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Abstract. In this paper, we study a Korenblum Maximum Principle for
weighted Hilbert spaces of entire Dirichlet series with real frequencies. We
investigate dominating sets for which the Korenblum Maximum Principle
must hold. The results obtained imply that a dominating set, if exists,
must be a left half-plane. This provides a new perspective for studying
Korenblum Maximum Principle on function spaces containing the entire
Dirichlet series.

1. Introduction

The Korenblum Maximum Principle is an important open problem in com-
plex analysis as it acts as one of the fundamental properties of complex function
spaces that remains unsolved. First conjectured in 1991, the principle was in-
troduced by Boris Korenblum for the classical Bergman space A%(D) in the
following way [7].

Conjecture 1.1. There exists a numerical constant ¢, 0 < ¢ < 1, such that if
f and g are holomorphic in the unit disk D and |f(2)] < |g(2)| for all z with
¢ <lz| <1, then |[flla> < llgllaz-
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In [7], Korenblum defined c as the Korenblum constant and & as the largest
possible value of ¢. The exact value of x remains unknown. In the same paper,

Korenblum also proved that k42 < % ~ 0.7071.

Initial progress on the Korenblum Maximum Principle was made through
a series of partial results reported in works such as [8] [9, 10} 2], among oth-
ers. The existence of the Korenblum constant for the Bergman space A%(D)
was first rigorously established in 1999 by [5], with an estimate of k42 = 0.04.
Subsequent research has focused on refining both lower and upper bounds of
K42, yielding a rich body of results contributed by various authors. Renewed
interest in recent years has led to significant developments not only for clas-
sical function spaces but also for their intersections and generalizations. This
resurgence highlighted the need for a comprehensive review of key findings re-
lated to the Korenblum Maximum Principle. Additionally, several studies have
explored modified versions of the principle (see, e.g., [T}, [13]).

In our recent survey [I4], we investigate the Korenblum Maximum Prin-
ciple in the setting of weighted function spaces, highlighting recent progress
in bounding Korenblum constants and identifying cases of failure—such as in
weighted Bergman, Hardy, Bloch, Fock, and mixed norm spaces [I5]. We also
present a collection of open problems, both classical and newly proposed. No-
tably, we generalize existing results on weighted Fock spaces to broader families
[16]. Special emphasis is placed on the Gamma function, which satisfies Ra-
manujan’s Master Theorem [3] and connects to Mellin transforms of Dirichlet
series and generalized hypergeometric functions [I [3].

There is an interesting question to ask: How about spaces of Dirichlet series?
This stems from the fact that Dirichlet series, from classical to generalized, have
many important applications in different fields. We refer the reader to [4 2]
for detailed information about these series.

To our knowledge, this question, which seems probably very difficult, has
never been addressed before.

2. Basic Definitions and Notations

Consider the Dirichlet series with real frequencies
o0
(2.1) Z ane %, a,,zeC,
n=1

where 0 < (\,,) 1 oo is a given sequence of real numbers.
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Let

1
L = limsup ogn.
n—oo n

Note that L > 0 and it can be oco.

Another quantity associated with this series is

1
D = lim sup M.
n—oo n
Note that D can be a finite real number, —oo, or co.
We note the following elementary results.

Lemma 2.1. Let 0 < (\,) 1 0o be given. Then the following statements hold
true.

1. L < oo if and only if there exists a real number v for which " e~ " < oo.

2. In the case L < 0o, we have Y. e " < oo ifr > L, and Y e " = oo
if r < L.

3. If p is a real number such that Y  e~*"" < oo, then L < p.

4. L = 0 if and only if Y. e " converges for all v > 0, if and only if
Yot < oo forall0<a<1.

As is well known, in case L < oo, the series (2.1) represents an entire
function in C if and only if D = —o0.

Throughout this paper, the condition L < oo is supposed to hold unless
otherwise stated.

2.1. Weighted spaces of entire Dirichlet series

Let 0 < (A,) T oo satisfying condition L < oo, be given. Consider the
normed space of entire Dirichlet series

H(E) = {f(z) = iane/\"z :(ay,) € E}

where

log |an :
E= {(an) : lim sup 08 lan| = —00, or lim |a,|'/* = ()}.
n—oo

n—oo )\n

The norm in this space is defined by the inner product
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(f,9) = Z anbn, f(z)= Z ane*,  g(z) = Z e AnZ,
n=1 n=1 n=1

It should be noted that the space H(FE) is never complete with respect to
the norm above. Then a natural question to ask is: how to define subspaces of
H(E) that can be Hilbert spaces? To study this question, one introduces and
considers some weighted spaces.

2.2. Weighted spaces

Let 8 = (8,,) be a sequence of real positive numbers. To each 3, we associate
the following weighted sequence space

o 1/2
é% =4ya= (a'n) cC: ||a||€% = (Z |an|26721> <00,
n=1
which is a Hilbert space with the inner product
(22) <a7 b> = Z anaﬁia (an)7 (bn) S 62;
n=1

Such sequence spaces é% have many important applications in studying opera-
tors on function spaces.

Consider the following weighted function space H?(3) of entire Dirichlet
series induced by weight (3

(23)  HB)= {f(Z) = ane”™ entire: || f] := [[(an)llez < OO} :
n=1

This space H?(3) is an inner product space, where (f,g)s = Zanaﬁi, for

n=1
any f(z) = Z ane % and g(z) = Z bpe % in H2(B).
n=1 n=1

Depending on 3, the induced space H?(/3) may not be complete in its norm,
and so it is not necessarily a Hilbert space. To characterize a completeness we

put

log Bn . log B
= B4, limsup

n n—oo n

lim inf
n— o0

=5,

and prove the following result.
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Proposition 2.2. There are three alternative possibilities

1. E% C E, which is equivalent to B, = oco.

2. EC E%, which is equivalent to B* < oo.

3. K% \E #0 and E\EQB # 0, which is equivalent to B, < B* = oo.
As a consequence, these spaces never coincide.

Proof. As the proof of (1) and (2) are quite similar, we prove (2). Combining
(1) and (2) yields (3).

(2): Let E C (3. Assume that 8* = oco. In this case there exist (M) 1 oo
and (n,) 1 oo such that

log Bn,,
An

> M,,, Vp > 1.

P
Define a sequence (a,,) as follows

e~ MpAnp ifn=mny, p=12,...
an = .
0, otherwise.

Then we have (a,) € E, but (a,) clearly is not in f%: a contradiction.

Conversely, suppose that f* < oo. In this case there exist M > 0 and
N7 € N such that
log B,

An
Let € > 0 be given. For an arbitrary (a,) € E, there is N € N such that
lan |/ < & < emM=L=1 Then for all n > max{Ny, No} we have

Z |an‘252 < Z EZATLB?L < Z 52)\n62MAn

< M, ¥n > N,.

n>N n>N n>N
— Z (672(M+L+1)€2M))\71 — Z (672(L+1)))\n < 00,
n>N n>N
due to Lemma [2.1(2). That is, E C (3. [ ]

The following theorem provides a criterion on the weight 3 for H?(3) to be
complete.

Theorem 2.3. The space H?(f3) of entire Dirichlet series induced by a sequence
of positive real numbers 8 = (8y), as defined in (2.3), is a Hilbert space if and
only if the following condition holds,

1
(2.4) lim inf Ofﬂ” =0

n—oo n
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It is clear that if condition ([2.4]) holds, then the space H?(3) automatically
becomes a Hilbert space of entire functions, so we can drop the word “entire”
in (23).

In the sequel the condition 8, = oo is always supposed to hold. That is,
the sequence of positive real numbers (3,,) satisfies the condition
log B

1
(E) lim inf 2 b = 00, or the same, lim =00

n—oo n n— oo n

Proposition [2.2] leads us to the following definition.

Definition 2.4. Let (8,) be the sequence of positive real numbers such that
B« = oo. The Hilbert space of entire Dirichlet series with real frequencies
0 < (M) T oo induced by (8,) is defined as

0o 00 1/2
HA(B) =4 f(2) =D ane ™t || fllaz(s) == (Z |an|2ﬁi> < 400
n=1 n=1

Note that if A\; = 0, then the space H?(3) contains all constant functions.
On the other hand, it contains no nonzero constant functions if Ay > 0.

We refer the reader to the forthcoming monograph [6] for having more
information on Dirichlet series with real frequencies and related topics.

3. Korenblum Maximum Principle for #2(3)

1
Recall that (A,) and (3,) which satisfy L = limsup ogn

< oo and
n—oo )\n

lo
= 00, or the same, lim giﬁn =00

n— 00 n n— oo n

Let H2(3) be a weighted Hilbert space of entire Dirichlet series with weights
(8r) and real frequencies (\y,).

Definition 3.1. Let —0o < ¢ < ¢g < 00. A trip
Sereo ={2€C:c1 <Re(z) <eco}

is called a dominating set for the space H2(3), if for any pair f(z), g(z) € H%(B)
the following implication holds

[f () < lg(z)] for all z € Se, e, = [ fll22 < llgllae2-
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We wish to investigate the estimates for pairs (c1,c2) as well as the two
constants 1 (the largest possible ¢;) and ko (the smallest possible cj).

Without loss of generality, we may assume that (8,,),>1 is strictly increas-
ing.

3.1. Results for pairs (A1, A2) and (81, 32)

3.1.1. Upper bounds

Theorem 3.2. Suppose that ¢ is a real number satisfying the condition

1 log é
A2 — M B2’

c>

Then there exists a pair of monomials f(2), g(z) € H?(B) such that
[f(2) <lg(2)l, Vz:Re(z) ¢
but || fll3z8) > llgll#zs)-

Proof. Regardless A\; = 0 or A\; # 0, the following proof works well.

1
There is an € > 0 such that ¢ = log (& + 5). Take an arbitrary
A2 — A1 B2
pair of positive numbers (a, b) satisfying the following conditions
& < 2 é é —+ g,
Bz b P

and consider the following monomials from H?(3).
f(z) =ae™™2* and g(z) = be "M%,

for which
1f(2)] = aef)\zRe(z)’ lg(2)] = bef)\lRe(z)’
1 ll32(8) = aB2, l9ll22() = b1

On the one hand, for all z with Re (z) > ¢,

1f)] @ =Ca=A)Re () < & =a=re _ & 1 <1
o) = b b (o)
On the other hand, ||f||7_[2(5) =afe > b3 = ||g||7.£2(5) |

As an immediate corollary of Theorem [3.2] we have.
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Corollary 3.3. For any real numbers ci,co satisfying

1 b1
log == < ¢; < ¢g < 00,
)\2 — )\1 og 52 C1 Cy S OO

the trip S, ., cannot be dominating for the space H*(B).

In other words, for a trip S, ., to be dominating, it is necessary that

c1 <

1 1
< o .
do— M BB, YD VRN
3.1.2. Lower bounds

For the lower bound, the approach is almost similar, with some technical
modifications.

We have the following result.
Theorem 3.4. Suppose that ¢ is a real number satisfying the condition

1 B1

1
c<)\2_>\1 og

5
Then there exists a pair of monomials f(2), g(z) € H?(B) such that
[f(2) < lg(2)l, Vz:Re(z) <c
but [ fll28) > lgllazs)-
Proof. Note that
1 b

log — < 0,
N — A1 8 By

then so does c.

For a better exposition, we denote

1 b1
—c=7>——log— > 0.
AL — A2 gﬁz

From this it follows that

A2 — A1 b1 B2
Aoy — A )T > lo = log —,
(A2 1) M — Ay gﬁg g51

which gives e(A2=A)7 > %
The last estimate allows us to choose a pair of positive numbers (a, b) sat-
isfying the following conditions

B2

a
272 -2 < e(>‘2_)‘1)7,
B1 b~
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and determine two monomials from H2(f3):
f(z) =ae ™% and g(z) = be 2%,

for which

1f(2)] = aef/\lRe(z), l9(2)] = bef)\zRe(z)’
1f1l22(8) = ab1, 911325y = bBo-

On the one hand, for all z with Re (z) < ¢, we have

||féz;|| _ %B(AQ—Al)Re(z) < %e(xz—xl)c _ %e(xl—xz)r <1
g\z

On the other hand, || f||2(5) = aB1 > bB2 = ||glln2(s)- [ |
As a consequence of Theorem we have the following result.

Corollary 3.5. For any real numbers cy,co satisfying

log @
Ba’

the trip S, ., cannot be dominating for the space H*(B).

1
—0<cp <<
S 2 N — N

In other words, for a trip S, ., to be dominating, it is necessary to have

1 B1 1 B1
log — =— kg > log —.
A2 — M & 2 2_)\2—)\1 gﬂz

co >

3.2. Results for pairs (An,Any1) and (B, Bn41), N > 2

Analyzing discussions in the previous subsection, we see that the results for
pairs (A1, A2) and (81, B2) can be generalized to arbitrary pairs (Ay, Any+1) and
(BN, Bn+1), N > 2, replacing indexes 1 and 3 by Sy and Sx41 respectively.

Now, for every n € N, let us denote

B

< 0.
ﬂn—i—l

1
Q,, = 1
)\n-l—l - >\n o8

We have the following estimates:

K1 < Q, < kg, forallneN.

Consequently, if a dominating set S¢, ., exists, then the open interval (c1, ¢2)
must contain the real parts of all vertical lines

1 Bn
Rez=Q, | = lo , neN.
( )\n+1 - )\n & ﬂn—&-l)
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Moreover, we have the estimates

(3.1) k1 < inf {Q,} <sup{Q,} < ks.
neN neN

For completeness, recall the following standard relations between the infi-
mum, supremum, limit inferior, and limit superior of a sequence of real num-
bers. If (u,) is a sequence of real numbers, then
(3.2) inf u, < liminfu, < limsupw, < sup u,.

neN n—co n— 00 neN

Remark 3.6. If the sequence is unbounded above or below, then the supremum
or infimum may be 400, and the inequalities still hold in the extended real line.
Moreover, equality at the two middle terms occurs exactly when the ordinary
limit exists and equals that common value.

Combining inequalities (3.1)) and (3.2) yields the following result.

Proposition 3.7. The bounds k1 and ko control the asymptotic behavior of
(Q,) in the following sense:

(3.3) k1 < inf {Q,} < liminf Q, <limsupQ, < sup{Q,} < ka.
neN n—oo €N

n—oo n
Proposition [3.7] reduces the problem to determining the possible values of

inf {Q,}, sup{Q,}, liminfQ,, and limsup(,.
neN neN n—00 n—00

4. A study of {Q,}

Recall, in a general situation, that (A,),>1 is a strictly increasing sequence
of positive reals with A, 1 oo satisfying the condition L < oo and (8,)n>1 is a
strictly increasing sequence of positive real numbers for which g, = co.

Put AN, := A1 — A >0 and a, :=logf,.
It is convenient to have the standard equivalence
(4.1) B. = liminf B/* =00 <= liminf In 00,
n—oo n—oo n

[43

and introduce the “weighted increment”

Ap+1 — An
S, = dntl —n

0.
A,

Then we have Q,, = —5,,.
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4.1. The quantity inf,cn{Q,} and liminf Q,,
n—oo

We have the following result.

Proposition 4.1. If 8, = co (equivalently lim inf i—n = 0), then

n

lim sup S, = oo.
n— o0

Consequently,

liminf Q,, = —oco and hence inf{Q,} = —c0.
n—00 neN

Proof. Suppose, to the contrary, that limsup S,, < co. Then there exists
C > 0 with S,, < C for all n. Summing telescopically,

n—1 n—1 n—1
ap —ar =Y (ax1 —ap) = Y Sk AN S C Y AN = C(An — A1).
k=1 k=1 k=1

Dividing by A,, and letting n — oo yields

lim sup n <C,

n—oo n

C L. . R .
contradicting the assumption lim inf )\—n = 00. Therefore limsup S,, = co.
n

Since 0, = =5, <0, it follows that

liminf Q,, = —o0,
n—oo

which also implies inf €2, = —o0. |
neN

By (3.3), we have k1 = —o0. In view of Proposition this yields the
following corollary.

Corollary 4.2. Every dominating set for the space H?(B) has lower bound
—o00. Consequently, if a dominating set exists, it must be of the form (—oo, (]
with ¢ < oo.

4.2. The quantities lim sup €2,, and sup 2,

n—oco neN

In contrast with Proposition the behavior of limsup €2, and sup £2,, is

n—o0 neN
more delicate.
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The recursion a,+1 = a, + S, A\, yields

n—1
(42) ap = a1 + Z St AMg.
k=1

We will also use the standard equivalence (4.1)).
4.2.1. General facts about sup 2,, and lim sup 2,
Since €2, < 0 for all n, we always have

limsup, < supf, < 0.

n—o00 neN
Moreover, because 2, = —5,,,
4.3 Q, = — inf S,.
43) AL

In particular:

e supfl, =0 < inf S, =0;

e for any ¢ > 0, sup(,, = —¢ <= inf §,, =c.
4.2.2. Feasibility of prescribed inf S,

We give a construction which works for all (\,,) (no additional growth con-
trol on )\, is needed).

Lemma 4.3. Let ¢ > 0. There exists a sequence (Sy,) of positive real numbers
with inf,, S, = ¢ such that

a
Upt1 = Gp + Sy Ady, liminf -2 = co.
n—oo n
Consequently, with B, := ™, we have liminf, o B/ *" = 0o and

sup{), = —inf S,, = —c € (—00,0).

Proof. Define
g(A) == 1+ A)log(l+ A) — A, A> 0.

Then ¢’(\) = log(1 + \) is increasing and unbounded, so g is increasing.
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Set
A —g(A
Spi=c+ g( n+1A)A g( n)7 An+1 = Gn + Sn ANy,
n
Since ¢ is increasing, the forward difference quotient is nonnegative; hence
Sp > ¢ > 0. In fact, by the mean value theorem there exists &, € (A, \n+1)
with
g<)\n+1) — g()‘n)

AN, = g/(ﬁn) = IOg(l + Sn) > IOg(l + )‘n)a

50 Sp > c+log(1+ \y).
By (4.2),

n—1 n—1
an=a1+ > S A = a1+ Y (AN + gi1) — g())
k=1 k=1

=ai + C(/\n — )\1) +g(>\n) - g()‘l)

Therefore
an _ g(A) 1
N TN +O(>\n>'
Since
g\ _ log(1 + )
\ =log(l4+A) -1+ \ o

. .. a
we obtain liminf — = co.
n— o0 n

As constructed, S, > c¢ for all n, with S,, > ¢ (strictly) for all n. To
enforce inf,, S, = ¢, modify a single index m by setting S,,, := c¢. This changes
ay only by a fixed constant for n > m + 1 (it removes the single increment
9(Am+1) —9(Am)), so the asymptotics of a,, /A, are unaffected. Thus inf,, S, =

¢, and since 2, = —S,,, we have sup,, 2, = —c. ]
Remark 4.4.
Ant1) — g(An
1) The case ¢ = 0 can be handled similarly: take S,, = %/\g() >

0 and, if desired, lower S,, along a sparse subsequence to approacﬁ 0. The

dominant g()\,) term still forces lim inf —* = oo.
n

1
2) In Lemma no hypothesis on L = lim sup ogT

n—oo n
. g\ o Gn
only requires A,, T oo, since ~ — o0 ensures liminf — = oo for the con-
n

is needed. The proof

structed a,,.
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4.2.3. Range of sup (2,

Theorem 4.5. Under the standing assumptions (A\,) T oo and (B,) T with

liminfﬁ,l/A" = 00, one always has Q, < 0, hence sup€), < 0. Moreover,
for every value S € (—00,0) there exists a strictly increasing sequence ()

satisfying lim inf B}/)‘” = o0 and such that sup,, ), = S. Equivalently, the set
of attainable values of sup €, is exactly (—oo, 0], with the endpoint 0 attainable
under mild assumptions on the gaps.

Proof. For S <0, set ¢ := —S > 0 and apply Lemma[f.3] For S = 0, use the
¢ = 0 variant described in the preceding remark.

4.2.4. Relation to limsup Q,
Proposition 4.6. Let the standing assumptions hold. Then

1. sup, =0 < limsup(,, =0.

2. IflimsupQ,, = C < 0, then C < sup,, < 0, and every value in [C,0)
can occur as sup Q,, (by altering finitely many Sy, ).

3. If limsup (), = —oo, then Q, — —oo, so sup§2, is the mazimum of
finitely many initial terms (a finite negative number). In particular,
sup ,, # —oo0.

Proof. (1) If limsup §2,, = 0, then sup 2, > 0 but £,, < 0 forces sup2,, = 0.
Conversely, if sup 2, = 0 then €2,, comes arbitrarily close to 0 infinitely often,
so limsup ©2,, = 0.

(2) By definition of lim sup, for every € > 0 there exists N such that ,, <
C + ¢ for allmn > N. Thus

sup 2, < max{Q,...,Qn_1, C +¢}.
n

Letting € | 0 shows sup ,, € [C,0). By altering finitely many S,, we can adjust
inf S,, (hence sup),,) to any target value in [C,0) without changing lim sup.
(3) If limsup §2,, = —o0, then Q, — —oo. Thus only finitely many terms
exceed any fixed negative threshold. The supremum is then the maximum
among finitely many values, hence a finite negative number. |

Now we consider three interesting issues on lim sup €2,, and sup €2,,.

A) Achieving sup §2,, = —c and limsup §2,, = —oc.
Fix ¢ > 0. Start from the baseline with d = ¢:
g(Ang1) —g(\n)

Sn = C+T (> C).
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Then overwrite at one index m by setting Sy, := ¢ (this forces inf S,, = ¢ and
hence sup 2, = —c). By the mean value theorem,

Ana1) — 9(An
9Qns1) 290w _ g1,y = log(1 + &) = log(1 + ) —— o0,
AN, n—oo
hence S,, — oo and 2, = —S,, - —oo. Thus limsup ), = —oo, while the
. . . .. o Qn

baseline term still yields lim inf — = oo
B) Prescribe limsup Q,, = C' < 0 and any sup ), € [C,0).

Let C = —d with d > 0. Begin with the baseline S (with this d). Then:

- To make limsup 2, = C, ensure that S,, assumes the value d infinitely
often: choose an infinite set Iy and overwrite S, := d for n € I,. Then
liminf S,, = d and hence limsup {2, = —d = C.

- To choose sup {2, = S € [C,0), pick any ¢ € (0,d] with S = —¢, and at
one (or finitely many) indices overwrite Sy, := ¢. Then inf,, S,, = ¢ while
liminf S,, = d, so

limsupQ, = -d=C, supQ, =-c=2S5.

Since only finitely or countably many local overwrites are made on top of the
baseline that already gives

an = a1+ d()‘n - /\1) +g()‘n) - g()‘l)a

a
we still have lim inf -2 = oo
n

C) Achieving sup Q, =0 (i.e. inf S,, = 0).

We now produce inf S,, = 0 while keeping lim inf i—n =00

C1. Bounded gaps. If sup,, A\, < 0o, then sparse small overwrites con-
tribute only a bounded total loss to a,. Thus liminf a, /A, = oo persists and
sup 2, = 0.

C2. General gaps. Without any restriction on the gaps, one can still arrange
inf S,, = 0 by choosing the overwrite indices (n;) so sparse that their cumulative
loss is controlled by a fixed fraction of the baseline g-growth. This guarantees

that ()

Qn 9 An

N, = 1 N, +o(l) — oo,
while inf .S,, = 0 ensures sup 2,, = 0.
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Start from the baseline with d = 0:

ghe _ 80ni1) = 90w)
" AN, '

Choose inductively an increasing index sequence (n;) so sparse that for each
J,

(g(’\"ﬁ-l) - 9(/\111)) <

J 1
: 9 (g(A'ﬂJ) —9(/\1))~

j
Now overwrite S, := ¢; with ; | 0 (e.g. €; = 1/7). Then inf,, S,, = 0 and, for
all n > ny,

an = ay + Z (9(Akt1) = 9(Ak)) + Z gj A,

k<n, k¢{n;} j: nj<n
1
> a1+ E(Q(AH) - 9(/\1))~
1
Therefore, n e 90n) + o(1) —— o0, and sup Q,, = sup(-S,) = 0.
An 2 An n—00

4.2.5. Summary of the three issues

- For any ¢ > 0: sup(,, = —c is achieved by setting S,,, = ¢ at some index
and keeping S, > ¢ elsewhere (A).

- For any C' < 0 and any S € [C,0): set liminf S,, = —C (i.e. S, =d=—-C
infinitely often) and choose inf S,, = ¢ = —S < d (B): then limsup ,, =
C and sup 2, = S.

- For sup{2,, = 0: make inf S,, = 0 via sparse small overwrites on top of
the g-baseline, either under bounded gaps (C1) or by sparse trimming
(C2) in full generality; in both cases lim inf i—n = oo is preserved.

n

4.2.6. Classification of attainable pairs (sup €2, limsup ©,,)
Theorem 4.7. Let (A\,) 1 oo and (8,) T with lim inf ﬁ}/A" = oo, and define

- Ap+4+1 — Qn _
S, = “An > 0, Q, S, < 0.

Then the set of attainable pairs (sup Q, limsup ) is exactly

{(=¢,—00):c>0} U {(S,C):C <0, Se[C,0)} U {(0,0)}.

In words:
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(A) For every ¢ > 0 there exists a construction with

sup €2, = —c, limsup 2, = —oc0.

(B) For every C < 0 and every S € [C,0) there exists a construction with

sup Q, = 5, limsupQ,, = C.

(C) There exists a construction with
sup 2, =0, limsup Q,, =0,

attainable under bounded gaps sup,, A\, < oo or by sparse trimming in
the general case.

In conclusion, the foregoing results naturally lead to the following question.

Question 4.8. Does there exist a finite real number ¢ < oo such that the set
(—o0, c] is dominating for the space H?(B)?
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