ideal output states

(3.13) [T = {[1r.0)lem), [1ra)le n,)}.

The fidelity between the output state | W) with its the ideal counterpart
|Wideal) is defined as

out

(3'14) F= |<\I’ideal|\1jout>|2v

out

which following Eqgs. (3.9) and (3.12) depends on the propagating direction
« (i.e., the explicit form of the ideal output state in Eq. (3.13)), the coupling
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Figure 3: Overlap fidelity F defined in Eq. (3.14) between the output state
|Wout) and the ideal one |Woy)'9°% = [15;)[e??n,.) as a function of the coupling
strength v and the phase shift ¢ at n = 0.2 for a) op = 0, = 0.1, b) op =
l,0,=01,¢)op =0.1,0,=1,and d) op =0, = 1.

strength ~, the phase shift ¢, the coherent-state amplitude 7, and the two
wavepacket bandwidths or and oy, i.e.,

(315) .FE]:(Ol,Qs,’)/,’/],O'F,O'n).

In what follows, we fix n and examine how F changes with «, 7, ¢, o, and
oy-

We consider v = r such that |¥ideal) = |15 )]ei?n,). Fixing n = 0.2, in
Fig. 2 we plot F as a function of v and ¢ in four bandwidth scenarios: (i)
op = oy, = 0.1; (ii) op = 1> 0, = 0.1; (ili) op = 0.1 < 0, = 1; and (iv)
op = o, = 1. In all cases, we observe a common behaviour, namely, the fidelity
F remains essentially the same for o,, = 0.1 or 0,, = 1 and depends quite weakly
on the phase shift ¢. It however varies significantly when changing the Fock
bandwidth o from 0.1 to 1. In particular, for o = 0.1 (Figs. 2a and 2c) F is
small, < 0.1 for the whole parameter region. Meanwhile, for o = 1 (Figs. 2b
and 2d) F gradually reduces from above 0.7 to below 0.2 when varying v from
0.1 to 1.

\I/ideal

We repeat above analysis for « = [ and the ideal output state |P¢)
[1£,)]€**n,) in Fig. 3. For o = 0.1 (Figs. 3a and 3c), F increases from 0.4 to
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above 0.8 at 7 ~ 0.4 and remains > 0.8 for v > 0.4. For op =1 (Figs. 3b and
3d), F improves steadily from below 0.1 to 0.4 with increasing v. Comparing
between Figs. 2 and 3, we see that the output state | U,y ) in Eq. (3.9) is closer
to |1r,)|e'®n;) than to [1z;)]|e’®n,) when or =1 and v ~ 0.1. In contrast, it
is closer to |[1x,;)]e**n,) than to |1g,)|e*®n) when or = 0.1 and v ~ 1.

3.3. Photon statistics of the output state

We analyse the photon distribution of the output state in Eq. (3.9), which
includes the following cases:

e One photon going to the right with a probability denoted by PT(l);

One photon going to the left with a probability denoted by Pl(l);

Two photons going to the right with a probability denoted by Pr(,%);

. . . 2
Two photons going to the left with a probability denoted by Pl(l );

One photon going to the right and one photon going to the left with a
probability denoted by PTSQ).

These probabilities are given by

(3.16) P = /dp1|<p1,a|out>\2,

(3.17) P& = Ny / / dprdpa|(pr.apaslout) [,

where «, 5 € {r,l} and Nog = 1/(1 + o). The prefactor N,z accounts for
the fact that when two photons co-propagate they are indistinguishable. Since
these include all the allowed scattering processes, we have conservation of the
probability

(3.18) PO+ PV +P? + PP + PP =1.

Using the expression of the output state | Vo) in Eq. (3.9), we express the
above probabilities in more explicit forms as

(3.19) P :e“"‘z/dpldk’ldklz/)}(k’l)wp(kl)(S(l) ) S

e
pl,a7kl’w

with the general one-photon S-matrix element SI()Z); k., given in Eq. (2.41), and

P® = Nyge I’ / dpydpadk! dihdky dlea (K )5 (k) r (ke )y (K2)
(2) * o(2)
(3'20) X(Spl,am,ﬁ;ki,aké,ﬁ) Spl,ap2,13§k1,ak2,67
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Figure 4: a) Probability P,Sl) as a function of the coupling strength v fixing

the Fock-state bandwidth op at 0.1 and 1. b) Same as panel a) but for Pl(l).
In both panels, the input coherent-state amplitude is set to n = 0.2.

with the general two-photon S-matrix element SI()?)B 2.5y k1.0 k2
1P1 »P20v L, a0
(2.51).

Examining P{" in Eq. (3.19) as well as the output state | Uy, ) in Eq. (3.9),
one observes that one-photon scattering takes place primarily due the input
single photon, while the presence of the input coherent state merely introduces

given in Eq.
ag

a re-normalising factor eI In contrast, two-photon scattering shown in Pfﬁ)
in Eq. (3.20) involves significantly both the input single photon and the input
coherent state.

In Fig. 4, we plot the one-photon scattering probabilities Pr(l) and Pl(l) as
functions of the coupling strength ~, fixing the input coherent-state amplitude
at 7 = 0.2. Since these probabilities only depend on the wavepacket profile
1 of the input single photon (see Eq. (3.19)), we consider two values of the
bandwidth o € {0.1,1}. We also note that we are interested in the case
v > 0, so we vary « from 0.1 to 1. The limit v — 0 is trivial with Pr(l) ~ 1
(transmission) and Pl(l) ~ 0 (reflection) as pointed out in the zero-coupling
analysis for one-photon scattering below Eq. (2.40). When op = 0.1, PY in
Fig. 4a decreases from close to 0.4 to near 0 as increasing the coupling strength
~ from 0.1 to 1, while Pl(l) in Fig. 4b increases from above 0.6 to near 1.
This shows that the input single photon with a narrow-band wavepacket is
dominantly reflected, consistent with our analysis of ¢; in Eq. (2.33). When
op =1, Pr(l) also sees a decreasing trend as with op = 0.1, from near 0.9 to
close to 0.4. Pl(l) in contrast is improved from a low value near 0.1 to over 0.6.
Thus, given a broad-band wavepacket and a reasonably large coupling strength
v ~ 0.6, the input single photon can be equally transmitted and reflected. Both
Pr(l) and Pl(1 see the effect of the input coherent state via a normalising factor
e=In* ~0.96 for n = 0.2.

In Fig. 5, we plot the two-photon scattering probabilities Pﬁf), Pl(l2), and
PT(l2 ) as functions of the coupling strength -, with the coherent-state amplitude
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Figure 5: a) Probability P'? as a function of the coupling strength ~ for three
cases: o = oy, =0.1; 0p =1,0, =0.1; o =0.1,0,, = 0.1; and op = 0, = 1.
b) and c¢) Same as panel a) but for PZ(IQ) and P'?

rl "

7 chosen at 0.2. Following Eq. (3.20), these probabilities depend on the photon
wavepackets, ¥r and 9,), of both the input single photon and the input coherent
state so that we consider four different scenarios for the bandwidths: (i) op =
o, = 01; (i) op =1 > o, = 0.1; (ili) or = 0.1 € 0, = 1; and (iv)
op = 0, = 1. For scenario (i), where the two input states have the same
narrow bandwidth, due to symmetry Pr(,%) in Fig. 5a and Pl(l2) in Fig. 5b are
identical, gradually declining from near 0.02 to 0.005 as increasing the coupling
strength ~. Meanwhile, Pr(l2 )in F ig. 5c increases from 0.005 to near 0.03. This
indicates that in the limit of narrow bandwidths for both the input states, it is
more likely to find output photons counter-propagating than co-propagating,
as increasing . For scenario (ii), where the input single photon has a much
larger bandwidth than that of the input coherent state, PT(TQ) goes up to an
optimal value ~ 0.025 at v ~ 0.2, then decreasing to near 0.015. Pl(lz) sees the
same trend but its values remain below 0.005 for the whole range of . These
variations in Pr(f) and PZ(IQ) are exactly exchanged to each other in scenario (iii).

Ple ) interestingly behaves the same in scenario (ii) or (iii), which decreases to
a minimum at v ~ 0.02 and after that steadily grows to 0.02. For scenario

(iv), P? and Pl(lQ) behave the same due to symmetry increasing from just

below 0.005 to near 0.02, while Pr(z2 ) steadily decreases from just above 0.03
to near 0.005. Therefore, when there is a substantial difference in the input
wavepacket bandwidths (i.e., scenarios (ii) and (iii)), the scattering process
becomes more involved, which in general requires taking into account all the
relevant scattering terms.

We confirm numerically that all the probabilities in Fig. 4 and Fig. 5 sum up

to 1, thus confirming the probability conservation in Eq. (3.18). Additionally,
53 ), Pl(lz)7 and Pﬁf) are a small fraction compared to Pﬁl) or Pl(l). This agrees
with our weak-coherent-state assumption, that renders one-photon terms the

dominant scattering process.



20 Dat Thanh Le and Nguyen Ba An

4. Conclusions

We have detailed an analysis of the interaction between a single photon
and a weak coherent state in a waveguide QED setting: the two photon states
counter-propagate along a 1D waveguide that is coupled to a two-level quan-
tum emitter. The relevant scatterings in this setting are of one- and two-photon
types, which we compute exactly using a generalised input-output framework.
We have numerically analysed how close the output state is to the ideal phase-
shifted output state and its photon distribution, taking into account the real-
istic continuous-mode wavepackets of the involved states.

This work represents a basis for tackling more challenging problems in fu-
ture. For example, a weak coherent state can be replaced with an arbitrarily
strong one [32] and/or a single photon replaced by an n-photon state (n > 1),
which will require increasingly complex scattering analyses involving more than
two photons but hold promise for intriguingly nontrivial effects such as high-
fidelity large phase shift. Another consideration is to harness a three-level
emitter of either ladder or lambda type [46]. This expands the possible scat-
tering scenarios, such as two input photon states having two different polari-
sations allowed by the possibly different transitions of the three-level emitter
and co-propagating in a 1D waveguide. In addition, application of a different
input-output approach like the path integral technique [41] is of particular in-
terest, that could potentially simplify complicated scattering calculations with
large photon numbers.

Appendix A. More on two-photon scatterings

We list below all the relevant two-photon scattering processes in a non-chiral
waveguide.

e (i) Two co-propagating input photons |k1 o, k2,q):

— (i-1) both transmitting, with two output photons |p1,a,P2.a);

— (i-2) one transmitting and one reflecting, with two output photons
[P1,65P2,0);
— (i-3) both reflecting, with two output photons |p1 &, p2.4)-

e (ii) Two counter-propagating input photons |k, k2,5):
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— (ii-1) both transmitting, with two output photons |p1 q,p2.a);

— (ii-2) one transmitting and one reflecting, with two output photons
‘pl,avp2,a>;

— (ii-3) both reflecting, with two output photons |p1 a,p2.q)-

The scenario (i-1) was consider in the main text. In what follows, we address
the scattering scenarios (i-3) and (ii-1) with the remaining cases computed sim-
ilarly. The general S-matrix element that takes into account all the scatterings
above is shown in Eq. (2.51).

A.1. Reflection of two co-propagating photons

We consider two single photons |k1,q, k2,o) co-propagating to the emitter
and co-reflecting through with the output photons given by |p1 a,p2,4). The
S-matrix element for this two-photon scattering is given by

2 ]_ i _ r_ ’
SI(QL)&I)Z‘GL;kl,akZ,a - (271')2 dtldthtlldtée (prt1+pata—hits —kot>)

(A1) % (0]ba,out (t1)ba,ous (£2)D], 1 (£1)BY, 1, (£5)]0).

We expand the correlator in (A.1) by using the input-output relation

o(t2)be,

aout (£2)0, 5 (#1)B1, 1, (#)10)
(A.2) = (O[T (t)F (t2)6 (¢

()74 (t2))]0).
To compute Sz(n apo.aikiaks. WE Tepeat the computation of Eq. (2.46) (just
with a different prefactor now) and find that

5(2)

P1,aP2,aik1,ak2,a
WaYa _dpy + dps

_ 5 k- k
™ dpldpzdkl dkz (pl e ' 2)

e s kN6 (s — k) — % (o0 — E)6(pa — k)

dpl dpz dp1dpz
_ (1) (1) (1) (1) (2)
(A3) - Spl ask, agpz ak2 o SP1 aika, aSPZ k1o Bpl asP2,a3k1,0,k2,0
where
' a la d d
(a4) B2 = Do _Cn TG 5, 4 py— ky — k).

P1,5,P2,a3K1,a,k2,a
! B > 7T dpl dpz: dk1 dk2
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A.2. Transmission of two counter-propagating photons

We consider two photons |k1 q, k2,5) counter-propagating to the emitter and
passing through each other with the output photons given by |p;.q,p2,a). The
S-matrix element for this two-photon scattering is given by

2 1 . _k ’ _k !
Sl()a),lp2,a;k1,ak2,a - (271')2 dtldt2dt/1dt/261(pltl+p2t2 1h—katy)

(A.5) % (0lba,out (t1)bas out (t2)D], 1o (£1)B, 11 (£5)]0).

We expand the correlator in (A.5)

<O|Ba,0ut(tl)B&,out(tZ)BL,in(tll)Bg,in(tlz)‘0>
= O(t1 —t)d(ta — th)

—ad(ts — ) 0T[5 (12)54 (15)]10)
etz — t5) (O[5 (1)5+ ()]0
(A.6) FVAaTa OG- (1)5— (t2)5+ ()51 (£)][0)

Evaluating these terms and taking their Fourier transforms, we obtain

5(2)

P1,a:P2,a3k1,0,k2,a

= (1 dpl)(l dp2)5(p1 k1) (pe — k2) dpldp26(p1 k2)o(p2 — k1)

i7&7a dm + dpz
m dpl dpz dkl dkz
5(1) S(l) + S(l) S(l) + 3(2)

O(p1 +p2 — k1 — ka)

- P1,a3k1,a " P2,a3k2,a Pa,13k2,a 7 P2,a3k1,a P1,0,P2,a3K1,a,k2,a°
(A7)
where
Va d,, +d
(A8) B = oo S T8, 4 py — ki — K).

pl,avplédkl,omk?,& T dp1dp2dk1dk2

Appendix B. Cluster decomposition of multi-photon scattering

In general, Sr(fl)( is decomposed into non-bound or bound scattering clus-
ters which correspond to photons propagating through the scattering region
independently or forming many-body bound states, respectively [26, 44]. We
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Figure 6: Cluster decomposition of n-photon scattering for n = 3. Given three
input photons (orange on the left) interacting with a two-level emitter in a 1D
waveguide, the scattering yields three types of output photons (blue on the
right): (i) three independent photons, (ii) two photons bound to each other
and one independent photon, and (iii) all three photons bound to each other.
The photon bound states are represented by wavepackets partially masked by
a gray disk.

illustrate the general structure of n-photon scattering for n = 3 in Fig. 6.
Explicitly, this cluster decomposition of SI()?I)( is formulated as [44]

Il
(B.1) S =2_ 2 11 Bos o,

Q P j=1

where Q is a partition of the list {1,2,...,n} into smaller subsets Q; with
the number of subsets given by Q’s cardinality |Q|, P is a permutation over
the same list, QP is the same partition as @ but on the permutated list
{P(1),P(2),...,P(n)} with its corresponding subsets denoted by QFP;. The
sum in Eq. (B.1) takes into account all the distinct permutations under the
boson exchange symmetries in each partition. For example, considering n = 4,
a possible partition is @ = {{1,3},{2},{4}} with |Q| = 3 and Q; = {1,3},
Q> = {2}, and Q3 = {4}. Given a permutation P = {4,2,1,3} we have
QP = {9F;} = {{4,1},{2},{3}}. Another permutation P’ = {1,2,4,3}
would lead to QP = {QPj} = {{1,4},{2},{3}}, which is the same as QP
and so will not be counted in the summation.

In Eq. (B.1), BSQQJ;‘IZQPJ represents a multi-photon bound state when |Q,| >

1, but is reduced to an independent one-photon scattering (i.e., S;llg) when
|Q;| = 1. The explicit expression for Bg_ll)« given an m-photon input state
k) = k1,015 -+ kn,a,) and an n-photon state |p) = [p1,8,, 02,855« - - » Pn.B, s i1
the case of a two-level emitter is [22]

. n
2

BoN = —WH(%{%)%
j=1
B2 {TI(08) " IT (et 3 8))  pemsbs(324,),
=1 j=1 m=1 j=1 j=1



24

Dat Thanh Le and Nguyen Ba An

where e = Q —iI'/2 (with Q the emitter transition frequency and I' = v, +
the emitter total decay rate), A; = k; —p;, and “perms” denotes permutations
taken among the input frequencies {k;} and output ones {p;}.
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