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Abstract. In this paper, we give a uniqueness theorem for meromorphic
functions ignoring multiplicity , which generalizes a An’s theorem in [1]

1. Introduction. Main results

In this paper, by a meromorphic function we mean a meromorphic function
on the complex plane C.

Let f be a non-constant meromorphic function on C. For every a € C, we
define the function v : C — N by

v [0 1 FE) £
if f(z) = a with multiplicity d,

and set v3° = =19, and define the function 7" 7§ : C— Nbyv}(z) =min {v§(2),1},

and set 77 = ? For f € M(C) and a non-empty set S C CU{oo}, we define

\\ﬁo*

{(z,v§(2)) : z€C}, Ef(S U{

a€S

:z € C}.
a€S

Let F be a nonempty subset of M(C). Two functions f, g of F are said to

share S, counting multiplicity (share S CM) if E;(S) = E4(S), and to share S,
ignoring multiplicity (share S IM) if E¢(S) = E4(S).
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If the condition E¢(S) = E4(S) implies f = g for any two non-constant
meromorphic (entire) functions f,g, then S is called a unique range set for
meromorphic (entire) functions counting multiplicity, or in brief, URSM (URSE).
A set S € CU {oo} is called a unique range set for meromorphic (entire) func-
tions ignoring multiplicity, or in brief, URSM-IM (URSE-IM), if the condition
E;(S) = E,4(S) implies f = g for any pair of non-constant meromorphic (en-
tire) functions.

In 1976 Gross ([10]) proved that there exist three finite sets S; (j = 1,2,3)
such that any two entire functions f and g satisfying E;(S;) = E4(S;), j =
1,2,3 must be identical. In the same paper Gross([10]) posed the following
question:

Question A. Can one find two (or possible even one) finite set S; (j =
1,2) such that any two entire functions f and g satisfying E¢(S;) = Eq4(S;)
(5 =1,2) must be identical?

Yi ([18]-[20],[22]) first gave an affirmative answer to Question A. Since then,
many results have been obtained for this and related topics (see ([1]-[15]), ([17]-
23))).

Concerning to Question A, a natural question is the following.

Question B. What is the smallest cardinality for such a finite set S such
that any two meromorphic functions f and g satisfying either E¢(S) = E4(S)
or E¢(S) = E,(S) must be identical?

So far, the best answer to Question B for the case of URSM was obtained
by Frank and Reinders ([7]). They proved the following result.

Theorem C. The set {z € C| Prr(z) = 7("7”2("72) 2+ nn —2)z2" " 4
Wzn_z —c¢ = 0}, where n > 11 and ¢ # 0,1, is a unique range set for
meromorphic functions counting multiplicity.

In 1997, H. X. Yi ([21]) first gave an answer to question B for the case of
URSM-IM with 19 elements. Since then, many results have been obtained for
this topic (see ([1]- [5])). So far, the best answer to Question B for the case of
URSM-IM was obtained by Chakraborty([5]). He proved the following result.

Theorem D. Let Spr = {z € C| Ppr(z) = 0}. If n > 15, then Spg is a
URSM-IM.

In 2022, An([1]) given a class of unique range sets for meromorphic functions
ignoring multiplicity with 15 elements. He proved the following result.

Let n € N*;n > 3. Consider polynomial P(z) as follows:

2
AR 2" 4 1=Qua(2) + 1, (1.1)

P =" -
a(2) =2 n—1 n—2

where a € C, a # 0. Suppose that
Qala) # -1, (1.2)
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Qala) # 2. (1.3)

Theorem E. Let Ps(z) be defined by (1.1) with conditions (1.2) and (1.3),
and let Sy = {z € C| Pa(z) =0}. If n > 15, then S4 is a URSM-IM.

’ ’ - 1 - 2
Clearly, P,(z) = nz""3(2—a)?, and Ppy(z) = %z"*’(ﬁz—l)?
Therefore, this class is different from Chakraborty’s Theorem D in([5]).

In this paper, we give a uniqueness theorem for meromorphic functions
ignoring multiplicity, which generalizes Theorem E.

Now let us describe main results of the paper.
Let g, k,mq, mo € N*.
We will let P(z) be polynomial having no multiple zeros of degree ¢ in C[z]:

P(2) = (mi+mi+1) (Y (?ﬂ%

=0

Zm1+m2+17iai)+1 — Q(Z)Jrl’
where

— - mz(_—l)iml mo+1—i i
Q(Z)—(m1+m2+1)(;(i )m1+m2+1—iz tmatl=igh), (1.4)

Suppose that
Clearly, P'(z) = (my +mg +1)z" (2 — a)™, and has a zero at 0 of order my,
and a zero at a of order ms. Note that ¢ = m; +mo + 1.

We shall prove the following theorem.

Theorem 1. Let P(z) be defined in (1.4) with conditions (1.5), and let S =
{z €C| P(z) =0}. If ¢ > 15, then S is a URSM-IM.

Remark 2. From proof of Theorem 1 we give a proof of Theorem D, which is
different from Chakraborty’s proof in([5])( see section 3.).

Remark 3. In Theorem 1, take m; = n — 3 and mo = 2 we obtain Theorem
E.

Indeed, by P)(z) = nz""3(z—a)? and P'(2) = (m1 +mg+1)2™ (z—a)™,
we obtain P(z) = Pa(z) when my =n — 3, mg = 2.
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2. Lemmas, Definitions

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, ([6]), ([16])). We need some lemmas.

Lemma 2.1. ([6], paper 98;[16], paper 43) Let f be a non-constant mero-

morphic function on C and let a1, az, ..., ag be distinct points of C U {oo}.
Then
G 1 1
(@=2)T(r. f) < ZN(Taﬁ) —No(Taf) +8(r, f),
i=1 v

where No(n%) s the counting function of those zeros of f’, which are not

zeros of function (f —a1)...(f — aq), and S(r, f) = o(T(r, f)) for all v, except
for a set of finite Lebesgue measure.

Lemma 2.2. ([6, paper 99]) For any non-constant meromorphic function f,

T(r, %) < 2T(r, f) + S(r, ).

Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N(k(r, f) the counting function of the poles of order > k
of f, where each pole is counted only once. If z is a zero of f, denote by vs(z)
its multiplicity. We denote by N(r, %; f # 0) the counting function of the

zeros z of f/ satisfying f(z) # 0, where each zero is counted only once.

Let be given two non-constant meromorphic functions f and g. For simplic-
ity, denote by v1(z) = v(z) (resp.,va(z) = v4(2)), if z is a zero of f(resp.,g).
Let f=%(0) = ¢g~%(0). We denote by N(r, %;1/1 = vy = 1)(resp., N(r, %;Vl >
vy > 1)) the counting function of the common zeros z, satisfying vy (z) =
va(z) = 1(resp., vi(z) > va(z) > 1, where each zero is counted only once),
and by N(r, %; v1 > 2) the counting function of the zeros z of f, satisfying
v1(z) > 2. Similarly, we define the counting functions N (r, %;l/g > > 1),

N(r, 5;1/2 > 2).
Lemma 2.3. ([1, Lemma 2.3])

Let f, g be two non-constant meromorphic functions and let f~(0) = g~1(0).

Set
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Suppose that L Z 0. Then

1) N(T7 L) < N(Q(r7 f) +N(2(7‘7g)+
N(ﬁ%;w >y > 1) +N(7”7$§V2 > >1) "’N(T»%?f #0)+

— 1
N(T7 39 7é O)
g
Moreover, if a is a common simple zero of f and g, then L(a) = 0.

1 — 1
)+N(T7§)+N(T7?§V1>V221)+N(7“7§;V2>V121)

R L)+ 5N )+ N )+ N i 2 2)+ N i 2 2)

2) N(r,

=

IN

N

—

+S(r, f) + S(r,g).

A polynomial R(z) is called a strong uniqueness polynomial for meromor-
phic (entire) functions if for arbitrary two non-constant meromorphic (entire)
functions f and g, and a nonzero constant ¢, the condition R(f) = ¢R(g) im-
plies f = g (see ([2]), ([9]), ([13])). In this case we say R(z) is a SUPM (SUPE).
A polynomial R(z) is called a uniqueness polynomial for meromorphic (entire)
functions if for arbitrary two non-constant meromorphic (entire) functions f
and g, the condition R(f) = R(g) implies f = g (see ([2]), ([9]), ([13])). In this
case we say R(z) is a UPM (UPE). Let R(z) be a polynomial of the degree q.
Assume that the derivative of R(z) has mutually distinct k zeros di, da, ..., dy
with multiplicities ¢, qo, ..., gk, respectively. We often consider polynomials
satisfying the following condition introduced by Fujimoto ([8]):

The number k is called the derivative index of R.

H. Fujimoto ([8], Proposition 7.1)) proved the following:

Lemma 2.4. Let R(z) be a polynomial of degree q satisfying the condition
(2.1), we assume furthermore that ¢ > 5 and there are two non-constant mero-
morphic function f and g such that
1 Co +

— =9 4

R(f)  R(g)
for two constants co # 0 and c1. If k > 3 or if k = 2, min{q1,q2} > 2, then
Cc1 = 0.
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Lemma 2.5. ([13], Theorem 1.1)

Let P(z) be defined by (1.4) with conditions (1.5), and let n > 6. Then
P(z) is a strong uniqueness polynomial for meromorphic functions.

Lemma 2.6. ([3], Theorem 1.1)

Let Pppr,(z) = Wz”+n(n72)z”’l+WZ”’27c =0}, wheren >
8 and c € C. Then Ppg,(z) is a strong uniqueness polynomial for meromorphic
functions.

3. Proof of Theorems

Proof of Theorem 1

Recall that P(z) = (2 — a1)...(z — a,), P (2) = ¢z™ (2 — a)™, ¢ = my +
mo + 1.

Suppose g > 15 and E(S) = E4(S), where S = {z € C| P(z) = 0}. Set

" "

1 1 F G
F*Wa G*%?-L*F_?7
T(r)=T(r,f)+T(r,g),S(r) =5 f)+5(rg).
Then T'(r, P(f)) = ¢T'(r, f) + S(r, f) and T(r, P(9)) = qT(r,g) + 5(r, g), and
hence S(r, P(f)) = S(r, f) and S(r, P(g)) = S(r, g).
We consider two following cases:

Case 1. L = 0. Then, we have ﬁ = ﬁ + ¢1 for some constants ¢ # 0
and ¢;. By Lemma 2.4 we obtain ¢; = 0.

Therefore, there is a constant C' # 0 such that P(f) = CP(g). Then,
applying Lemma 2.5 we obtain f = g.

Case 2. L #0.
Claim 1. We have

_ 1 — 1 1 1
q—2)T(r) < N(r, =)+ N(r, =—) — No(r, ) — No(r, =) + S(r), (3.1
(¢ =2)T(r) (P(f)) (P(g)) olr 7) = No(r, 77) + 5(r), (3.1)
where Ny(r, %) (No(r, i)) is the counting function of those zeros of f’, which

are not zeros of function (f —ay)...(f —ag) f(f —a)((g—a1)...(g —ag)g(g — a)).
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Indeed, applying the Lemma 2.1 to the functions f, g and the values a1, as, ...,
aq, 0,a,00, and noting that

SNl =) = N ) SN =) = N ).

()" = 9—ai (9)
we obtain
(q+1)T(r) < N(r, )+ N(r,9)+ N(r, P(lf))+ﬁ(r, Pzg))JrW(r, L e, $)+
N, ﬁ) N — )~ No(r, %) CNo(r )+ S0 (3.2)

On the other hand,

N(r, f)+N(r,g) < (T(r, f) +T(r,9)) + S(r) = T(r) + S(r),

N(r, %) +N(r, é) <(T(r, f)+T(r,9)) + S(r) = T(r) + S(r),

ia) <(T(r, f)+T(r,g9) +S()=T(r)+S(r).

From this and (3.2) we obtain (3.1).
Claim 2. We have

N(r,

g r 77"71 ; 77" !
(5 +8)70) + Nlr, i PU) #0) + N

By PO #0450,

Indeed, by E¢(S) = E,4(S) we get (P(f))~1(0) = (P(g))~"(0). For simplicity,
we set vy = v1(2), Vo = v2(z), where v1(2) = vp(s)(2), 2(2) = vp(y(2). Note
that o o o o
Na(r, P(f)) = N(r, f), Nea(r, P(g)) = N(r,9),
S(r,P(f)) = S(r, f), S(r,P(g)) = S(r,9),S(r) = S(r, f) + S(r, 9).

Applying the Lemma 2.3 to the functions P(f), P(g). Then we obtain

N(r,L) < N(r, f)+N(r,g)+N(r, %;m > vy > 1)+N(r, %;uz > > 1)
TN, s P(f) # 0) + N(r, ——— P(g) £0), (3.3)

[P
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and

N(r, P(lf)) + N(r, %) + N(r, %; vi >y > 1)+
N, %;W >0 > 1) < Nir, L) + L (N(r, P(lf)) L NG P(lg)))+
N, P(l Fi =2+ NG P%g) v > 2)) + S(r). (3.4)
Horaver N(r, f) + N(r,9) < T(r) + S(r). (3.5)
Obviously,
Nlr. ) < AT 1)+ S 1N 55) < aT(r.9) + S(r.0).
N(r. )+ N ) < 4T(0) + 50). (36)

On the other hand, from P(f) = (f —a1)...(f — aq) it follows that if zy zero is a
zero of P(f) with multiplicity > 2, then zj is a zero of f — a; with multiplicity
> 2 for some i € {1,2,...,q}, and therefore, it is a zero of f , so we have

1 1

N(r, P(f)ﬂ/l >2) < N(r, f,).

From this and Lemma 2.2 we obtain

NG, P(l Fi 2 2) SN ) STOf) 4 S0 f) S 200, ) + 50 5).
Similarly, we have

Nir prgive 2 2) € NG ) < T(rg) + S(r.9) < 2T(r.9) + S(r.0).
Therefore,

1 1
N(T,W,I/l >2)+ N(r, P(g),z/2>2)<2T(7”)+S( ). (3.7)
Combining (3.1)-(3.7) we get
— 1 — 1
q 1 L
(5 + 3)T(7“) + N(Ta [P(f)]/ aP(f) 7é O) +]\](7"7 [P(g)]mp(g) 7é O) +S( )
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Claim 2 is proved.
Claim 3. We have

_ 1 _ 1 1
N(r, va(f) #0) + N(r, sz(g) #0) < 2T'(r) + No(r, 7)4‘

No(r, =) + 8(r).

g
We have
_ 1 — 1 —, 1
N(r, [P(f)]”P(f) #0) :N(ﬁva(f) #0) < N(ﬁ?)JF
N, ﬁ) + No(r, %) < 2T(r, f) + No(r, %) LSt f).  (38)
Similarly,
_ 1 — 1
N(nW;P(g) #0) < QT(T79)+N0(T7;)+S(7’79)- (3.9)
Inequalities (3.8) and (3.9) give us
_ 1 — 1
N(T’, [P(f)}/7p(f) 7&0) —"—N(T,W,P(Q) 7&0) <
< 2T(r) + No(r, %) + No(r, ?) + S(r).

Claim 3 is proved.

Claim 1, 2, 3 give us:
(a=27() < (4 +5)T() + (). S0 (4 = 19T(r) < 5(r).

This is a contradiction to the assumption that ¢ > 15. So L = 0. Therefore
f =g. Theorem 1 is proved.

A proof of Theorem D

By using the arguments similar in proof of Theorem 1 and Lemma 2.6 we
give a proof of Theorem D, which is different from Chakraborty’s proof of
Theorem D in([5]).

Recall that Prg(2) = (z—a1)...(2—an), Ppg(z) = Wz”*:’(zfl)?
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Suppose n > 15 and E¢(Spr) = E4(Srr), where Spr = {z € C| Prg(z) =

0}. Set
1 1 F G
S P T P T F T
T(r)=T(r,f)+T(r,g),8(r) =S f)+S(rg)

Then T(r, Prr(f)) = nT(r, f)+ S(r, f) and T(r, Prr(g)) = nT(r,g) + S(r,g),
and hence S(r, Prr(f)) = S(r, f) and S(r, Prr(g)) = S(r, g).

We consider two following cases:

Case 1. L = 0. Then, we have #(f) = ﬁ(m + ¢; for some constants
¢ # 0 and ¢;. By Lemma 2.4 we obtain ¢; = 0.

Therefore, there is a constant C' # 0 such that Ppr(f) = CPrr(g). Then,
applying Lemma 2.6 we obtain f = g.

Case 2. L # 0. By using the arguments similar in proof of Theorem 1 we
obtain

Claim 1. We have

F

1 — 1

(n = 2T (1) < N, ) + N ) = Mo Ly Vo, g—%) +5(r),

T,
f
(3.10)
where Ny(r, %) (No(r, g—l,)) is the counting function of those zeros of f’, which

are not zeros of function (f —ay)...(f —an) f(f —1)((g —a1)...(g —an)g(g—1)).
Claim 2. We have

_ 1 — 1
N o)) TV Bonte)
n — 1 — 1
(§+3)T(r)+N(n Prn(FT s Prr(f) # 0)+N(r, Pl ;i Prr(g) # 0)+S(r).

Claim 3. We have

N L Prr(f) £ 0+ N,

1
(r’ [Prr(f)] 73 Prr(g) # 0) < 2T'(r)+No(r, 7)+

[Prr(g)]

No(r, &) + S0,

Claim 1, 2, 3 give us:
(n—2)T(r) < (g +5)T(r) + 8(r). So (n — 14)T(r) < S(r).

This is a contradiction to the assumption that n > 15. So L = 0. Therefore
=y

Theorem D is proved.
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