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Abstract. In this paper, we study a Korenblum Maximum Principle for
weighted Hilbert spaces of entire Dirichlet series with real frequencies. We
investigate dominating sets for which the Korenblum Maximum Principle
must hold. The results obtained imply that a dominating set, if exists,
must be a left half-plane. This provides a new perspective for studying
Korenblum Maximum Principle on function spaces containing the entire
Dirichlet series.

1. Introduction

The Korenblum Maximum Principle is an important open problem in com-
plex analysis as it acts as one of the fundamental properties of complex function
spaces that remains unsolved. First conjectured in 1991, the principle was in-
troduced by Boris Korenblum for the classical Bergman space A2(D) in the
following way [7].

Conjecture 1.1. There exists a numerical constant c, 0 < c < 1, such that if
f and g are holomorphic in the unit disk D and |f(z)| ≤ |g(z)| for all z with
c < |z| < 1, then ∥f∥A2 ≤ ∥g∥A2 .
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Dirichlet series, Maximum principle
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In [7], Korenblum defined c as the Korenblum constant and κ as the largest
possible value of c. The exact value of κ remains unknown. In the same paper,
Korenblum also proved that κA2 ≤ 1√

2
≈ 0.7071.

Initial progress on the Korenblum Maximum Principle was made through
a series of partial results reported in works such as [8, 9, 10, 12], among oth-
ers. The existence of the Korenblum constant for the Bergman space A2(D)
was first rigorously established in 1999 by [5], with an estimate of κA2 = 0.04.
Subsequent research has focused on refining both lower and upper bounds of
κA2 , yielding a rich body of results contributed by various authors. Renewed
interest in recent years has led to significant developments not only for clas-
sical function spaces but also for their intersections and generalizations. This
resurgence highlighted the need for a comprehensive review of key findings re-
lated to the Korenblum Maximum Principle. Additionally, several studies have
explored modified versions of the principle (see, e.g., [11, 13]).

In our recent survey [14], we investigate the Korenblum Maximum Prin-
ciple in the setting of weighted function spaces, highlighting recent progress
in bounding Korenblum constants and identifying cases of failure—such as in
weighted Bergman, Hardy, Bloch, Fock, and mixed norm spaces [15]. We also
present a collection of open problems, both classical and newly proposed. No-
tably, we generalize existing results on weighted Fock spaces to broader families
[16]. Special emphasis is placed on the Gamma function, which satisfies Ra-
manujan’s Master Theorem [3] and connects to Mellin transforms of Dirichlet
series and generalized hypergeometric functions [1, 3].

There is an interesting question to ask: How about spaces of Dirichlet series?
This stems from the fact that Dirichlet series, from classical to generalized, have
many important applications in different fields. We refer the reader to [4, 2]
for detailed information about these series.

To our knowledge, this question, which seems probably very difficult, has
never been addressed before.

2. Basic Definitions and Notations

Consider the Dirichlet series with real frequencies

(2.1)

∞∑
n=1

ane
−λnz, an, z ∈ C,

where 0 ≤ (λn) ↑ ∞ is a given sequence of real numbers.
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Let

L = lim sup
n→∞

log n

λn
.

Note that L ≥ 0 and it can be ∞.

Another quantity associated with this series is

D = lim sup
n→∞

log |an|
λn

.

Note that D can be a finite real number, −∞, or ∞.

We note the following elementary results.

Lemma 2.1. Let 0 ≤ (λn) ↑ ∞ be given. Then the following statements hold
true.

1. L < ∞ if and only if there exists a real number r for which
∑

e−λnr < ∞.

2. In the case L < ∞, we have
∑

e−λnr < ∞ if r > L, and
∑

e−λnr = ∞
if r < L.

3. If ρ is a real number such that
∑

e−λnρ < ∞, then L ≤ ρ.

4. L = 0 if and only if
∑

e−λnr converges for all r > 0, if and only if∑
αλn < ∞ for all 0 < α < 1.

As is well known, in case L < ∞, the series (2.1) represents an entire
function in C if and only if D = −∞.

Throughout this paper, the condition L < ∞ is supposed to hold unless
otherwise stated.

2.1. Weighted spaces of entire Dirichlet series

Let 0 ≤ (λn) ↑ ∞ satisfying condition L < ∞, be given. Consider the
normed space of entire Dirichlet series

H(E) :=

{
f(z) =

∞∑
n=1

ane
−λnz : (an) ∈ E

}
,

where

E =

{
(an) : lim sup

n→∞

log |an|
λn

= −∞, or lim
n→∞

|an|1/λn = 0

}
.

The norm in this space is defined by the inner product



4 Le Hai Khoi and Wee JunJie

⟨f, g⟩ :=
∞∑

n=1

anbn, f(z) =

∞∑
n=1

ane
λnz, g(z) =

∞∑
n=1

bne
−λnz.

It should be noted that the space H(E) is never complete with respect to
the norm above. Then a natural question to ask is: how to define subspaces of
H(E) that can be Hilbert spaces? To study this question, one introduces and
considers some weighted spaces.

2.2. Weighted spaces

Let β = (βn) be a sequence of real positive numbers. To each β, we associate
the following weighted sequence space

ℓ2β =

a = (an) ⊂ C : ∥a∥ℓ2β =

( ∞∑
n=1

|an|2β2
n

)1/2

< ∞

 ,

which is a Hilbert space with the inner product

(2.2) ⟨a, b⟩ =
∞∑

n=1

anbnβ
2
n, (an), (bn) ∈ ℓ2β ,

Such sequence spaces ℓ2β have many important applications in studying opera-
tors on function spaces.

Consider the following weighted function space H2(β) of entire Dirichlet
series induced by weight β

(2.3) H2(β) =

{
f(z) =

∞∑
n=1

ane
−λnz entire : ∥f∥ := ∥(an)∥ℓ2β < ∞

}
.

This space H2(β) is an inner product space, where ⟨f, g⟩β =

∞∑
n=1

anbnβ
2
n, for

any f(z) =

∞∑
n=1

ane
−λnz and g(z) =

∞∑
n=1

bne
−λnz in H2(β).

Depending on β, the induced space H2(β) may not be complete in its norm,
and so it is not necessarily a Hilbert space. To characterize a completeness we
put

lim inf
n→∞

log βn

λn
= β∗, lim sup

n→∞

log βn

λn
= β∗,

and prove the following result.
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Proposition 2.2. There are three alternative possibilities

1. ℓ2β ⊂ E, which is equivalent to β∗ = ∞.

2. E ⊂ ℓ2β, which is equivalent to β∗ < ∞.

3. ℓ2β \ E ̸= ∅ and E \ ℓ2β ̸= ∅, which is equivalent to β∗ < β∗ = ∞.

As a consequence, these spaces never coincide.

Proof. As the proof of (1) and (2) are quite similar, we prove (2). Combining
(1) and (2) yields (3).

(2): Let E ⊂ ℓ2β . Assume that β∗ = ∞. In this case there exist (Mp) ↑ ∞
and (np) ↑ ∞ such that

log βnp

λnp

> Mnp , ∀p ≥ 1.

Define a sequence (an) as follows

an =

{
e−Mpλnp , if n = np, p = 1, 2, . . .

0, otherwise.

Then we have (an) ∈ E, but (an) clearly is not in ℓ2β : a contradiction.

Conversely, suppose that β∗ < ∞. In this case there exist M > 0 and
N1 ∈ N such that

log βn

λn
≤ M, ∀n > N1.

Let ε > 0 be given. For an arbitrary (an) ∈ E, there is N2 ∈ N such that
|an|1/λn < ε < e−M−L−1. Then for all n > max{N1, N2} we have∑

n>N

|an|2β2
n ≤

∑
n>N

ε2λnβ2
n ≤

∑
n>N

ε2λne2Mλn

=
∑
n>N

(e−2(M+L+1)e2M )λn =
∑
n>N

(e−2(L+1))λn < ∞,

due to Lemma 2.1(2). That is, E ⊂ ℓ2β . ■

The following theorem provides a criterion on the weight β for H2(β) to be
complete.

Theorem 2.3. The space H2(β) of entire Dirichlet series induced by a sequence
of positive real numbers β = (βn), as defined in (2.3), is a Hilbert space if and
only if the following condition holds,

(2.4) lim inf
n→∞

log βn

λn
= ∞.
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It is clear that if condition (2.4) holds, then the space H2(β) automatically
becomes a Hilbert space of entire functions, so we can drop the word “entire”
in (2.3).

In the sequel the condition β∗ = ∞ is always supposed to hold. That is,
the sequence of positive real numbers (βn) satisfies the condition

(E) lim inf
n→∞

log βn

λn
= ∞, or the same, lim

n→∞

log βn

λn
= ∞.

Proposition 2.2 leads us to the following definition.

Definition 2.4. Let (βn) be the sequence of positive real numbers such that
β∗ = ∞. The Hilbert space of entire Dirichlet series with real frequencies
0 ≤ (λn) ↑ ∞ induced by (βn) is defined as

H2(β) =

f(z) =

∞∑
n=1

ane
−λnz : ∥f∥H2(β) :=

( ∞∑
n=1

|an|2β2
n

)1/2

< +∞

 .

Note that if λ1 = 0, then the space H2(β) contains all constant functions.
On the other hand, it contains no nonzero constant functions if λ1 > 0.

We refer the reader to the forthcoming monograph [6] for having more
information on Dirichlet series with real frequencies and related topics.

3. Korenblum Maximum Principle for H2(β)

Recall that (λn) and (βn) which satisfy L = lim sup
n→∞

log n

λn
< ∞ and

β∗ = lim inf
n→∞

log βn

λn
= ∞, or the same, lim

n→∞

log βn

λn
= ∞.

Let H2(β) be a weighted Hilbert space of entire Dirichlet series with weights
(βn) and real frequencies (λn).

Definition 3.1. Let −∞ ≤ c1 < c2 ≤ ∞. A trip

Sc1,c2 = {z ∈ C : c1 ≤ Re (z) ≤ c2}

is called a dominating set for the spaceH2(β), if for any pair f(z), g(z) ∈ H2(β)
the following implication holds

|f(z)| ≤ |g(z)| for all z ∈ Sc1,c2 =⇒ ∥f∥H2 ≤ ∥g∥H2 .
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We wish to investigate the estimates for pairs (c1, c2) as well as the two
constants κ1 (the largest possible c1) and κ2 (the smallest possible c2).

Without loss of generality, we may assume that (βn)n≥1 is strictly increas-
ing.

3.1. Results for pairs (λ1, λ2) and (β1, β2)

3.1.1. Upper bounds

Theorem 3.2. Suppose that c is a real number satisfying the condition

c >
1

λ2 − λ1
log

β1

β2
.

Then there exists a pair of monomials f(z), g(z) ∈ H2(β) such that

|f(z)| ≤ |g(z)|, ∀z : Re (z) ≥ c,

but ∥f∥H2(β) > ∥g∥H2(β).

Proof. Regardless λ1 = 0 or λ1 ̸= 0, the following proof works well.

There is an ε > 0 such that c =
1

λ2 − λ1
log
(β1

β2
+ ε
)
. Take an arbitrary

pair of positive numbers (a, b) satisfying the following conditions

β1

β2
<

a

b
≤ β1

β2
+ ε,

and consider the following monomials from H2(β).

f(z) = ae−λ2z and g(z) = be−λ1z,

for which {
|f(z)| = ae−λ2Re (z), |g(z)| = be−λ1Re (z),

∥f∥H2(β) = aβ2, ∥g∥H2(β) = bβ1.

On the one hand, for all z with Re (z) ≥ c,

|f(z)|
|g(z)|

=
a

b
e−(λ2−λ1)Re (z) ≤ a

b
e−(λ2−λ1)c =

a

b

1(
β1

β2
+ ε
) ≤ 1.

On the other hand, ∥f∥H2(β) = aβ2 > bβ1 = ∥g∥H2(β). ■

As an immediate corollary of Theorem 3.2, we have.
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Corollary 3.3. For any real numbers c1, c2 satisfying

1

λ2 − λ1
log

β1

β2
< c1 < c2 ≤ ∞,

the trip Sc1,c2 cannot be dominating for the space H2(β).

In other words, for a trip Sc1,c2 to be dominating, it is necessary that

c1 ≤ 1

λ2 − λ1
log

β1

β2
=⇒ κ1 ≤ 1

λ2 − λ1
log

β1

β2
.

3.1.2. Lower bounds

For the lower bound, the approach is almost similar, with some technical
modifications.

We have the following result.

Theorem 3.4. Suppose that c is a real number satisfying the condition

c <
1

λ2 − λ1
log

β1

β2
.

Then there exists a pair of monomials f(z), g(z) ∈ H2(β) such that

|f(z)| ≤ |g(z)|, ∀z : Re (z) ≤ c,

but ∥f∥H2(β) > ∥g∥H2(β).

Proof. Note that
1

λ2 − λ1
log

β1

β2
< 0,

then so does c.

For a better exposition, we denote

−c = τ >
1

λ1 − λ2
log

β1

β2
> 0.

From this it follows that

(λ2 − λ1)τ >
λ2 − λ1

λ1 − λ2
log

β1

β2
= log

β2

β1
,

which gives e(λ2−λ1)τ > β2

β1
.

The last estimate allows us to choose a pair of positive numbers (a, b) sat-
isfying the following conditions

β2

β1
<

a

b
≤ e(λ2−λ1)τ ,
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and determine two monomials from H2(β):

f(z) = ae−λ1z and g(z) = be−λ2z,

for which {
|f(z)| = ae−λ1Re (z), |g(z)| = be−λ2Re (z),

∥f∥H2(β) = aβ1, ∥g∥H2(β) = bβ2.

On the one hand, for all z with Re (z) ≤ c, we have

|f(z)|
|g(z)|

=
a

b
e(λ2−λ1)Re (z) ≤ a

b
e(λ2−λ1)c =

a

b
e(λ1−λ2)τ ≤ 1.

On the other hand, ∥f∥H2(β) = aβ1 > bβ2 = ∥g∥H2(β). ■

As a consequence of Theorem 3.4, we have the following result.

Corollary 3.5. For any real numbers c1, c2 satisfying

−∞ ≤ c1 < c2 <
1

λ2 − λ1
log

β1

β2
,

the trip Sc1,c2 cannot be dominating for the space H2(β).

In other words, for a trip Sc1,c2 to be dominating, it is necessary to have

c2 ≥ 1

λ2 − λ1
log

β1

β2
=⇒ κ2 ≥ 1

λ2 − λ1
log

β1

β2
.

3.2. Results for pairs (λN , λN+1) and (βN , βN+1), N ≥ 2

Analyzing discussions in the previous subsection, we see that the results for
pairs (λ1, λ2) and (β1, β2) can be generalized to arbitrary pairs (λN , λN+1) and
(βN , βN+1), N ≥ 2, replacing indexes β1 and β2 by βN and βN+1 respectively.

Now, for every n ∈ N, let us denote

Ωn :=
1

λn+1 − λn
log

βn

βn+1
< 0.

We have the following estimates:

κ1 ≤ Ωn ≤ κ2, for all n ∈ N.

Consequently, if a dominating set Sc1,c2 exists, then the open interval (c1, c2)
must contain the real parts of all vertical lines

Re z = Ωn

(
=

1

λn+1 − λn
log

βn

βn+1

)
, n ∈ N.
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Moreover, we have the estimates

(3.1) κ1 ≤ inf
n∈N

{Ωn} ≤ sup
n∈N

{Ωn} ≤ κ2.

For completeness, recall the following standard relations between the infi-
mum, supremum, limit inferior, and limit superior of a sequence of real num-
bers. If (un) is a sequence of real numbers, then

(3.2) inf
n∈N

un ≤ lim inf
n→∞

un ≤ lim sup
n→∞

un ≤ sup
n∈N

un.

Remark 3.6. If the sequence is unbounded above or below, then the supremum
or infimum may be ±∞, and the inequalities still hold in the extended real line.
Moreover, equality at the two middle terms occurs exactly when the ordinary
limit exists and equals that common value.

Combining inequalities (3.1) and (3.2) yields the following result.

Proposition 3.7. The bounds κ1 and κ2 control the asymptotic behavior of
(Ωn) in the following sense:

(3.3) κ1 ≤ inf
n∈N

{Ωn} ≤ lim inf
n→∞

Ωn ≤ lim sup
n→∞

Ωn ≤ sup
n∈N

{Ωn} ≤ κ2.

Proposition 3.7 reduces the problem to determining the possible values of

inf
n∈N

{Ωn}, sup
n∈N

{Ωn}, lim inf
n→∞

Ωn, and lim sup
n→∞

Ωn.

4. A study of {Ωn}

Recall, in a general situation, that (λn)n≥1 is a strictly increasing sequence
of positive reals with λn ↑ ∞ satisfying the condition L < ∞ and (βn)n≥1 is a
strictly increasing sequence of positive real numbers for which β∗ = ∞.

Put ∆λn := λn+1 − λn > 0 and an := log βn.

It is convenient to have the standard equivalence

(4.1) β∗ = lim inf
n→∞

β1/λn
n = ∞ ⇐⇒ lim inf

n→∞

an
λn

= ∞,

and introduce the “weighted increment”

Sn :=
an+1 − an

∆λn
> 0.

Then we have Ωn = −Sn.
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4.1. The quantity infn∈N{Ωn} and lim inf
n→∞

Ωn

We have the following result.

Proposition 4.1. If β∗ = ∞ (equivalently lim inf
an
λn

= ∞), then

lim sup
n→∞

Sn = ∞.

Consequently,

lim inf
n→∞

Ωn = −∞ and hence inf
n∈N

{Ωn} = −∞.

Proof. Suppose, to the contrary, that lim supSn < ∞. Then there exists
C > 0 with Sn ≤ C for all n. Summing telescopically,

an − a1 =

n−1∑
k=1

(ak+1 − ak) =

n−1∑
k=1

Sk ∆λk ≤ C

n−1∑
k=1

∆λk = C(λn − λ1).

Dividing by λn and letting n → ∞ yields

lim sup
n→∞

an
λn

≤ C,

contradicting the assumption lim inf
an
λn

= ∞. Therefore lim supSn = ∞.

Since Ωn = −Sn ≤ 0, it follows that

lim inf
n→∞

Ωn = −∞,

which also implies inf
n∈N

Ωn = −∞. ■

By (3.3), we have κ1 = −∞. In view of Proposition 4.1, this yields the
following corollary.

Corollary 4.2. Every dominating set for the space H2(β) has lower bound
−∞. Consequently, if a dominating set exists, it must be of the form (−∞, c]
with c < ∞.

4.2. The quantities lim sup
n→∞

Ωn and sup
n∈N

Ωn

In contrast with Proposition 4.1, the behavior of lim sup
n→∞

Ωn and sup
n∈N

Ωn is

more delicate.
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The recursion an+1 = an + Sn ∆λn yields

(4.2) an = a1 +

n−1∑
k=1

Sk ∆λk.

We will also use the standard equivalence (4.1).

4.2.1. General facts about supΩn and lim supΩn

Since Ωn < 0 for all n, we always have

lim sup
n→∞

Ωn ≤ sup
n∈N

Ωn ≤ 0.

Moreover, because Ωn = −Sn,

(4.3) sup
n∈N

Ωn = − inf
n∈N

Sn.

In particular:

• supΩn = 0 ⇐⇒ inf Sn = 0;

• for any c > 0, supΩn = −c ⇐⇒ inf Sn = c.

4.2.2. Feasibility of prescribed inf Sn

We give a construction which works for all (λn) (no additional growth con-
trol on λn is needed).

Lemma 4.3. Let c > 0. There exists a sequence (Sn) of positive real numbers
with infn Sn = c such that

an+1 = an + Sn ∆λn, lim inf
n→∞

an
λn

= ∞.

Consequently, with βn := ean , we have lim infn→∞ β
1/λn
n = ∞ and

sup
n

Ωn = − inf
n

Sn = −c ∈ (−∞, 0).

Proof. Define

g(λ) := (1 + λ) log(1 + λ)− λ, λ > 0.

Then g′(λ) = log(1 + λ) is increasing and unbounded, so g is increasing.
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Set

Sn := c+
g(λn+1)− g(λn)

∆λn
, an+1 = an + Sn ∆λn.

Since g is increasing, the forward difference quotient is nonnegative; hence
Sn ≥ c > 0. In fact, by the mean value theorem there exists ξn ∈ (λn, λn+1)
with

g(λn+1)− g(λn)

∆λn
= g′(ξn) = log(1 + ξn) ≥ log(1 + λn),

so Sn ≥ c+ log(1 + λn).

By (4.2),

an = a1 +

n−1∑
k=1

Sk ∆λk = a1 +

n−1∑
k=1

(
c∆λk + g(λk+1)− g(λk)

)
= a1 + c(λn − λ1) + g(λn)− g(λ1).

Therefore
an
λn

= c+
g(λn)

λn
+O

( 1

λn

)
.

Since
g(λ)

λ
= log(1 + λ)− 1 +

log(1 + λ)

λ
−−−−→
λ→∞

∞,

we obtain lim inf
n→∞

an
λn

= ∞.

As constructed, Sn ≥ c for all n, with Sn > c (strictly) for all n. To
enforce infn Sn = c, modify a single index m by setting Sm := c. This changes
an only by a fixed constant for n ≥ m + 1 (it removes the single increment
g(λm+1)−g(λm)), so the asymptotics of an/λn are unaffected. Thus infn Sn =
c, and since Ωn = −Sn, we have supn Ωn = −c. ■

Remark 4.4.

1) The case c = 0 can be handled similarly: take Sn =
g(λn+1)− g(λn)

∆λn
>

0 and, if desired, lower Sn along a sparse subsequence to approach 0. The

dominant g(λn) term still forces lim inf
an
λn

= ∞.

2) In Lemma 4.3, no hypothesis on L = lim sup
n→∞

log n

λn
is needed. The proof

only requires λn ↑ ∞, since
g(λ)

λ
→ ∞ ensures lim inf

an
λn

= ∞ for the con-

structed an.
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4.2.3. Range of supΩn

Theorem 4.5. Under the standing assumptions (λn) ↑ ∞ and (βn) ↑ with

lim inf β
1/λn
n = ∞, one always has Ωn < 0, hence supΩn ≤ 0. Moreover,

for every value S ∈ (−∞, 0) there exists a strictly increasing sequence (βn)

satisfying lim inf β
1/λn
n = ∞ and such that supn Ωn = S. Equivalently, the set

of attainable values of supΩn is exactly (−∞, 0], with the endpoint 0 attainable
under mild assumptions on the gaps.

Proof. For S < 0, set c := −S > 0 and apply Lemma 4.3. For S = 0, use the
c = 0 variant described in the preceding remark.

4.2.4. Relation to lim supΩn

Proposition 4.6. Let the standing assumptions hold. Then

1. supΩn = 0 ⇐⇒ lim supΩn = 0.

2. If lim supΩn = C < 0, then C ≤ supΩn < 0, and every value in [C, 0)
can occur as supΩn (by altering finitely many Sn).

3. If lim supΩn = −∞, then Ωn → −∞, so supΩn is the maximum of
finitely many initial terms (a finite negative number). In particular,
supΩn ̸= −∞.

Proof. (1) If lim supΩn = 0, then supΩn ≥ 0 but Ωn < 0 forces supΩn = 0.
Conversely, if supΩn = 0 then Ωn comes arbitrarily close to 0 infinitely often,
so lim supΩn = 0.

(2) By definition of lim sup, for every ε > 0 there exists N such that Ωn ≤
C + ε for all n ≥ N . Thus

sup
n

Ωn ≤ max{Ω1, . . . ,ΩN−1, C + ε}.

Letting ε ↓ 0 shows supΩn ∈ [C, 0). By altering finitely many Sn we can adjust
inf Sn (hence supΩn) to any target value in [C, 0) without changing lim sup.

(3) If lim supΩn = −∞, then Ωn → −∞. Thus only finitely many terms
exceed any fixed negative threshold. The supremum is then the maximum
among finitely many values, hence a finite negative number. ■

Now we consider three interesting issues on lim supΩn and supΩn.

A) Achieving supΩn = −c and lim supΩn = −∞.

Fix c > 0. Start from the baseline with d = c:

Sn := c+
g(λn+1)− g(λn)

∆λn
(> c).
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Then overwrite at one index m by setting Sm := c (this forces inf Sn = c and
hence supΩn = −c). By the mean value theorem,

g(λn+1)− g(λn)

∆λn
= g′(ξn) = log(1 + ξn) ≥ log(1 + λn) −−−−→

n→∞
∞,

hence Sn → ∞ and Ωn = −Sn → −∞. Thus lim supΩn = −∞, while the

baseline term still yields lim inf
an
λn

= ∞.

B) Prescribe lim supΩn = C < 0 and any supΩn ∈ [C, 0).

Let C = −d with d > 0. Begin with the baseline Sbase
n (with this d). Then:

- To make lim supΩn = C, ensure that Sn assumes the value d infinitely
often: choose an infinite set I0 and overwrite Sn := d for n ∈ I0. Then
lim inf Sn = d and hence lim supΩn = −d = C.

- To choose supΩn = S ∈ [C, 0), pick any c ∈ (0, d] with S = −c, and at
one (or finitely many) indices overwrite Sm := c. Then infn Sn = c while
lim inf Sn = d, so

lim supΩn = −d = C, supΩn = −c = S.

Since only finitely or countably many local overwrites are made on top of the
baseline that already gives

an = a1 + d(λn − λ1) + g(λn)− g(λ1),

we still have lim inf
an
λn

= ∞.

C) Achieving supΩn = 0 (i.e. inf Sn = 0).

We now produce inf Sn = 0 while keeping lim inf
an
λn

= ∞.

C1. Bounded gaps. If supn ∆λn < ∞, then sparse small overwrites con-
tribute only a bounded total loss to an. Thus lim inf an/λn = ∞ persists and
supΩn = 0.

C2. General gaps. Without any restriction on the gaps, one can still arrange
inf Sn = 0 by choosing the overwrite indices (nj) so sparse that their cumulative
loss is controlled by a fixed fraction of the baseline g-growth. This guarantees
that

an
λn

≥ 1
2

g(λn)

λn
+ o(1) → ∞,

while inf Sn = 0 ensures supΩn = 0.
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Start from the baseline with d = 0:

Sbase
n =

g(λn+1)− g(λn)

∆λn
.

Choose inductively an increasing index sequence (nj) so sparse that for each
J ,

J∑
j=1

(
g(λnj+1)− g(λnj

)
)

≤ 1

2

(
g(λnJ

)− g(λ1)
)
.

Now overwrite Snj
:= εj with εj ↓ 0 (e.g. εj = 1/j). Then infn Sn = 0 and, for

all n ≥ nJ ,

an = a1 +
∑

k<n, k/∈{nj}

(
g(λk+1)− g(λk)

)
+

∑
j: nj<n

εj ∆λnj

≥ a1 +
1

2

(
g(λn)− g(λ1)

)
.

Therefore,
an
λn

≥ 1

2
· g(λn)

λn
+ o(1) −−−−→

n→∞
∞, and supΩn = sup(−Sn) = 0.

4.2.5. Summary of the three issues

- For any c > 0: supΩn = −c is achieved by setting Sm = c at some index
and keeping Sn ≥ c elsewhere (A).

- For any C < 0 and any S ∈ [C, 0): set lim inf Sn = −C (i.e. Sn = d = −C
infinitely often) and choose inf Sn = c = −S ≤ d (B): then lim supΩn =
C and supΩn = S.

- For supΩn = 0: make inf Sn = 0 via sparse small overwrites on top of
the g-baseline, either under bounded gaps (C1) or by sparse trimming

(C2) in full generality; in both cases lim inf
an
λn

= ∞ is preserved.

4.2.6. Classification of attainable pairs (supΩn, lim supΩn)

Theorem 4.7. Let (λn) ↑ ∞ and (βn) ↑ with lim inf β
1/λn
n = ∞, and define

Sn =
an+1 − an

∆λn
> 0, Ωn = −Sn < 0.

Then the set of attainable pairs (supΩn, lim supΩn) is exactly{
(−c,−∞) : c > 0

}
∪
{
(S,C) : C < 0, S ∈ [C, 0)

}
∪ {(0, 0)}.

In words:
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(A) For every c > 0 there exists a construction with

supΩn = −c, lim supΩn = −∞.

(B) For every C < 0 and every S ∈ [C, 0) there exists a construction with

supΩn = S, lim supΩn = C.

(C) There exists a construction with

supΩn = 0, lim supΩn = 0,

attainable under bounded gaps supn ∆λn < ∞ or by sparse trimming in
the general case.

In conclusion, the foregoing results naturally lead to the following question.

Question 4.8. Does there exist a finite real number c < ∞ such that the set
(−∞, c] is dominating for the space H2(β)?
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