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Abstract. In this paper, we give a uniqueness theorem for meromorphic
functions ignoring multiplicity , which generalizes a An’s theorem in [1].

1. Introduction. Main results

In this paper, by a meromorphic function we mean a meromorphic function
on the complex plane C.

Let f be a non-constant meromorphic function on C. For every a ∈ C, we
define the function νaf : C→ N by

νaf (z) =

{
0 if f(z) ̸= a

d if f(z) = a with multiplicity d,

and set ν∞f = ν01
f

, and define the function νaf : C→ N by νaf (z) = min {νaf (z), 1},
and set ν∞f = ν01

f
. For f ∈M(C) and a non-empty set S ⊂ C∪{∞}, we define

Ef (S) =
⋃

a∈S

{(z, νaf (z)) : z ∈ C}, Ef (S) =
⋃

a∈S

{(z, νaf (z)) : z ∈ C}.

Let F be a nonempty subset ofM(C). Two functions f, g of F are said to
share S, counting multiplicity (share S CM) if Ef (S) = Eg(S), and to share S,
ignoring multiplicity (share S IM) if Ef (S) = Eg(S).
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If the condition Ef (S) = Eg(S) implies f = g for any two non-constant
meromorphic (entire) functions f, g, then S is called a unique range set for
meromorphic (entire) functions counting multiplicity, or in brief, URSM (URSE).
A set S ⊂ C ∪ {∞} is called a unique range set for meromorphic (entire) func-
tions ignoring multiplicity, or in brief, URSM-IM (URSE-IM), if the condition
Ef (S) = Eg(S) implies f = g for any pair of non-constant meromorphic (en-
tire) functions.

In 1976 Gross ([10]) proved that there exist three finite sets Sj (j = 1, 2, 3)
such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj), j =
1, 2, 3 must be identical. In the same paper Gross([10]) posed the following
question:

Question A. Can one find two (or possible even one) finite set Sj (j =
1, 2) such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj)
(j = 1, 2) must be identical?

Yi ([18]-[20],[22]) first gave an affirmative answer to Question A. Since then,
many results have been obtained for this and related topics (see ([1]-[15]), ([17]-
[23])).

Concerning to Question A, a natural question is the following.

Question B. What is the smallest cardinality for such a finite set S such
that any two meromorphic functions f and g satisfying either Ef (S) = Eg(S)
or Ef (S) = Eg(S) must be identical?

So far, the best answer to Question B for the case of URSM was obtained
by Frank and Reinders ([7]). They proved the following result.

Theorem C. The set {z ∈ C| PFR(z) = (n−1)(n−2)
2 zn + n(n − 2)zn−1 +

(n−1)n
2 zn−2 − c = 0}, where n ≥ 11 and c ̸= 0, 1, is a unique range set for

meromorphic functions counting multiplicity.

In 1997, H. X. Yi ([21]) first gave an answer to question B for the case of
URSM-IM with 19 elements. Since then, many results have been obtained for
this topic (see ([1]- [5])). So far, the best answer to Question B for the case of
URSM-IM was obtained by Chakraborty([5]). He proved the following result.

Theorem D. Let SFR = {z ∈ C| PFR(z) = 0}. If n ≥ 15, then SFR is a
URSM-IM.

In 2022, An([1]) given a class of unique range sets for meromorphic functions
ignoring multiplicity with 15 elements. He proved the following result.

Let n ∈ N∗, n ≥ 3. Consider polynomial P (z) as follows:

PA(z) = zn − 2na

n− 1
zn−1 +

na2

n− 2
zn−2 + 1 = QA(z) + 1, (1.1)

where a ∈ C, a ̸= 0. Suppose that

QA(a) ̸= −1, (1.2)
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QA(a) ̸= −2. (1.3)

Theorem E. Let PA(z) be defined by (1.1) with conditions (1.2) and (1.3),
and let SA = {z ∈ C| PA(z) = 0}. If n ≥ 15, then SA is a URSM-IM.

Clearly, P
′
A(z) = nzn−3(z−a)2, and P ′

FR(z) =
n(n− 1)(n− 2)

2
zn−3(z−1)2.

Therefore, this class is different from Chakraborty’s Theorem D in([5]).

In this paper, we give a uniqueness theorem for meromorphic functions
ignoring multiplicity, which generalizes Theorem E.

Now let us describe main results of the paper.

Let q, k,m1,m2 ∈ N∗.

We will let P (z) be polynomial having no multiple zeros of degree q in C[z]:

P (z) = (m1+m1+1)
( m2∑

i=0

(m2

i

) (−1)i
m1 +m2 + 1− iz

m1+m2+1−iai
)
+1 = Q(z)+1,

where

Q(z) = (m1 +m2 + 1)
( m2∑

i=0

(m2

i

) (−1)i
m1 +m2 + 1− iz

m1+m2+1−iai
)
. (1.4)

Suppose that

a ̸= 0, Q(a) ̸= −1, Q(a) ̸= −2. (1.5)

Clearly, P
′
(z) = (m1 +m2 + 1)zm1(z − a)m2 , and has a zero at 0 of order m1,

and a zero at a of order m2. Note that q = m1 +m2 + 1.

We shall prove the following theorem.

Theorem 1. Let P (z) be defined in (1.4) with conditions (1.5), and let S =
{z ∈ C| P (z) = 0}. If q ≥ 15, then S is a URSM-IM.

Remark 2. From proof of Theorem 1 we give a proof of Theorem D, which is
different from Chakraborty’s proof in([5])( see section 3.).

Remark 3. In Theorem 1, take m1 = n − 3 and m2 = 2 we obtain Theorem
E.

Indeed, by P
′
A(z) = nzn−3(z−a)2 and P

′
(z) = (m1+m2+1)zm1(z−a)m2 ,

we obtain P (z) = PA(z) when m1 = n− 3, m2 = 2.
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2. Lemmas, Definitions

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, ([6]), ([16])). We need some lemmas.

Lemma 2.1. ([6], paper 98;[16], paper 43) Let f be a non-constant mero-
morphic function on C and let a1, a2, ..., aq be distinct points of C ∪ {∞}.
Then

(q − 2)T (r, f) ≤
q∑

i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not

zeros of function (f − a1)...(f − aq), and S(r, f) = o(T (r, f)) for all r, except
for a set of finite Lebesgue measure.

Lemma 2.2. ([6, paper 99]) For any non-constant meromorphic function f,

T (r,
1

f ′ ) ≤ 2T (r, f) + S(r, f).

Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N (k(r, f) the counting function of the poles of order ≥ k
of f , where each pole is counted only once. If z is a zero of f , denote by νf (z)
its multiplicity. We denote by N(r, 1

f ′ ; f ̸= 0) the counting function of the

zeros z of f
′
satisfying f(z) ̸= 0, where each zero is counted only once.

Let be given two non-constant meromorphic functions f and g. For simplic-
ity, denote by ν1(z) = νf (z) (resp.,ν2(z) = νg(z)), if z is a zero of f(resp.,g).
Let f−1(0) = g−1(0). We denote by N(r, 1f ; ν1 = ν2 = 1)(resp., N(r, 1f ; ν1 >

ν2 ≥ 1)) the counting function of the common zeros z, satisfying ν1(z) =
ν2(z) = 1(resp., ν1(z) > ν2(z) ≥ 1, where each zero is counted only once),
and by N(r, 1f ; ν1 ≥ 2) the counting function of the zeros z of f , satisfying

ν1(z) ≥ 2. Similarly, we define the counting functions N(r, 1g ; ν2 > ν1 ≥ 1),

N(r, 1g ; ν2 ≥ 2).

Lemma 2.3. ([1, Lemma 2.3])

Let f, g be two non-constant meromorphic functions and let f−1(0) = g−1(0).
Set

F =
1

f
, G =

1

g
, L =

F
′′

F ′ −
G

′′

G′ .
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Suppose that L ̸≡ 0. Then

1) N(r, L) ≤ N (2(r, f) +N (2(r, g)+

N(r,
1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1) +N(r,

1

f ′ ; f ̸= 0)+

N(r,
1

g′ ; g ̸= 0).

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

2) N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1)

≤ N(r, L) +
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2) +N(r,

1

g
; ν2 ≥ 2)

+S(r, f) + S(r, g).

A polynomial R(z) is called a strong uniqueness polynomial for meromor-
phic (entire) functions if for arbitrary two non-constant meromorphic (entire)
functions f and g, and a nonzero constant c, the condition R(f) = cR(g) im-
plies f = g (see ([2]), ([9]), ([13])). In this case we say R(z) is a SUPM (SUPE).
A polynomial R(z) is called a uniqueness polynomial for meromorphic (entire)
functions if for arbitrary two non-constant meromorphic (entire) functions f
and g, the condition R(f) = R(g) implies f = g (see ([2]), ([9]), ([13])). In this
case we say R(z) is a UPM (UPE). Let R(z) be a polynomial of the degree q.
Assume that the derivative of R(z) has mutually distinct k zeros d1, d2, ..., dk
with multiplicities q1, q2, ..., qk, respectively. We often consider polynomials
satisfying the following condition introduced by Fujimoto ([8]):

R(di) ̸= R(dj), 1 ≤ i < j ≤ q. (2.1)

The number k is called the derivative index of R.

H. Fujimoto ([8], Proposition 7.1)) proved the following:

Lemma 2.4. Let R(z) be a polynomial of degree q satisfying the condition
(2.1), we assume furthermore that q ≥ 5 and there are two non-constant mero-
morphic function f and g such that

1

R(f)
=

c0
R(g)

+ c1

for two constants c0 ̸= 0 and c1. If k ≥ 3 or if k = 2,min{q1, q2} ≥ 2, then
c1 = 0.



122 Nguyen Duy Phuong

Lemma 2.5. ([13], Theorem 1.1)

Let P (z) be defined by (1.4) with conditions (1.5), and let n ≥ 6. Then
P (z) is a strong uniqueness polynomial for meromorphic functions.

Lemma 2.6. ([3], Theorem 1.1)

Let PFR1
(z) = (n−1)(n−2)

2 zn+n(n−2)zn−1+ (n−1)n
2 zn−2−c = 0}, where n ≥

8 and c ∈ C. Then PFR1
(z) is a strong uniqueness polynomial for meromorphic

functions.

3. Proof of Theorems

Proof of Theorem 1

Recall that P (z) = (z − a1)...(z − aq), P
′
(z) = qzm1(z − a)m2 , q = m1 +

m2 + 1.

Suppose q ≥ 15 and Ef (S) = Eg(S), where S = {z ∈ C| P (z) = 0}. Set

F =
1

P (f)
, G =

1

P (g)
, L =

F
′′

F ′ −
G

′′

G′ ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) + S(r, g).

Then T (r, P (f)) = qT (r, f) + S(r, f) and T (r, P (g)) = qT (r, g) + S(r, g), and
hence S(r, P (f)) = S(r, f) and S(r, P (g)) = S(r, g).

We consider two following cases:

Case 1. L ≡ 0. Then, we have 1
P (f) = c

P (g) + c1 for some constants c ̸= 0

and c1. By Lemma 2.4 we obtain c1 = 0.

Therefore, there is a constant C ̸= 0 such that P (f) = CP (g). Then,
applying Lemma 2.5 we obtain f = g.

Case 2. L ̸≡ 0.

Claim 1. We have

(q − 2)T (r) ≤ N(r,
1

P (f)
) +N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r), (3.1)

where N0(r,
1
f ′ ) (N0(r,

1
g′ )) is the counting function of those zeros of f ′, which

are not zeros of function (f −a1)...(f −aq)f(f −a)((g−a1)...(g−aq)g(g−a)).
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Indeed, applying the Lemma 2.1 to the functions f, g and the values a1, a2, ...,
aq, 0, a,∞, and noting that

q∑

i=1

N(r,
1

f − ai
) = N(r,

1

P (f)
),

q∑

i=1

N(r,
1

g − ai
) = N(r,

1

P (g)
),

we obtain

(q+1)T (r) ≤ N(r, f)+N(r, g)+N(r,
1

P (f)
)+N(r,

1

P (g)
)+N(r,

1

f
)+N(r,

1

g
)+

N(r,
1

f − a ) +N(r,
1

g − a )−N0(r,
1

f ′ )−N0(r,
1

g′ ) + S(r). (3.2)

On the other hand,

N(r, f) +N(r, g) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f
) +N(r,

1

g
) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f − a ) +N(r,
1

g − a ) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r).

From this and (3.2) we obtain (3.1).

Claim 2. We have

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
q

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).

Indeed, by Ef (S) = Eg(S) we get (P (f))−1(0) = (P (g))−1(0). For simplicity,
we set ν1 = ν1(z), ν2 = ν2(z), where ν1(z) = νP (f)(z), ν2(z) = νP (g)(z). Note
that

N (2(r, P (f)) = N(r, f), N (2(r, P (g)) = N(r, g),

S(r, P (f)) = S(r, f), S(r, P (g)) = S(r, g), S(r) = S(r, f) + S(r, g).

Applying the Lemma 2.3 to the functions P (f), P (g). Then we obtain

N(r, L) ≤ N(r, f)+N(r, g)+N(r,
1

P (f)
; ν1 > ν2 ≥ 1)+N(r,

1

P (g)
; ν2 > ν1 ≥ 1)

+N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0), (3.3)
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and

N(r,
1

P (f)
) +N(r,

1

P (g)
) +N(r,

1

P (f)
; ν1 > ν2 ≥ 1)+

N(r,
1

P (g)
; ν2 > ν1 ≥ 1) ≤ N(r, L) +

1

2
(N(r,

1

P (f)
) +N(r,

1

P (g)
))+

N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2)) + S(r). (3.4)

Morover,
N(r, f) +N(r, g) ≤ T (r) + S(r). (3.5)

Obviously,

N(r,
1

P (f)
) ≤ qT (r, f) + S(r, f);N(r,

1

P (g)
) ≤ qT (r, g) + S(r, g),

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤ qT (r) + S(r). (3.6)

On the other hand, from P (f) = (f−a1)...(f−aq) it follows that if z0 zero is a
zero of P (f) with multiplicity ≥ 2, then z0 is a zero of f − ai with multiplicity
≥ 2 for some i ∈ {1, 2, ..., q}, and therefore, it is a zero of f

′
, so we have

N(r,
1

P (f)
; ν1 ≥ 2) ≤ N(r,

1

f ′ ).

From this and Lemma 2.2 we obtain

N(r,
1

P (f)
; ν1 ≥ 2) ≤ N(r,

1

f ′ ) ≤ T (r, f
′
) + S(r, f) ≤ 2T (r, f) + S(r, f).

Similarly, we have

N(r,
1

P (g)
; ν2 ≥ 2) ≤ N(r,

1

g′ ) ≤ T (r, g
′
) + S(r, g) ≤ 2T (r, g) + S(r, g).

Therefore,

N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2) ≤ 2T (r) + S(r). (3.7)

Combining (3.1)-(3.7) we get

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
q

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).
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Claim 2 is proved.

Claim 3. We have

N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) ≤ 2T (r) +N0(r,

1

f ′ )+

N0(r,
1

g′ ) + S(r).

We have

N(r,
1

[P (f)]′
;P (f) ̸= 0) = N(r,

1

fm1(f − a)m2f ′ ;P (f) ̸= 0) ≤ N(r,
1

f
)+

N(r,
1

f − a ) +N0(r,
1

f ′ ) ≤ 2T (r, f) +N0(r,
1

f ′ ) + S(r, f). (3.8)

Similarly,

N(r,
1

[P (g)]′
;P (g) ̸= 0) ≤ 2T (r, g) +N0(r,

1

g′ ) + S(r, g). (3.9)

Inequalities (3.8) and (3.9) give us

N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) ≤

≤ 2T (r) +N0(r,
1

f ′
) +N0(r,

1

g′ ) + S(r).

Claim 3 is proved.

Claim 1, 2, 3 give us:

(q − 2)T (r) ≤ (
q

2
+ 5)T (r) + S(r). So (q − 14)T (r) ≤ S(r).

This is a contradiction to the assumption that q ≥ 15. So L ≡ 0. Therefore
f = g. Theorem 1 is proved.

A proof of Theorem D

By using the arguments similar in proof of Theorem 1 and Lemma 2.6 we
give a proof of Theorem D, which is different from Chakraborty’s proof of
Theorem D in([5]).

Recall that PFR(z) = (z−a1)...(z−an), P
′
FR(z) =

n(n−1)(n−2)
2 zn−3(z−1)2.
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Suppose n ≥ 15 and Ef (SFR) = Eg(SFR), where SFR = {z ∈ C| PFR(z) =
0}. Set

F =
1

PFR(f)
, G =

1

PFR(g)
, L =

F
′′

F ′ −
G

′′

G′ ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) + S(r, g).

Then T (r, PFR(f)) = nT (r, f) + S(r, f) and T (r, PFR(g)) = nT (r, g) + S(r, g),
and hence S(r, PFR(f)) = S(r, f) and S(r, PFR(g)) = S(r, g).

We consider two following cases:

Case 1. L ≡ 0. Then, we have 1
PFR(f) = c

PFR(g) + c1 for some constants

c ̸= 0 and c1. By Lemma 2.4 we obtain c1 = 0.

Therefore, there is a constant C ̸= 0 such that PFR(f) = CPFR(g). Then,
applying Lemma 2.6 we obtain f = g.

Case 2. L ̸≡ 0. By using the arguments similar in proof of Theorem 1 we
obtain

Claim 1. We have

(n− 2)T (r) ≤ N(r,
1

PFR(f)
) +N(r,

1

PFR(g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r),

(3.10)
where N0(r,

1
f ′ ) (N0(r,

1
g′ )) is the counting function of those zeros of f ′, which

are not zeros of function (f −a1)...(f −an)f(f −1)((g−a1)...(g−an)g(g−1)).

Claim 2. We have

N(r,
1

PFR(f)
) +N(r,

1

PFR(g)
) ≤

(
n

2
+3)T (r)+N(r,

1

[PFR(f)]
′ ;PFR(f) ̸= 0)+N(r,

1

[PFR(g)]
′ ;PFR(g) ̸= 0)+S(r).

Claim 3. We have

N(r,
1

[PFR(f)]
′ ;PFR(f) ̸= 0)+N(r,

1

[PFR(g)]
′ ;PFR(g) ̸= 0) ≤ 2T (r)+N0(r,

1

f ′ )+

N0(r,
1

g′ ) + S(r).

Claim 1, 2, 3 give us:

(n− 2)T (r) ≤ (
n

2
+ 5)T (r) + S(r). So (n− 14)T (r) ≤ S(r).

This is a contradiction to the assumption that n ≥ 15. So L ≡ 0. Therefore
f = g.

Theorem D is proved.
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