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Abstract. Photon-photon interaction, an essential ingredient for opti-
cal quantum technologies, is indirect actually, i.e., often mediated via a
nonlinear medium. In this work, we consider a single photon interacting
with a weak coherent state in a one-dimensional waveguide coupled to a
two-level quantum emitter. We present a general input-output framework
that applies to an arbitrary input Fock state and various types of quan-
tum emitters. We then use this to compute the relevant scattering pro-
cesses between the single photon and the weak coherent state. We analyse
in detail the characteristics of the output state taking into account the
continuous-mode nature of the input and output states which are treated
as appropriate photon wavepackets.

1. Introduction

Single photons, despite being ideal carriers of quantum information with
low decoherence and ease of transmission, hardly interact with each other,
which introduces a major bottleneck in implementing two-qubit gates needed
for universal quantum computation [1, 2]. Interaction and manipulation at the
single-photon level are thus mostly indirect, relying on measurement-induced
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nonlinearity [3, 4] or a mediate nonlinear medium [5, 6]. The emerging field of
waveguide quantum electrodynamics (QED) follows the latter approach, where
photons interact with localised quantum emitters embedded in one-dimensional
(1D) waveguides. Physical platforms to implement waveguide QED primarily
include ultracold atoms trapped in optical fibers [7, 8], quantum dots embedded
in photonic crystal waveguides [9, 10], and superconducting qubits coupled to
transmission lines [11, 12]. In these systems, due to the confined dimensions
quantum emitters couple strongly to only a few propagating photon modes [13],
which can lead to strong effective photon-photon interaction [14]. Harnessing
this effect, single-photon transistors [15], switches [16], and quantum nonlinear
optics with single photons [17, 18] have been demonstrated.

Photon scattering processes are central to the studies of waveguide QED,
most of which have so far considered scattering of either Fock states [19, 20,
21, 22, 23, 24] or coherent states [25, 26] but not a pair of input states of both
types. However, interaction between a single photon and a coherent state is
of potential use in optical quantum technologies. In particular, via a weak
cross-Kerr medium a single photon could impart a detectable phase shift on a
strong coherent state. This effect can be exploited to implement nondemolition
photon-number detection and controlled-phase gates between individual pho-
tons [27, 28]. Despite initial criticism due to an idealised single-mode quantum
treatment of the cross-phase modulation [29, 30, 31], it was shown in Refs.
[32, 33] using a general theory of continuous-mode photonic pulses that such
cross-Kerr scheme can achieve high fidelity, provided that the input pulses fully
pass through each other. In addition, single photons and coherent states can
be combined to construct hybrid discrete-continuous qubits [34, 35]. This hy-
brid approach to optical quantum information processing can outperform its
discrete and continuous counterparts in various quantum tasks [36, 37, 38].

In this paper, we study the interaction between a single-photon state |1⟩
and a coherent state |η⟩ in a 1D waveguide coupled to a two-level emitter. The
two input states are necessarily in orthogonal modes, for example, with respect
to polarisation or spatial modes, so that they can be treated independently
in a mutual form of a product state. As light-emitter interaction is of dipole
coupling nature [39] (i.e., Ĥint ∝ −d̂.Ê with d̂ the emitter’s electric dipole and

Ê the field operator), the photons interact significantly with the emitter only
when their polarisation aligns with that of the two-level atom’s only transition
(|g⟩ ↔ |e⟩, with |g⟩ and |e⟩ the emitter’s ground and excited states). Therefore,
in our analysis the input single photon and the input coherent state have the
same polarisation set by the two-level emitter but counter-propagate to each
other, as shown in Fig. 1. Furthermore, we consider the coherent state with a
small amplitude (i.e., with η such that |η|2 ≪ 1) to avoid unwanted saturation
effects on the emitter due to strong coherent drives in realistic experiments
[40]. This also simplifies the relevant scattering calculations.
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Figure 1: Diagram of a single photon |1⟩ and a coherent state |η⟩ counter-
propagating in a non-chiral 1D waveguide coupled a general quantum emitter.
In our work, the emitter is chosen to be a two-level atom with a transition
frequency Ω.

We organise this work as follows. In Section 2, we introduce a generalised
input-output formalism that computes the scattering of input states with an
arbitrary photon number [22, 41], with discrete examples applied for one- and
two-photon scatterings. We then address the interaction between a single-
photon state and a coherent state in Section 3. Using Fock-state representation
of a weak coherent state |η⟩ ≃ c0|0⟩ + c1|1⟩ with proper coefficients c0 and c1
for |η|2 << 1, the interested scattering scenario is well reduced to sum of
two processes: one is single-photon scattering due to the term c0|0⟩|1⟩ and the
other is two-photon one due to the term c1|1⟩|1⟩. We then use the input-output
formalism introduced in Section 2 to compute the output state. Based on this,
we numerically analyse the characteristics of the output state, including its
fidelity to the ideal phase-shifted output state and its photon distribution. We
conclude our work in Section 4 and include Appendix A and Appendix B to
complement the results in the main text.

2. Generalised input-output formalism

2.1. Hamiltonians and input-output relation

We consider a localised quantum emitter coupled to a non-chiral (i.e., two-
mode) waveguide. The total Hamiltonian for this setup is given by

(2.1) Ĥ = Ĥemi + Ĥwg + Ĥint,

where Ĥemi (to be specified later) is the emitter Hamiltonian, Ĥwg is the waveg-

uide Hamiltonian, and Ĥint is the emitter-waveguide interaction Hamiltonian.
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The latter two are given by

Ĥwg =
∑
α

∫ ∞

−∞
dωωb̂†α(ω)b̂α(ω),(2.2)

Ĥint = i
∑
α

√
γα
2π

∫ ∞

−∞
dω(b̂†α(ω)ĉ− ĉ†b̂α(ω)).(2.3)

In Eqs. (2.2) and (2.3), α ∈ {r, l} denotes right-moving and left-moving modes,

b̂α(ω) and b̂
†
α(ω) are waveguide bosonic operators with the commutation rela-

tion [b̂α(ω), b̂
†
α′(ω′)] = δα,α′δ(ω−ω′), ĉ and ĉ† (to be specified later) are emitter

operators that couple to the waveguide, and γα is the emitter-waveguide cou-
pling strength. For a non-chiral waveguide, both propagating directions, α = r
or α = l, are equivalent such that γr ≡ γl = γ, i.e., there is only one coupling
strength γ. However, in the expression of Ĥint we include γr and γl as if they
are different in general, which is useful in recovering the chiral (or one-mode)
waveguide case by setting either γr or γl to zero.

We note that in deriving the interaction Ĥint the rotating wave approxima-
tion was utilised to remove counter-rotating terms as well as Markov approxi-
mation to simplify the coupling strength γα as independent of ω [42]. Another
idealisation is that the waveguide frequency range was extended to (−∞,+∞),
which does not affect the total system’s dynamics that is only significant in a
narrow bandwidth centred around the emitter’s transition frequency [43]. Also,
in this paper we set ℏ = 1 for convenience.

We define the input and output fields for both right- and left-moving modes

b̂α,in(t) =
1√
2π

∫
dωe−iω(t−t0)b̂α(ω, t0),(2.4a)

b̂α,out(t) =
1√
2π

∫
dωe−iω(t−t1)b̂α(ω, t1),(2.4b)

where t0 and t1 are the initial time in a distant past and the final time in a
distant future, respectively. The input and output fields obey the commutation
relations[

b̂α,in(t), b̂
†
α′,in(t

′)
]
=

[
b̂α,out(t), b̂

†
α′,out(t

′)
]

= δα,α′δ(t− t′),(2.5a) [
b̂α,in(t), b̂α′,in(t

′)
]
=

[
b̂α,out(t), b̂α′,out(t

′)
]

= 0,(2.5b)

and are related to each other via the response by the emitter [43]

(2.6) b̂α,out(t) = b̂α,in(t) +
√
γαĉ(t).

Here ĉ(t) = eiĤtĉe−iĤt is a Heisenberg operator, with Ĥ given in Eq. (2.1).
Furthermore, given an arbitrary emitter operator ŝ we can prove the following
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causality relations [43, 44][
ŝ(t), b̂α,in(t

′)
]
=

[
ŝ(t), b̂†α,in(t

′)
]
= 0 for t < t′,(2.7a) [

ŝ(t), b̂α,out(t
′)
]
=

[
ŝ(t), b̂†α,out(t

′)
]
= 0 for t > t′.(2.7b)

Equations (2.7a) and (2.7b), respectively, indicate that the dynamics of the
emitter depends on neither the input fields in the future nor the output fields
in the past.

2.2. Multi-photon scattering

Scattering of an input state into an output state is described by the (uni-
tary) S-matrix operator Ŝ. In particular, we consider an input state consist-
ing of n photons |k⟩ ≡ |k1,α1

, . . . , kn,αn
⟩ with frequencies kj (j = 1, . . . , n)

and propagating directions αj ∈ {r, l}. We are interested in the composite
emitter-waveguide system that conserves the total excitation number and as-
sume that the emitter was and will be again in its ground state prior to and
after the scattering. By this, the output state is also given by an n-photon
state |p⟩ ≡ |p1,β1

, p2,β2
, . . . , pn,βn

⟩ with generally different frequencies pj sat-
isfying the energy conservation

∑n
j=1 pj =

∑n
j=1 kj and different propagating

directions βj . Scattering between these input and output states is represented
by the S-matrix element [25]

S
(n)
p;k = ⟨p|Ŝ|k⟩ = ⟨0|

n∏
j=1

b̂βj ,out(pj)

n∏
j=1

b̂†αj ,in
(kj)|0⟩,(2.8)

where b̂α,in(k) and b̂α,out(p) are the input and output fields in the frequency
domain, which are related to those in the time domain as

(2.9) b̂α,in/out(k) =
1√
2π

∫
dtb̂α,in/out(t)e

ikt.

We follow Refs. [22, 44] to introduce a general scheme to compute S
(n)
p;k for

an arbitrary n. We first use Eq. (2.9) to recast S
(n)
p;k to

(2.10) S
(n)
p;k = F (n)⟨0|

n∏
j=1

b̂βj ,out(tj)

n∏
j=1

b̂†αj ,in
(t′j)|0⟩,

where F (n) denotes a multi-dimensional Fourier transform given by

(2.11) F (n) =
1

(2π)n

∫
· · ·

∫ n∏
j=1

dtjdt
′
je

ipjtj−ikjt
′
j .
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We then use the input-output and causality relations in Eqs. (2.6) and (2.7) to
represent the field correlation function in Eq. (2.10)

(2.12) ⟨0|
n∏

j=1

b̂βj ,out(tj)

n∏
j=1

b̂†αj ,in
(t′j)|0⟩,

in terms of the emitter correlation functions, which is the key idea in the scheme
of interest. This includes the following steps:

(i) The output operators b̂βj ,out commute with each other, so that we introduce
the time-ordering operator T to freely order them by decreasing times. We also
use Eq. (2.6) to rewrite the operator product in Eq. (2.12) as
(2.13)

T[(b̂β1,in(t1) +
√
γβ1

ĉ(t1))...(b̂βn,in(tn) +
√
γβn

ĉ(tn))]b̂
†
α1,in

(t′1)...b̂
†
αn,in

(t′n).

We expand this product and label different terms by the number of times, m,
that the emitter operator ĉ(tm) appears in each term.

(ii) Owing to the causality relation [ĉ(t), b̂α,in(t
′)] = 0 for t′ > t in Eq. (2.7a),

all the input operators b̂βj ,in can be moved to the right of the emitter operators
ĉ and put outside of the time-ordering operator T. The mth-order term in Eq.
(2.13) is then

(2.14) ⟨0|T[ĉ(t1)...ĉ(tm)]b̂βm+1,in(tm+1)...b̂βn,in(tn)b̂
†
α1,in

(t′1)...b̂
†
αn,in

(t′n)|0⟩⟩.

(iii) We further reduce Eq. (2.14) by considering

b̂βm+1,in(tm+1)...b̂βn,in(tn)b̂
†
α1,in

(t′1)...b̂
†
αn,in

(t′n)|0⟩.

We move b̂†αj ,in
to the left of b̂βl,in using the commutation relation in Eq. (2.5a)

and successively eliminate any residual b̂βl,in in the expression. This manipu-
lation decomposes Eq. (2.14) into in a number of terms, each in the form of a
product of n−m (Dirac) delta functions and a correlation function given by

(2.15) ⟨0|T[ĉ(t1)...ĉ(tm)]b̂†α1,in
(t′1)...b̂

†
in(αm, t

′
m)|0⟩.

(iv) Since [ĉ(t), b̂†α,in(t
′)] = 0 for t < t′ following Eq. (2.7a), we can expand the

time-ordering operator T to all the operators in Eq. (2.15). We also use the

Hermitian conjugate of Eq. (2.6), i.e., b̂†α,in(t) = b̂†α,out(t)−
√
γαĉ

†(t), to rewrite
Eq. (2.15) as
(2.16)

⟨0|T[ĉ(t1)...ĉ(tm)(b̂†α1,out(t
′
1)−

√
γα1

ĉ†(t′1)) . . . (b̂
†
αm,out(t

′
m)−√

γαm
ĉ†(t′m))]|0⟩.

Due to the causality relation [ĉ(t), b̂†αj ,out(t
′)] = 0 for t > t′ in Eq. (2.7b), the

output operators b̂†αj ,out commute with all the system operators ĉ to their left.
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This implies that upon fully expanding Eq. (2.16) the only term that remains
is

(2.17) ⟨0|T[ĉ(t1)...ĉ(tm)ĉ†(t′1)...ĉ
†(t′m)]|0⟩.

After the above steps, one sees that n-photon S-matrix element S
(n)
p;k can be

computed via Fourier transform of the emitter’s correlation functions

(2.18) S
(n)
p;k = F (n)

∑
m

fm⟨0|T[ĉ(t1)...ĉ(tm)ĉ†(t′1)...ĉ
†(t′m)]|0⟩,

where each coefficient fm contains coupling constants and delta functions.

We note that in Eq. (2.18) the emitter operators ĉ(t) are Heisenberg op-
erators governed by the total emitter-waveguide Hamiltonian Ĥ. Using the
quantum regression formula [22, 43] or the Green’s function technique [44], we
can eliminate the waveguide degrees of freedom in the total evolution and prove
that the correlation functions in Eq. (2.18) can be evaluated via an effective
emitter evolution in the form
(2.19)

⟨0|T[ĉ(t1)...ĉ(tm)ĉ†(t′1)...ĉ
†(t′m)]|0⟩ = ⟨0|T[ˆ̃c(t1)...ˆ̃c(tm)ˆ̃c†(t′1)...ˆ̃c

†(t′m)]|0⟩,

where

ˆ̃c(t) = eiĤeff tĉe−iĤeff t,(2.20)

Ĥeff = Ĥemi − i
Γ

2
ĉ†ĉ,(2.21)

with Γ = γr +γl the total decaying rate of the emitter. Equation (2.18) is thus
recast to

(2.22) S
(n)
p;k = F (n)

∑
m

fm⟨0|T[ˆ̃c(t1)...ˆ̃c(tm)ˆ̃c†(t′1)...ˆ̃c
†(t′m)]|0⟩.

This is the core result that will be used repeatedly in what follows.

2.3. The simplest quantum emitter

So far we have kept the emitter Hamiltonian Ĥemi and its operator ĉ un-
specified with an implication that the input-output formalism presented above
is general and can be applied to various types of quantum emitters. In the fol-
lowing, we consider the simplest quantum emitter model, which is a two-level
atom, and exemplify the above-introduced input-output technique in comput-
ing one-photon and two-photon scattering processes. Discretely, for a two-level
emitter, we have

(2.23) Ĥemi =
Ω

2
σ̂z, ĉ = σ̂−, ĉ† = σ̂+,
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where Ω is the emitter transition frequency, σ̂z = |e⟩⟨e| − |g⟩⟨g|, σ̂− = |g⟩⟨e|,
and σ̂+ = |e⟩⟨g|. We thus also have

Ĥeff =
Ω

2
σ̂z − i

Γ

2
σ̂+σ̂−,(2.24)

ˆ̃σ±(t) = e±(iΩ+Γ
2 )tσ̂±,(2.25)

b̂α,out(t) = b̂α,in(t) +
√
γασ̂−(t).(2.26)

2.3.1. One-photon scattering

We consider one photon transmitting through the emitter, so the input and
output photons co-propagate in the same direction, say, α. The one-photon
S-matrix element in this case is given by

(2.27) S
(1)
pα;kα

=
1

2π

∫∫
dt1dt

′
1e

i(pt1−kt′1)⟨0|b̂α,out(t1)b̂†α,in(t
′
1)|0⟩.

We expand the correlator ⟨0|b̂α,out(t1)b̂†α,in(t′1)|0⟩ following the four steps out-
lined in Subsection 2.2

(2.28) ⟨0|b̂α,out(t1)b̂†α,in(t
′
1)|0⟩ = δ(t1 − t′1)− γα⟨0|T[ˆ̃σ−(t1)ˆ̃σ+(t

′
1)]|0⟩.

The first term in Eq. (2.28) contributes to S
(1)
pα;kα

as

(2.29) δ(p− k).

Meanwhile, the second term in Eq. (2.28) contributes

(2.30) −δ(p− k)
iγα
dk

,

where

(2.31) dk = k − Ω+ i
Γ

2
.

In deriving the result in Eq. (2.30) we have replaced the time-ordering operator
T by the Heaviside function Θ(t1 − t′1), and used the identity

∫
dt′e−iωt′Θ(t−

t′) = e−iωt
(
i/ω + δ(ω)

)
. We therefore find that

(2.32) S
(1)
pα;kα

= δ(p− k)tk,

where

(2.33) tk =
k − Ω− i(γα − γᾱ)/2

k − Ω+ i(γα + γᾱ)/2
,
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with ᾱ denoting the propagating direction opposite to α. The delta function
in Eq. (2.32) represents the energy conservation, while tk represents the trans-
mission coefficient.

Setting γᾱ = 0 such that the (chiral) waveguide allows propagation in one
direction α only, tk is reduced to

(2.34) t
(chiral)
k =

k − Ω− iγα/2

k − Ω+ iγα/2
.

One sees that |t(chiral)k | = 1, implying the single photon is completely transmit-
ted through the emitter while experiencing some phase shift. Meanwhile for a
non-chiral waveguide with γα = γᾱ, tk is of the form

(2.35) t
(non-chiral)
k =

k − Ω

k − Ω+ iΓ/2
,

which shows that when the single photon is on resonance with the two-level
emitter (k = Ω) its transmission through the emitter is forbidden completely
or in other words the input photon is reflected completely. This complete
transmission blockage is a consequence of a destructive interference between a
single photon that intactly passes through the emitter and another one with
a π phase shift that is emitted from the re-emission of the emitter after being
excited to its excited state.

We consider the remaining case of one photon scattering, that is, reflection
off the emitter with the input and output photons propagating in opposite
directions. The S-matrix element for this reflection process is given by

(2.36) S
(1)
pᾱ;kα

= δ(p− k)rk,

where rk is the reflection coefficient

(2.37) rk =
−i√γᾱγα

k − Ω+ i(γα + γᾱ)/2
.

In the chiral (γᾱ = 0) and non-chiral (γα = γᾱ) cases, the reflection coefficient
rk is respectively given by

r
(chiral)
k = 0,(2.38)

r
(non-chiral)
k =

−iΓ/2
k − Ω+ iΓ/2

.(2.39)

It is evident the one-photon transmission and reflection coefficients, tk and rk,
in both chiral and non-chiral cases satisfy

(2.40) |tk|2 + |rk|2 = 1,
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which reflects the conservation of one-photon scattering probability. When
there is no coupling between the waveguide and the emitter, i.e., γα = γᾱ = 0,
we find tk = 1 and rk = 0.

We can express a general one-photon scattering from an arbitrary input
photon in state |kα⟩ into the output photon in state |pβ⟩ in terms of the S-
matrix element of the form

(2.41) S
(1)
pβ ;kα

= δ(p− k)[δβ,αtk + (1− δβ,α)rk].

2.3.2. Two-photon scattering

We consider two input photons |k1,α, k2,α⟩ co-transmitting through the
emitter with the output photons |p1,α, p2,α⟩. The S-matrix element for this
two-photon scattering is given by

S
(2)
p1,αp2,α;k1,αk2,α

=
1

(2π)2

∫∫∫∫
dt1dt2dt

′
1dt

′
2e

i(p1t1+p2t2−k1t
′
1−k2t

′
2)

×⟨0|b̂α,out(t1)b̂α,out(t2)b̂†α,in(t
′
1)b̂

†
α,in(t

′
2)|0⟩.(2.42)

We follow the scheme in Subsection 2.2 to expand the correlator in Eq. (2.42)

⟨0|b̂α,out(t1)b̂α,out(t2)b̂†α,in(t
′
1)b̂

†
α,in(t

′
2)|0⟩

= δ(t1 − t′1)δ(t2 − t′2) + δ(t1 − t′2)δ(t2 − t′1)

−γαδ(t1 − t′1)⟨0|T[ˆ̃σ−(t2)ˆ̃σ+(t
′
2)]|0⟩ − γαδ(t1 − t′2)⟨0|T[ˆ̃σ−(t2)ˆ̃σ+(t

′
1)]|0⟩

−γαδ(t2 − t′1)⟨0|T[ˆ̃σ−(t1)ˆ̃σ+(t
′
2)]|0⟩ − γαδ(t2 − t′2)⟨0|T[ˆ̃σ−(t1)ˆ̃σ+(t

′
1)]|0⟩

+γ2α⟨0|T[ˆ̃σ−(t1)ˆ̃σ−(t2)ˆ̃σ+(t
′
1)ˆ̃σ+(t

′
2)]|0⟩.

(2.43)

The first and second terms in Eq. (2.43) contribute to S
(2)
p1,α,p1,α;k1,α,k1,α

the
following

(2.44) δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1).

The third to sixth terms in Eq. (2.43) contribute respectively

−
(
δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1)

) iγα
dp2

−
(
δ(p2 − k1)δ(p1 − k2) + δ(p2 − k2)δ(p1 − k1)

) iγα
dp1

.(2.45)

Contribution of the last term in Eq. (2.43) to S
(2)
p1,α,p2,α;k1,α,k2,α

is more involved
and given by a fourfold integral

γ2α
(2π)2

∫∫∫∫
dt1dt2dt

′
1dt

′
2e

i(p1t1+p2t2−k1t
′
1−k2t

′
2)

×⟨0|T[ˆ̃σ−(t1)ˆ̃σ−(t2)ˆ̃σ+(t
′
1)ˆ̃σ+(t

′
2)]|0⟩.(2.46)
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Noting that ⟨0|T[ˆ̃σ−(t1)ˆ̃σ−(t2)ˆ̃σ+(t
′
1)ˆ̃σ+(t

′
2)]|0⟩ is non-zero only when it starts

with ˆ̃σ− and terminates with ˆ̃σ+, we decompose Eq. (2.46) to four integrals

γ2α
(2π)2

(Ip1k1p2k2
+ Ip1k2p2k1

+ Ip2k1p1k2
+ Ip2k2p1k1

),

where

Ip1k1p2,k2 =

∫∫∫∫
dt1dt2dt

′
1dt

′
2e

i(p1t1+p2t2−k1t
′
1−k2t

′
2)

×⟨0|ˆ̃σ−(t1)ˆ̃σ+(t′1)ˆ̃σ−(t2)ˆ̃σ+(t′2)|0⟩Θ(t1−t′1)Θ(t′1−t2)Θ(t2−t′2),(2.47)

for the time ordering t1 > t′1 > t2 > t′2 and similarly for Ip1k2p2k1 , Ip2k1p1k2

and Ip2k2p1k1
with the corresponding time orderings. In fact, given Ip1k1p2k2

,
the other three integrals are obtained by permuting between k1 and k2 and/or
between p1 and p2. These integrals are explicitly given by

Ip1k1p2k2 = − 2π

dk2
dp1

( iδ(p1 + p2 − k1 − k2)

k2 − p2
+ πδ(k1 − p1)δ(k2 − p2)

)
,

Ip1k2p2k1
= − 2π

dk1
dp1

( iδ(p1 + p2 − k1 − k2)

k1 − p2
+ πδ(k1 − p2)δ(k2 − p1)

)
,

Ip2k1p1k2
= − 2π

dk2
dp2

( iδ(p1 + p2 − k1 − k2)

k2 − p1
+ πδ(k1 − p2)δ(k2 − p1)

)
,

Ip2k2p1k1
= − 2π

dk1
dp2

( iδ(p1 + p2 − k1 − k2)

k1 − p1
+ πδ(k1 − p1)δ(k2 − p2)

)
,

so the last term in Eq. (2.43) contributes to S
(2)
p1,α,p2,α;k1,α,k2,α

as

iγ2α
π

dp1
+ dp2

dp1dp2dk1dk2

δ(p1 + p2 − k1 − k2)

− γ2α
dp1dp2

δ(p1 − k1)δ(p2 − k2)−
γ2α

dp1dp2

δ(p1 − k2)δ(p2 − k1).(2.48)

Combining all contributions computed above yields

S
(2)
p1,αp2,α;k1,αk2,α

= S
(1)
p1,α;k1,α

S
(1)
p2,α;k2,α

+ S
(1)
p1,α;k2,α

S
(1)
p2,α;k1,α

+ B(2)
p1,α,p2,α;k1,α,k2,α

,(2.49)

where S
(1)
pj,β ;kl,α

is given in Eq. (2.41) and

(2.50) B(2)
p1,α,p2,α;k1,α,k2,α

=
iγ2α
π

dp1
+ dp2

dp1dp2dk1dk2

δ(p1 + p2 − k1 − k2).
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Equation (2.49) shows that the transmission of two photons through the emitter
is composed of two types of processes. The first type is that the two photons
transmit independently such as |k1,α⟩ → |p1,α⟩ and |k2,α⟩ → |p2,α⟩ or |k1,α⟩ →
|p2,α⟩ and |k2,α⟩ → |p1,α⟩, resulting in the first two products of one-photon
S-matrix elements in Eq. (2.49). The second type is that the two photons bind
with each other forming a two-photon bound state [25], which is represented by
the last single expression in Eq. (2.49). Such bound state can be explained via
stimulated emission in the following way. The first photon promotes the emitter
to its excited state. The second photon passing through cannot be absorbed by
the already excited emitter but can stimulate the emitter’s re-emission of the
first photon. The two photons appear together with the same phase forming
a joint two-photon bound state [26]. The bound state is characterised by a
common delta function δ(p1 + p2 − k1 − k2) that indicates energy conservation
for the input and output pairs as a whole, but not for independent photons.
This is the origin of the so-called frequency mixing or spectral entanglement
in two-photon scattering, which introduces a major challenge in constructing a
controlled-phase gate for single photons from cross-Kerr nonlinearity [23, 24].

We consider more two-photon scattering scenarios in Appendix A and sum-
marise here the most general case with arbitrary two-photon input |k1,α1k2,α2⟩
and output states |p1,β1p2,β2⟩

S
(2)
p1,β1

,p2,β2
;k1,α1

,k2,α2
= S

(1)
p1,β1

;k1,α1
S
(1)
p2,β2

;k2,α2
+ S

(1)
p1,β1

;k2,α2
S
(1)
p2,β2

;k1,α1

+B(2)
p1,β1

,p2,β2
;k1,α1

,k2,α2
,(2.51)

where
(2.52)

B(2)
p1,β1

,p2̄,β2
;k1,α1

,k2,α2
=
i
√
γβ1γβ2γα1γα2

π

dp1
+ dp2

dp1dp2dk1dk2

δ(p1 + p2 − k1 − k2).

Similar to Eq. (2.49), Eq. (2.51) consists of products of independent one-photon
scatterings as well as a two-photon bound state. This decomposition into non-
bound and bound states is an essential characteristic of multi-photon scattering.

In Appendix B, we show the n-photon S-matrix element S
(n)
p;k in the form of

cluster decomposition as well as a general expression for the n-photon bound
state.

3. Scattering between a single photon and a weak coherent state

In this section, we consider scattering between a pair of input states which
consists of a single photon and a weak coherent state counter-propagating to
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a two-level emitter embedded in a 1D waveguide, as depicted in Fig. 1. The
weak coherent state can be well approximated by a superposition of vacuum
and one-photon states, thus converting the scattering problem of interest into
one-photon and two-photon scatterings. In practical experiments, any photon
states with a finite photon number are of the form of a wavepacket [45], so we
adopt a continuous-mode treatment for both the input states which are thus
described by appropriate wavepackets.

3.1. Continuous-mode input and output states

In the continuous-mode treatment, a photon propagating in the direction α
is described by a wavepacket which is in turn considered as a Fock state |1F,α⟩
with its boson creation operator given by [45]

(3.1) b̂†F,α =

∫
dkψF (k)b̂

†
α(k),

where ψF (η) is the wavepacket amplitude which due to the commutation re-

quirement [b̂F,α, b̂
†
F,α] = 1 satisfies the normalisation condition

(3.2)

∫
dk|ψF (k)|2 = 1.

Using this definition, a continuous-mode n-photon Fock state propagating to
the direction α is given by
(3.3)

|nF,α⟩ =
(b̂†F,α)

n

√
n!

|0⟩ = 1√
n!

∫
dk1 . . . dknψF (k1) . . . ψF (kn)|k1,α . . . kn,α⟩.

A continuous-mode coherent state |ηα⟩ of propagating direction α is of the
form [45]

(3.4) |ηα⟩ = e−
|η|2
2 eb̂

†
η,α |0⟩,

where |η|2 represents the mean photon number and b̂†η,α is the coherent-state
wavepacket creation operator with the propagating direction α

(3.5) b̂†η,α =

∫
dkψη(k)b̂

†
α(k),

with the amplitude ψη(k) satisfying the normalisation condition

(3.6)

∫
dk|ψη(k)|2 = |η|2.
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Unlike b̂F,α and b̂†F,α, b̂η,α and b̂†η,α obey the commutation relation [b̂η,α, b̂
†
η,α] =

|η|2. Since we are interested in a weak coherent state with |η|2 ≪ 1, we can
approximate |ηα⟩ as

(3.7) |ηα⟩ ≃ e−
|η|2
2 (1 + b̂†η,α)|0⟩ = e−

|η|2
2 |0⟩+ e−

|η|2
2

∫
dkψη(k)|kα⟩.

Therefore, the total input state with a single photon propagating to the
right and a weak coherent state propagating to the left is

|Ψin⟩ ≡ |1F,r⟩|ηl⟩ ≃ e−
|η|2
2

∫
dk1ψF (k1)|k1,r⟩

+e−
|η|2
2

∫∫
dk1dk2ψF (k1)ψη(k2)|k1,rk2,l⟩.(3.8)

This input state, after propagating in the 1D waveguide and interacting with
the two-level emitter, gives rise to an output state given by

|Ψout⟩ ≡ Ŝ|1F,r⟩|ηl⟩ ≃ e−
|η|2
2

∫
dk1ψF (k1)Ŝ|k1,r⟩

+e−
|η|2
2

∫∫
dk1dk2ψF (k1)ψη(k2)Ŝ|k1,rk2,l⟩,(3.9)

where the S-matrix operator Ŝ with its one-photon and two-photon S-matrix
elements was analysed in detail in Subsection 2.3.

For numerical simulations, we choose the wavepacket amplitudes ψF and
ψη to have Gaussian profiles

ψF (k) =
1

(2πσ2
F )

1
4

exp
(
− (k − k0,F )

2

4σ2
F

)
,(3.10)

ψη(k) =
η

(2πσ2
η)

1
4

exp
(
− (k − k0,η)

2

4σ2
η

)
,(3.11)

where k0,F and k0,η are the Fock and coherent-state central carrier frequencies
and σF and ση are the corresponding bandwidths. Since interaction generally
is the strongest when the input photons are in resonance with the two-level
emitter, we further take k0,F = k0,η = Ω. For non-chiral waveguides, we have
γr ≡ γl = γ.

3.2. Overlap with the ideal output state

In our waveguide QED scenario (see Fig. 1), the two-level emitter is ex-
pected to provide the needed nonlinearity to emulate a cross-Kerr interaction
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Figure 2: Overlap fidelity F defined in Eq. (3.14) between the output state
|Ψout⟩ and the ideal one |Ψideal

out ⟩ = |1F,r⟩|eiϕηl⟩ as a function of the coupling
strength γ and the phase shift ϕ at η = 0.2 for a) σF = ση = 0.1, b) σF =
1, ση = 0.1, c) σF = 0.1, ση = 1, and d) σF = ση = 1.

between the input photon and the input coherent state in such a way that the
former imparts a phase shift ϕ on the latter. Concretely, the ideal output state
resulting from such scattering process is given by

|Ψideal
out ⟩ ≡ |1F,α⟩|eiϕηᾱ⟩ ≃ e−

|η|2
2

∫
dk1ψF (k1)|k1,α⟩

+e−
|η|2
2

∫∫
dk1dk2ψF (k1)ψeiϕη(k2)|k1,αk2,ᾱ⟩,(3.12)

where (as a reminder) the photon |1F,α⟩ and the phase-shifted coherent state
|eiϕηᾱ⟩ should propagate in the opposite directions, α and ᾱ, to be treated
independently. As α ∈ {r, l}, there are two possible ideal output states

(3.13) |Ψideal
out ⟩ ≡ {|1F,r⟩|eiϕηl⟩, |1F,l⟩|eiϕηr⟩}.

The fidelity between the output state |Ψout⟩ with its the ideal counterpart
|Ψideal

out ⟩ is defined as

(3.14) F = |⟨Ψideal
out |Ψout⟩|2,

which following Eqs. (3.9) and (3.12) depends on the propagating direction
α (i.e., the explicit form of the ideal output state in Eq. (3.13)), the coupling



16 Dat Thanh Le and Nguyen Ba An

Figure 3: Overlap fidelity F defined in Eq. (3.14) between the output state
|Ψout⟩ and the ideal one |Ψout⟩ideal = |1F,l⟩|eiϕηr⟩ as a function of the coupling
strength γ and the phase shift ϕ at η = 0.2 for a) σF = ση = 0.1, b) σF =
1, ση = 0.1, c) σF = 0.1, ση = 1, and d) σF = ση = 1.

strength γ, the phase shift ϕ, the coherent-state amplitude η, and the two
wavepacket bandwidths σF and ση, i.e.,

(3.15) F ≡ F(α, ϕ, γ, η, σF , ση).

In what follows, we fix η and examine how F changes with α, γ, ϕ, σF , and
ση.

We consider α = r such that |Ψideal
out ⟩ ≡ |1F,r⟩|eiϕηl⟩. Fixing η = 0.2, in

Fig. 2 we plot F as a function of γ and ϕ in four bandwidth scenarios: (i)
σF = ση = 0.1; (ii) σF = 1 ≫ ση = 0.1; (iii) σF = 0.1 ≪ ση = 1; and (iv)
σF = ση = 1. In all cases, we observe a common behaviour, namely, the fidelity
F remains essentially the same for ση = 0.1 or ση = 1 and depends quite weakly
on the phase shift ϕ. It however varies significantly when changing the Fock
bandwidth σF from 0.1 to 1. In particular, for σF = 0.1 (Figs. 2a and 2c) F is
small, < 0.1 for the whole parameter region. Meanwhile, for σF = 1 (Figs. 2b
and 2d) F gradually reduces from above 0.7 to below 0.2 when varying γ from
0.1 to 1.

We repeat above analysis for α = l and the ideal output state |Ψideal
out ⟩ ≡

|1F,l⟩|eiϕηr⟩ in Fig. 3. For σF = 0.1 (Figs. 3a and 3c), F increases from 0.4 to
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above 0.8 at γ ∼ 0.4 and remains > 0.8 for γ > 0.4. For σF = 1 (Figs. 3b and
3d), F improves steadily from below 0.1 to 0.4 with increasing γ. Comparing
between Figs. 2 and 3, we see that the output state |Ψout⟩ in Eq. (3.9) is closer
to |1F,r⟩|eiϕηl⟩ than to |1F,l⟩|eiϕηr⟩ when σF = 1 and γ ∼ 0.1. In contrast, it
is closer to |1F,l⟩|eiϕηr⟩ than to |1F,r⟩|eiϕηl⟩ when σF = 0.1 and γ ∼ 1.

3.3. Photon statistics of the output state

We analyse the photon distribution of the output state in Eq. (3.9), which
includes the following cases:

• One photon going to the right with a probability denoted by P
(1)
r ;

• One photon going to the left with a probability denoted by P
(1)
l ;

• Two photons going to the right with a probability denoted by P
(2)
rr ;

• Two photons going to the left with a probability denoted by P
(2)
ll ;

• One photon going to the right and one photon going to the left with a

probability denoted by P
(2)
rl .

These probabilities are given by

P (1)
α =

∫
dp1|⟨p1,α|out⟩|2,(3.16)

P
(2)
αβ = Nαβ

∫ ∫
dp1dp2|⟨p1,αp2,β |out⟩|2,(3.17)

where α, β ∈ {r, l} and Nαβ = 1/(1 + δαβ). The prefactor Nαβ accounts for
the fact that when two photons co-propagate they are indistinguishable. Since
these include all the allowed scattering processes, we have conservation of the
probability

(3.18) P (1)
r + P

(1)
l + P (2)

rr + P
(2)
ll + P

(2)
rl = 1.

Using the expression of the output state |Ψout⟩ in Eq. (3.9), we express the
above probabilities in more explicit forms as

(3.19) P (1)
α = e−|η|2

∫
dp1dk

′
1dk1ψ

∗
F (k

′
1)ψF (k1)

(
S
(1)
p1,α;k′

1,α

)∗
S
(1)
p1,α;k1,α

,

with the general one-photon S-matrix element S
(1)
pβ ;kα

given in Eq. (2.41), and

P
(2)
αβ = Nαβe

−|η|2
∫
dp1dp2dk

′
1dk

′
2dk1dk2ψ

∗
F (k

′
1)ψ

∗
η(k

′
2)ψF (k1)ψη(k2)

×
(
S
(2)
p1,αp2,β ;k′

1,αk′
2,β

)∗
S
(2)
p1,αp2,β ;k1,αk2,β

,(3.20)
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Figure 4: a) Probability P
(1)
r as a function of the coupling strength γ fixing

the Fock-state bandwidth σF at 0.1 and 1. b) Same as panel a) but for P
(1)
l .

In both panels, the input coherent-state amplitude is set to η = 0.2.

with the general two-photon S-matrix element S
(2)
p1,β1

p2,β2
;k1,α1k2,α2

given in Eq.

(2.51).

Examining P
(1)
α in Eq. (3.19) as well as the output state |Ψout⟩ in Eq. (3.9),

one observes that one-photon scattering takes place primarily due the input
single photon, while the presence of the input coherent state merely introduces

a re-normalising factor e−|η|2 . In contrast, two-photon scattering shown in P
(2)
αβ

in Eq. (3.20) involves significantly both the input single photon and the input
coherent state.

In Fig. 4, we plot the one-photon scattering probabilities P
(1)
r and P

(1)
l as

functions of the coupling strength γ, fixing the input coherent-state amplitude
at η = 0.2. Since these probabilities only depend on the wavepacket profile
ψF of the input single photon (see Eq. (3.19)), we consider two values of the
bandwidth σF ∈ {0.1, 1}. We also note that we are interested in the case

γ > 0, so we vary γ from 0.1 to 1. The limit γ → 0 is trivial with P
(1)
r ∼ 1

(transmission) and P
(1)
l ∼ 0 (reflection) as pointed out in the zero-coupling

analysis for one-photon scattering below Eq. (2.40). When σF = 0.1, P
(1)
r in

Fig. 4a decreases from close to 0.4 to near 0 as increasing the coupling strength

γ from 0.1 to 1, while P
(1)
l in Fig. 4b increases from above 0.6 to near 1.

This shows that the input single photon with a narrow-band wavepacket is
dominantly reflected, consistent with our analysis of tk in Eq. (2.33). When

σF = 1, P
(1)
r also sees a decreasing trend as with σF = 0.1, from near 0.9 to

close to 0.4. P
(1)
l in contrast is improved from a low value near 0.1 to over 0.6.

Thus, given a broad-band wavepacket and a reasonably large coupling strength
γ ∼ 0.6, the input single photon can be equally transmitted and reflected. Both

P
(1)
r and P

(1)
l see the effect of the input coherent state via a normalising factor

e−|η|2 ∼ 0.96 for η = 0.2.

In Fig. 5, we plot the two-photon scattering probabilities P
(2)
rr , P

(2)
ll , and

P
(2)
rl as functions of the coupling strength γ, with the coherent-state amplitude
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Figure 5: a) Probability P
(2)
rr as a function of the coupling strength γ for three

cases: σF = ση = 0.1; σF = 1, ση = 0.1; σF = 0.1, ση = 0.1; and σF = ση = 1.

b) and c) Same as panel a) but for P
(2)
ll and P

(2)
rl .

η chosen at 0.2. Following Eq. (3.20), these probabilities depend on the photon
wavepackets, ψF and ψη, of both the input single photon and the input coherent
state so that we consider four different scenarios for the bandwidths: (i) σF =
ση = 0.1; (ii) σF = 1 ≫ ση = 0.1; (iii) σF = 0.1 ≪ ση = 1; and (iv)
σF = ση = 1. For scenario (i), where the two input states have the same

narrow bandwidth, due to symmetry P
(2)
rr in Fig. 5a and P

(2)
ll in Fig. 5b are

identical, gradually declining from near 0.02 to 0.005 as increasing the coupling

strength γ. Meanwhile, P
(2)
rl in Fig. 5c increases from 0.005 to near 0.03. This

indicates that in the limit of narrow bandwidths for both the input states, it is
more likely to find output photons counter-propagating than co-propagating,
as increasing γ. For scenario (ii), where the input single photon has a much

larger bandwidth than that of the input coherent state, P
(2)
rr goes up to an

optimal value ∼ 0.025 at γ ∼ 0.2, then decreasing to near 0.015. P
(2)
ll sees the

same trend but its values remain below 0.005 for the whole range of γ. These

variations in P
(2)
rr and P

(2)
ll are exactly exchanged to each other in scenario (iii).

P
(2)
rl interestingly behaves the same in scenario (ii) or (iii), which decreases to

a minimum at γ ∼ 0.02 and after that steadily grows to 0.02. For scenario

(iv), P
(2)
rr and P

(2)
ll behave the same due to symmetry increasing from just

below 0.005 to near 0.02, while P
(2)
rl steadily decreases from just above 0.03

to near 0.005. Therefore, when there is a substantial difference in the input
wavepacket bandwidths (i.e., scenarios (ii) and (iii)), the scattering process
becomes more involved, which in general requires taking into account all the
relevant scattering terms.

We confirm numerically that all the probabilities in Fig. 4 and Fig. 5 sum up
to 1, thus confirming the probability conservation in Eq. (3.18). Additionally,

P
(2)
rr , P

(2)
ll , and P

(2)
rl are a small fraction compared to P

(1)
r or P

(1)
l . This agrees

with our weak-coherent-state assumption, that renders one-photon terms the
dominant scattering process.
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4. Conclusions

We have detailed an analysis of the interaction between a single photon
and a weak coherent state in a waveguide QED setting: the two photon states
counter-propagate along a 1D waveguide that is coupled to a two-level quan-
tum emitter. The relevant scatterings in this setting are of one- and two-photon
types, which we compute exactly using a generalised input-output framework.
We have numerically analysed how close the output state is to the ideal phase-
shifted output state and its photon distribution, taking into account the real-
istic continuous-mode wavepackets of the involved states.

This work represents a basis for tackling more challenging problems in fu-
ture. For example, a weak coherent state can be replaced with an arbitrarily
strong one [32] and/or a single photon replaced by an n-photon state (n > 1),
which will require increasingly complex scattering analyses involving more than
two photons but hold promise for intriguingly nontrivial effects such as high-
fidelity large phase shift. Another consideration is to harness a three-level
emitter of either ladder or lambda type [46]. This expands the possible scat-
tering scenarios, such as two input photon states having two different polari-
sations allowed by the possibly different transitions of the three-level emitter
and co-propagating in a 1D waveguide. In addition, application of a different
input-output approach like the path integral technique [41] is of particular in-
terest, that could potentially simplify complicated scattering calculations with
large photon numbers.

Appendix A. More on two-photon scatterings

We list below all the relevant two-photon scattering processes in a non-chiral
waveguide.

• (i) Two co-propagating input photons |k1,α, k2,α⟩:

– (i-1) both transmitting, with two output photons |p1,α, p2,α⟩;

– (i-2) one transmitting and one reflecting, with two output photons
|p1,ᾱ, p2,α⟩;

– (i-3) both reflecting, with two output photons |p1,ᾱ, p2,ᾱ⟩.

• (ii) Two counter-propagating input photons |k1,α, k2,ᾱ⟩:
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– (ii-1) both transmitting, with two output photons |p1,α, p2,ᾱ⟩;

– (ii-2) one transmitting and one reflecting, with two output photons
|p1,α, p2,α⟩;

– (ii-3) both reflecting, with two output photons |p1,ᾱ, p2,α⟩.

The scenario (i-1) was consider in the main text. In what follows, we address
the scattering scenarios (i-3) and (ii-1) with the remaining cases computed sim-
ilarly. The general S-matrix element that takes into account all the scatterings
above is shown in Eq. (2.51).

A.1. Reflection of two co-propagating photons

We consider two single photons |k1,α, k2,α⟩ co-propagating to the emitter
and co-reflecting through with the output photons given by |p1,ᾱ, p2,ᾱ⟩. The
S-matrix element for this two-photon scattering is given by

S
(2)
p1,ᾱp2,ᾱ;k1,αk2,α

=
1

(2π)2

∫∫∫∫
dt1dt2dt

′
1dt

′
2e

i(p1t1+p2t2−k1t
′
1−k2t

′
2)

×⟨0|b̂ᾱ,out(t1)b̂ᾱ,out(t2)b̂†α,in(t
′
1)b̂

†
α,in(t

′
2)|0⟩.(A.1)

We expand the correlator in (A.1) by using the input-output relation

⟨0|b̂ᾱ,out(t1)b̂ᾱ,out(t2)b̂†α,in(t
′
1)b̂

†
α,in(t

′
2)|0⟩

= γᾱ⟨0|T[ˆ̃σ−(t1)ˆ̃σ−(t2)ˆ̃σ+(t
′
1)ˆ̃σ+(t

′
2)]|0⟩.(A.2)

To compute S
(2)
p1,ᾱp2,ᾱ;k1,αk2,α

, we repeat the computation of Eq. (2.46) (just

with a different prefactor now) and find that

S
(2)
p1,ᾱp2,ᾱ;k1,αk2,α

=
iγᾱγα
π

dp1
+ dp2

dp1
dp2

dk1
dk2

δ(p1 + p2 − k1 − k2)

− γᾱγα
dp1dp2

δ(p1 − k1)δ(p2 − k2)−
γᾱγα
dp1dp2

δ(p1 − k2)δ(p2 − k1)

= S
(1)
p1,ᾱ;k1,α

S
(1)
p2,ᾱ;k2,α

+ S
(1)
p1,ᾱ;k2,α

S
(1)
p2,ᾱ;k1,α

+ B(2)
p1,ᾱ,p2,ᾱ;k1,α,k2,α

,(A.3)

where

(A.4) B(2)
p1,ᾱ,p2,ᾱ;k1,α,k2,α

=
iγᾱγα
π

dp1
+ dp2

dp1dp2dk1dk2

δ(p1 + p2 − k1 − k2).
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A.2. Transmission of two counter-propagating photons

We consider two photons |k1,α, k2,ᾱ⟩ counter-propagating to the emitter and
passing through each other with the output photons given by |p1,α, p2,ᾱ⟩. The
S-matrix element for this two-photon scattering is given by

S
(2)
pα,1p2,ᾱ;k1,αk2,ᾱ

=
1

(2π)2

∫∫∫∫
dt1dt2dt

′
1dt

′
2e

i(p1t1+p2t2−k1t
′
1−k2t

′
2)

×⟨0|b̂α,out(t1)b̂ᾱ,out(t2)b̂†α,in(t
′
1)b̂

†
ᾱ,in(t

′
2)|0⟩.(A.5)

We expand the correlator in (A.5)

⟨0|b̂α,out(t1)b̂ᾱ,out(t2)b̂†α,in(t
′
1)b̂

†
ᾱ,in(t

′
2)|0⟩

= δ(t1 − t′1)δ(t2 − t′2)

−γᾱδ(t1 − t′1)⟨0|T[ˆ̃σ−(t2)ˆ̃σ+(t
′
2)]|0⟩

−γαδ(t2 − t′2)⟨0|T[ˆ̃σ−(t1)ˆ̃σ+(t
′
1)]|0⟩

+
√
γᾱγα⟨0|T[ˆ̃σ−(t1)ˆ̃σ−(t2)ˆ̃σ+(t

′
1)ˆ̃σ+(t

′
2)]|0⟩.(A.6)

Evaluating these terms and taking their Fourier transforms, we obtain

S
(2)
p1,α,p2,ᾱ;k1,α,k2,ᾱ

=
(
1− iγα

dp1

)(
1− iγᾱ

dp2

)
δ(p1 − k1)δ(p2 − k2)−

γᾱγα
dp1dp2

δ(p1 − k2)δ(p2 − k1)

+
iγᾱγα
π

dp1 + dp2

dp1
dp2

dk1
dk2

δ(p1 + p2 − k1 − k2)

= S
(1)
p1,α;k1,α

S
(1)
p2,ᾱ;k2,ᾱ

+ S
(1)
pα,1;k2,ᾱ

S
(1)
p2,ᾱ;k1,α

+ B(2)
p1,α,p2,ᾱ;k1,α,k2,ᾱ

,

(A.7)

where

(A.8) B(2)
p1,α,p2,ᾱ;k1,α,k2,ᾱ

=
iγᾱγα
π

dp1
+ dp2

dp1
dp2

dk1
dk2

δ(p1 + p2 − k1 − k2).

Appendix B. Cluster decomposition of multi-photon scattering

In general, S
(n)
p;k is decomposed into non-bound or bound scattering clus-

ters which correspond to photons propagating through the scattering region
independently or forming many-body bound states, respectively [26, 44]. We
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Figure 6: Cluster decomposition of n-photon scattering for n = 3. Given three
input photons (orange on the left) interacting with a two-level emitter in a 1D
waveguide, the scattering yields three types of output photons (blue on the
right): (i) three independent photons, (ii) two photons bound to each other
and one independent photon, and (iii) all three photons bound to each other.
The photon bound states are represented by wavepackets partially masked by
a gray disk.

illustrate the general structure of n-photon scattering for n = 3 in Fig. 6.

Explicitly, this cluster decomposition of S
(n)
p;k is formulated as [44]

(B.1) S
(n)
p,k =

∑
Q

∑
P

|Q|∏
j=1

B(|Qj |)
pQj

;kQPj
,

where Q is a partition of the list {1, 2, . . . , n} into smaller subsets Qj with
the number of subsets given by Q’s cardinality |Q|, P is a permutation over
the same list, QP is the same partition as Q but on the permutated list
{P (1), P (2), . . . , P (n)} with its corresponding subsets denoted by QPj . The
sum in Eq. (B.1) takes into account all the distinct permutations under the
boson exchange symmetries in each partition. For example, considering n = 4,
a possible partition is Q = {{1, 3}, {2}, {4}} with |Q| = 3 and Q1 = {1, 3},
Q2 = {2}, and Q3 = {4}. Given a permutation P = {4, 2, 1, 3} we have
QP ≡ {QPj} = {{4, 1}, {2}, {3}}. Another permutation P ′ = {1, 2, 4, 3}
would lead to QP ′ ≡ {QP ′

j} = {{1, 4}, {2}, {3}}, which is the same as QP
and so will not be counted in the summation.

In Eq. (B.1), B(|Qj |)
pQj

;kQPj
represents a multi-photon bound state when |Qj | >

1, but is reduced to an independent one-photon scattering (i.e., S
(1)
p;k) when

|Qj | = 1. The explicit expression for B(n)
p;k, given an n-photon input state

|k⟩ ≡ |k1,α1 , . . . , kn,αn⟩ and an n-photon state |p⟩ ≡ |p1,β1 , p2,β2 , . . . , pn,βn⟩, in
the case of a two-level emitter is [22]

B(n)
p;k = − i

(2π)n−1

n∏
j=1

(γαjγβj )
1
2

×
{ n∏

l=1

( l∑
j=1

∆j

)−1 n∏
m=1

(
km−ϵ+

m−1∑
j=1

∆j

)−1

+perms
}
δ
( n∑

j=1

∆j

)
,(B.2)
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where ϵ = Ω − iΓ/2 (with Ω the emitter transition frequency and Γ = γr + γl
the emitter total decay rate), ∆j = kj −pj , and “perms” denotes permutations
taken among the input frequencies {kj} and output ones {pj}.
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Mikhail D., andVuletić, Vladan. Quantum nonlinear optics with single
photons enabled by strongly interacting atoms. Nature, 488(7409):57–60,
2012.



26 Dat Thanh Le and Nguyen Ba An

[18] Firstenberg, Ofer, Peyronel, Thibault, Liang, Qi-Yu, Gorshkov,
Alexey V., Lukin, Mikhail D., and Vuletić, Vladan. Attractive pho-
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