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Abstract. The paper extends author’s method of modular distributions
(2002, [75]) to arithmetic automorphic L functions on general classical
groups. Main resultat gives a p-adic interpolation of their critical L values
in the form of integrals of distributions constructed from a given eigen
function of Hecke algebras by applying BGG modules, (see also preprints
[78] and [79].
In particular, algebraic differential operators are described acting on auto-
morphic forms ϕ on unitary groups U(n, n) over an imaginary quadratic
field K = Q(

√
−DK) ⊂ C.

Applications are given to Shimura’s zeta functions L(s, f) [90] attached
special L-values L(s,ϕ) attached to ϕ. and normalized in accordance with
Deligne’s Gamma factors rule [21]. An explicit description of Shimura’s
Γ-factors is used..
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0.1. Algebraic differential operators in the simplest case of modular
forms for Γ = SL2(Z)

Action of the derivative D =
1

2πi

d

dz
= q

d

dq
(where q = e2πiz) on a mod-

ular form g =

∞∑
n=0

bnq
n is not a modular form, but it is quasi-modular ([96],

p.59, [66], p.67): the function f = Drg =

∞∑
n=0

nrbnq
n satisfies the following

transformation law:
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(cz + d)−`−2rDrg(γz) =

r∑
t=0

(
r

t

)
Γ(r + `)

Γ(t+ `)

(
1

2πi

c

cz + d

)r−t
Dtg(z)

for a modular form g ∈M`(Γ) of weight `, γ =
(
a
c
b
d

)
∈ Γ.

In order to adjust it to the weight ` + 2r, let us use S = 1
4πy , Im z = z−z̄

2i ,

and
1

Imγz
=
|cz + d|2

Im z
= (cz + d)

(
−2ic+

cz + d

y

)
:

0.2. Maass-Shimura differential operator

If f = Drg where g ∈ M`(Γ) is a modular form of weight `, then the
transformation law produces also the Maass-Shimura differential operator δ`
to the space of nearly holomorphic forms of weight `+ 2r:

δr` g(z) =

r∑
t=0

(
r

t

)
Γ(r + `)

Γ(r − t+ `)
(−S)tDr−tg(z), where S =

1

4πy
,

which preserves the rationality of the coefficients of S and q. It comes again
from the above transformation law of Drg. Notice:
δ`(g) = 1

2πiy
−` ∂

∂z (y`g) = 1
2πi

(
∂g(z)
∂z + `

2iy g(z)
)

= (D − `S)(g), which is of
weight `+ 2 and its degree of near holomorphy (in the variable S) is increased
by one.
For an integer r ≥ 0, δr` := δ`+2r−2 ◦ · · · ◦ δ` (see also [94]).

A conceptual explanation of the algebraicity comes from the Gauss-Manin
connection (due to Grothendieck in higher dimensions see [34], [48]).

0.3. Algebraic differential operators on symplectic groups

On scalar-valued Siegel modular forms: Let Z = (zij) ∈ GLn(C), Z = tZ,

∂ij = 1
2π
√
−1

{
∂
∂zij

i = j
1
2

∂
∂zij

i 6= j
, Maass operator ∆ = det(∂ij) acts by ∆qT =

det(T )qT on qT = exp(2πitr(TZ)).
The Maass-Shimura operator δkf(Z) = (−4π)−n det(Z − Z̄)

1+n
2 −k∆(det(Z −

Z̄)k−
1+n
2 +1f(Z))
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acts on qT via the polynomial representations ρr : GLn(C) → GL(∧rCn) and
its adjoint ρ∗r (see [16])

δk(qT ) =

n∑
`=0

(−1)n−`cn−`(k + 1− 1 + n

2
)tr(tρn−`(S)ρ∗` (T ))qT ,

where cn−`(s) = s(s− 1
2 ) · · · (s− n−`−1

2 ), S = (2πi(z̄ − z))−1.
For a Cd-valued Siegel modular form f this algebraic operator extends to a

Cd-valued smooth function of Z = (zij)=X +
√
−1Y .

Let Se(Sym2(Rn), Rd) be the R-module of all polynomial maps of Sym2(Rn)
into Rd homogeneous of degree e. Define inductively S1(Sym2(Cn),Cd)-valued
smooth functions:
(Df)(u) =

∑
1≤i≤j≤n

uij
∂f

∂(2π
√
−1zij)

, (Cf)(u) = (Df)((Z − Z̄)u(Z − Z̄)),

(Ce(f)(u) = C(Ce−1(f)(u)
De
ρ(f) := (ρ⊗ τe)(Z − Z̄)−1Ce(ρ(Z − Z̄)f), where

[(ρ⊗ τ)(α)(h)](u) := ρ(α)h(tα · u · α).
Then De

ρ equals (2
√
−1π)−e times the (vector-valued) Maass-Shimura differ-

ential operator.

0.4. From symplectic case (Type C) to unitary case (Type A)

Siegel modular forms of degree n are holomorphic (vector-valued) functions
on Hn = {Z = tZ ∈ Cnn, Im (Z) > 0} (the Siegel space, (Type C) [90]).

Automorphic forms on unitary groups (Type A) in [90]
U(a, b) (of degree n = a+ b)  the double group U(n, n),
and the corresponding hermitian space of degree n:

Hn = {z ∈ Cnn | i(z∗ − z) > 0}

where z∗ = tz̄, x := (z+ z∗)/2 the hermitian part of z, and y := (z− z∗)/2 the
anti-hermitian part, such that i(z∗− z)/2 = iy is a positive hermitian matrix.

Note that z = x + iy, but x, y are not real: for a hermitian matrix h, the

real matrices ḣ =
ω th− ω̄h
ω − ω̄

, ḧ =
h− th

ω − ω̄
are used for ω =

1

2
(δ + δ

1
2 ), δ the

discriminant of K, so that h = ḣ+ ωḧ (notation in [13]).

Automorphic L functions on unitary groups and related geometric objects
where discussed by M. Harris (ICM 2014), Automorphic Galois representations
and the cohomology of Shimura varieties., [39], and by P.Scholze (ICM 2018),
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Applications of p-adic geometry to automorphic Galois representations on
unitary groups in [81].

1. Unitary groups and forms, [38],[24], [90]

1.1. Unitary groups U(a, b) (a + b = n) and U(n, n) (the double
group)

Let V be an n-dimensional space over an imaginary quadratic field K =
Q(
√
−DK), and let 〈·, ·〉 be a non degenerate hermitian pairing of signature

(a, b) on V relative to K ⊂ C.
Let us write −V for the vector space V with the pairing 〈·, ·〉−V = −〈·, ·〉V (of
signature (b, a)).

Let 2V denote the double vector space V ⊕ V with the pairing 〈·, ·〉2V de-
fined for all vectors v1, v2, w1, w2 ∈ V by 〈(v1, v2), (w1, w2)〉2V := 〈(v1, w1)〉V +
〈(v2, w2)〉−V
(of signature (b+ a, a+ b) = (n, n)).

For a vector space W with hermitian pairing 〈·, ·〉W , and a Q-algebra R,
the unitary groups are defined by

U(W )(R) = {g ∈ GL(W ⊗R)|∀v, v′, 〈gv, gv′〉 = 〈v, v′〉}

GU(W )(R) = {g ∈ GL(W ⊗R)|∀v, v′,∃ν(g) ∈ R∗, 〈gv, gv′〉 = ν(g)〈v, v′〉} .

Then

U(2V )(R) ∼= U(n, n)(R) =

{
M =

(
A

C

B

D

)
∈ GL2n(K⊗R)|MηnM

∗ = ηn

}
,

where ηn =

(
0n
In

−In
0n

)
. The group U(n, n) acts on the hermitian space

Hn = {z ∈ Cnn | i(z∗ − z) > 0} , with z∗ := tz̄.
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1.2. Algebraic geometric approach: families of abelian varieties of
CM-type and unitary groups

Main arithmetical applications of unitary groups U(n, n) use Shimura’s an-
alytic families of abelian varieties A of CM-type of dimCA = 2n, that is, with
fixed imbedding ι : K ↪→ End(A) ⊗ Q, and other PEL-structures ("polzariza-
tion, endomorphisms, level", following [24], §2).

Recall that elliptic curves E with complex multiplication by K correspond
to certain CM-points on the upper half plaine H, that is E ∼→ C/L, where
L = 〈1, α〉 ⊂ K = Q(α) is a lattice in C and Im (α) > 0 (only special CM-
points, not analytic families).

Families of 2n-dimensional CM-abelian varieties A use the analytic param-
eter z ∈ Hn. Any row vector x ∈ K1

2n defines a z-holomorphic C2n-valued
function pz(x) by

pz(x) =
(
[z, 1n] · x∗, [tz, 1n] · tx

)
For a fixed lattice L ⊂ K2n ⊂ C2n, denote by Lz = pz(L) a 4n-dimensional
CM-lattice of analytic parameter z.

1.3. Explicit matrix description by the complex torus C2n/Lz

Any 2n-dimensional abelian variety of CM-type is isomorphic to Az, with
the action of K given by ιz(a) · v = diag[ā · 1n, a · 1n] · v.

Universal analytic family Auniv over Hn : taking L the lattice in K1
2n

generated by the standard basis vectors e1, · · · , e2n, and the vectors α·e1, · · · , α·
e2n with α a generator of K over Q. Then the fiber Az over each point z =
(zij) ∈ Hn is the abelian variety Az ∼= C2n/L, where Lz the Z-lattice generated
by 4n rows:

zj = (z1j , · · · , znj , zj1, · · · , zjn)

ej = vector with 1 in the j-th and j + n-th positions
and zeroes everywhere else,

z′j = (ᾱz1j , · · · , ᾱznj , αzj1, · · · , αzjn)

e′j = vector with ᾱ in the j-th, and α in the j + n-th positions

and zeroes everywhere else.
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1.4. Vector-valued automorphic forms on unitary groups, [24], p.18

Weight ρ of an automorphic form on G is a representation of the maximal
compact subgroup K ⊂ G. Weights are constructed via the following polyno-
mial representations ρκ : GLn → GL(Vκ).

For each set κ of orderered integers κ1 ≥ · · · ≥ κn there is a representation
(ρκ,GLn) of highest weight κ, constructed as
Vκ = Symκ1−κ2(Rn) ⊗ Symκ2−κ3(∧2(Rn)) ⊗ · · · ⊗ Symκn(∧n(Rn)) with the
standard GLn-action, over any Q-algebra R.

Vector valued modular formsMκ (symplectic case) andMκ,κ′ (unitary case)
can be attached to the representations with highest weight ρ = ρκ and ρ+

κ ⊗ρ−κ′
of the maximal compact subgroups K ∼= U(n) ⊂ Sp2n(R) and K ∼= U(a) ×
U(b) ⊂ U(a, b).
These modular forms take values in Vκ and Vκ,κ′ , and defined on the symmetric
spaces G/K, G = Sp(R) or G = U(a, b).

Some notation α(z) = (az + b)(cz + d)−1, λ(z) = c̄ · tz̄ + d̄, µ(z) = c · z + d
(used for the automorphy factors of weight ρ, and for the Eisenstein series).

1.5. C∞-differential operators via Shimura’s approach

For each z ∈ Hn, let Ξ(z) = (ξ(z), η(z)) = (i(z̄ − tz), i(z∗ − z)), so that
tξ(z) = η(z) = i(z∗ − z)). The tangent space T = Cnn over C has a R-rational
basis {eν}, u :=

∑
ν uνεν , z :=

∑
ν zνεν .

Let (ρ, V ) = (ρ− ⊗ ρ+, V− ⊗ V+) be a finite dimensional representation of
GLn(C) × GLn(C), and e be a positive integer. For vector spaces X and Y ,
define Se(Y,X) the vector space of degree e homogeneous polynomial maps of
Y into X, i.e. the space of maps h from Y to X such that h(a · y) = aeh(y),
Se(Y ) = Se(Y,C).

For f ∈ C∞(Hn, V ), put Ξ = (ξ, η) ∈ S1(T,C), and define operators C,D :
C∞(Hn, V )→ C∞(Hn, S1(T, V )) by

(Df)(u) =
∑
ν

uν
∂f

∂zν

(Cf)(u) = (τ1(Ξ)Df)(u) := Df(tξuη).

For e > 1 write De(f) and Ce(f) for D(De−1f) and C(Ce−1f), viewed as
C∞(Hn, Se(T, V )) - valued.
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1.5.1. Action on vector-values automorphic forms

Given g = (a, b) ∈ GLn(C) × GLn(C), (ρ,X) a polyomial representation,
and h ∈ M`e(T,X) = M`e(T,C) ⊗ X (symmetric R-multilinear map viewed
also as element Se(T,X)), define [τe(a, b)h](u1, · · · , ue) = (tau1b, · · · , taueb),
and a representation ρ⊗ τe of GLn(C)×GLn(C) on M`e(T,C)⊗X

[(ρ⊗ τe)(g)](h(u)⊗ x) = τe(g)h⊗ ρ(g)x

for each g ∈ GLn(C) × GLn(C), h ∈ M`e(T,C), and x ∈ X. For e > 1 write
De(f) = D(De−1(f)) and Ce(f) = C(Ce−1)(f).

Such operators take automorphic forms of weight ρ to automorphic forms
of weight ρ⊗ τe as follows: define

(Dρf)(u) = ρ(Ξ)−1D[ρ(Ξ)f ](u) = (ρ⊗ τ)(Ξ)−1C[ρ(Ξ)f ](u).

and (De
ρf)(u) = (ρ⊗ τe)(Ξ)−1Ce[ρ(Ξ)f ] for e > 1.

Then De
ρ maps automorphic forms of weight ρ to automorphic forms of weight

ρ⊗ τe.

1.5.2. General Shimura’s differential operators DZ
ρ via ϕZ

The classification of the irreducible subspaces of polynomial representa-
tions of GLn(C) and of irreducible subspaces of τe is studied in [90], Theorem
12.7, in terms of highest weights. Given a matrix a ∈ Cnn, let det j(a) denote
the determinant of the upper left j × j submatrix of a. If ρ and σ are irre-
ducible representations of GLn(C), ρ ⊗ σ occurs in τe if and only if ρ and σ
are representations of the same highest weights κ1 ≥ · · · ≥ κn as each other
κ1 + · · ·+κn = e, and the corresponding irreducible subspace of Se(T ) contains
a polynomial p(x) defined by

n∏
j=1

detj(x)ej (x ∈ T = Cnn, ej = κj − κj+1, 1 ≤ j ≤ n− 1, en = κn)

If ρ is the representation of GLn(C)×GLn(C), there is a differential operator
DZ defined for a stable quotient of Se(T ) with the projection ϕZ of Sr(T )⊗X
onto Z ⊗ X. Then the operator DZ

ρ = ϕZD
e
ρ is a map from the space of

automorphic forms of weight ρ to automorphic forms of weight ρ ⊗ τZ , where
τZ denotes the restriction of τ to Z. There is a formula for the action of the
algebraic differential operators θZρ on formal q-expansions on the double group
G at a at a cusp (which is a certain formal object) f =

∑
Lm3β>0

a(β)qβ, where
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Lm is the lattice in HermK determined by m. If ζ is a highest-weight vector in
Z, then it follows from the formulas in [24], §9, that θ(ζ)(f) =

∑
β

a(β)ζ(β)qβ.

1.6. Holomorphic discrete series of U(a, b)

Following P.Garrett,[29] let us recall the structure of holomorphic discrete
series representations of unitary groups U(a, b) for sufficiently high highest
weight. For U(a, b), the maximal compact is U(a)xU(b), and for ρ with highest
weight (κ1, . . . , κa)× (κ′1, . . . , κ

′
b) it is sufficient to assume that

κ1 ≥ · · · ≥ κa ≥
a+ b− 1

2
, κ′1 ≥ · · · ≥ κ′b ≥

a+ b− 1

2

Let g be the Lie algebra of G = U(a, b) where the latter is the isometry group
of the standard hermitian form given by (a+b)× (a+b)-matrix H =

(
1a
0

0
−1b

)
.

The copy K of U(a) × U(b) in G is K = {
(
A
0

0
B

)
| A ∈ U(a), B ∈ U(b)}, the

center of K is Z =
(
λ1a

0
0
µ1b

)
, λ, µ ∈ U(1), p+ = {

(
0
0
S
0

)
}, with S a-by-b,

p− = {
(

0
S

0
0

)
}, with S b-by-a, and the Lie algebra of K denoted by k. The

elements of p+ are the raising operators, the elements of p− are the lowering
operators, and g = k⊕ p+ ⊕ p− is the Harish-Chandra decomposition.

2. Algebraic differential operators on automorphic forms on unitary
groups.

Fix a OK-algebra R with inclusion ι : R → C and a weight representation
ρ = (ρ+, ρ−) of the maximal compact subgroup K = U(n) × U(n) of U =
U(n, n). Following §8 and 9 of [24], write an automorphic form in Mρ(R)
with values in an R-module V = V ρ(Rd) on the hermitian space Hn = U/K

as a formal q-expansion f(q) =
∑

β∈H≥0

cβ(Ξ)qβ with vector-valued polynomial

coefficients cβ(Ξ) ∈ V ρ of qβ=exp(2πitr(βz)), z ∈ Hn, where Ξ(z) = (i(z̄ −
tz), i(z∗ − z)) = (ξ, η) (Shimura’s notation), T = Cnn, and {eν} a R-rational
basis of T over C, H≥0 is a lattice of hermitian semi-integral non-negative
matrices.
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Then a general algebraic operator θ(f) is defined as above via θ(ζ)(f), using
β and Ξ as formal variables over a cusp: θ(ζ)(f)(q) =

∑
β∈H≥0

ζ(β)cβ(Ξ)qβ

more general formal q-expansions: f(q) =
∑

β∈H≥0

cβ(Ξ;T1, . . . , Tn)qβ with

additional polynomial variables T1, . . . , Tn, and define

θ(f) =
∑

β∈H≥0

dβ(Ξ;T1, . . . , Tn)qβ

, where T1, · · · , Tn ∈ T ·(Rn) in the tensor algebra of n letters,

dβ =
∑

βi,j∈H≥0

βi,jc(β) · (Ti ⊗ Tj).

This construction allows to treat vector-valued modular forms as polynomial-
valued, and to prove congruences between them monomial-by-monomial.

2.1. Classical setting: arithmetic differential operators

In the Unitary case such operators were studied in [24]; we may write β =(
β1 β2

β3 β4

)
in the q expansion on the double group, with hermitian matrices

β1, β4 , and β∗2 = β3. In the Sp-case such operator studied in [8] and [23]
are compositions Shimura-type operators, described then via its action on the
q-expansions.

For ν ∈ N, we put

Dν
n,α = Dn,α+ν−1 ◦ . . . ◦Dn,α

◦
D
ν
n,α = (Dν

n,α) |z2=0 .

The arithmetic applications of this differential operator is due to its explicit
action on the exponentials in the Fourier expansion as follows: for T ∈ C2n,2n

sym ,
we recall a polynomial Pν

n,α(T) defined by S. Böcherer in the entries tij(1 ≤
i ≤ j ≤ 2n) of T by

◦
D
ν
n,α(etr(TZ)) = Pν

n,α(T)etr(T1z1+T4z4),T =

(
T1 T2
tT2 T4

)
,Z =

(
z1 z2

z3 z4

)
that is, it represents "action of differential operator on exponential function".
The Pν

n,α are homogenous polynomials of degree nν.
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2.2. Applications to critical values

of the standard zeta function L(ϕ, χ, s) of vector-valued automorphic forms
ϕ on unitary groups, see [38], [25].

More generaly, take a unitary group U of a n-dimensional K-vector space
with a non-degenerate hermitian form 〈·, ·〉V : V × V → Kof signature (a, b),
a + b = n. Then a vector-valued automorphic (Hecke eigenform) ϕ on U
generates a cuspidal automorphic representation π = πϕ of the adelic group
U(A).
The standard zeta function L(ϕ, χ, s) = L(πϕ, χ, s) with a Hecke character
χ : A×K → C× of allowed type χ∞ is a certain Euler product L(ϕ, χ, s) =∏

q Lq(ϕ, χ, s), where Lq(ϕ, χ, s)−1 = Lq(ϕ, X) is a polynomial of deg = 2n

of X = N(q)−sχ(q) given by the Satake parameters tq,i (i = 1, . . . , n) of πq,ϕ
(for q outside a finite set S). The signature (a, b) is such that n = a + b and
s = n−1

2 is critical for the L-function L(π, χ, s) = L(πϕ, χ, s).

3. The integral representation for the L-function L(ϕ, χ, s)

is on the double group G = U(a+ b, a+ b) ⊃ U × U of type∫
U×U

E((g1, g2), f)χ−1(det g2)ϕ1(g1)ϕ2(g2)dg1dg2

= ZS(s)LS(πϕ, χ, s+
n− 1

2
)〈ϕ1, ϕ2〉

where E((g1, g2), fs,χ) denotes the restriction to (g1, g2)of an Eisenstein series
on the double adelic group G = U(a + b, a + b), the series defined from a
suitably chosen section f = fs,χ ∈ IndGPSiegel , ϕ1 ∈ π, ϕ2 ∈ π̃, with PSiegel =(
∗

0a+b

∗
∗

)
is the Siegel parabolic in G, E(g, f) =

∑
γ∈P (K)\G(K)

f(γg), fk,χ =

χ(det(c)) det(cz + d)−k, 〈ϕ1, ϕ2〉 =

∫
U(a,b)

ϕ1(g)ϕ2(g)dg.

The section f is an automorphic form on U(n, n) has a weight, which is a
representation ρ of GLn × GLn. In the special case where this representation
is of the form ρ(a, b) = det(a)k+ν det(b)−ν f is said an automorphic form of
weight k, ν. For the critical values s = s∗, . . . , s

∗ we use certain algebraic
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operators θs∗−s to move the Eisenstein series from s∗ to s by acting on the
section fs∗,χ to get fs,χ. This allows to compare their q-expansions and get
congruences for the critical values.

3.1. Classical setting: pull-back identity

This integral representation takes the form of a double Petersson product.
In the Sp case (see [8]) it becomes a double integral representation (pull-

back identity) for the normalized L-function D(f , s, χ) and its critical values
at t with k + t = `,

F(g) =

〈〈
f0

1(w), g(∗, ∗)
〉w
,f0

2(z)

〉z
〈f0

1,f
0
2〉

From test functions g = gχi,si(∗, ∗) to normalized critical L-valuesD(f , ti, χi) =
F(gχi,si) = L∗geom(π, si, χi) at ti with ki + ti = `

Here g(z, w) = Ht,χ(−z̄, w) is a function in the tensor product of certain
spaces of automorphic forms

Ht,χ ∈ C∞M `
n(Γ0(M), ϕ)|z ⊗C C

∞M `
n(Γ0(M), ϕ)|w,

obtained from a double Eisenstein series Eki,χi on U(n, n) of the above type,
with f0

1, f
0
2 suitably chosen eigenfunctions of Atkin’s type operator

Up :
∑
H

AHq
H 7→

∑
H

ApHq
H

(the Hermitian Fourier expansion): .

This analytic properties of the L-function indicate that the representation
π∞ eventually produces a geometric object of a certain Hodge type, described
in [25], (4.4.19) at p.66 in terms of its Hodge polygon. The existence of such
objects was proved by P.Scholze via geometric p-adic Galois representations of
Fontaine-Mazur type ([80]).

3.2. Eisenstein series and congruences (Unitary case)

The (Siegel-Hermite) Eisenstein series E2`,n,K(Z) of weight 2`, character
det−`, is defined in [27] by E2`,n,K(Z) =

∑
g∈Γn,K,∞\Γn,K

(det g)`j(g, Z)−2` (con-
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verges for ` > n). The normalized Eisenstein series is given by
E2`,n,K(Z) = 2−n

∏n
i=1 L(i− 2`, θi−1) · E2`,n,K(Z).

If H ∈ Λn(O)+, then the H-th Fourier coefficient of E(n)
2` (Z) is polynomial

over Z in variables {p`−(n/2)}p, and equals

|γ(H)|`−(n/2)
∏

p|γ(H)

F̃p(H, p
−`+(n/2)), γ(H) = (−DK)[n/2] detH.

Here, F̃p(H,X) is a certain Laurent polynomial in the variables
{Xp = p−s, X−1

p }p over Z. This polynomial is a key point in proving con-
gruences for the modular forms in both the pull-back double integral rep-
resentation and Rankin-Selberg integral.

3.3. Strategy of the construction of p-adic L-functions

It slightly differs from that on [25] and uses our method of automorphic
distributions on the p-adic weight space Xπ in [75], [76]. This method allows
to treat a general non-ordinary case.

• The integral representation for the normalized critical values L∗(π, χi, si, )

via the doubling method: ZS(si)L
S(πϕ, χi, si +

n− 1

2
) × 〈ϕi,1,ϕi,2〉

=

∫
U×U−

E((g1, g2), fsi,χi)χ
−1
i (det g2)ϕi,1(g1)ϕi,2(g2)dg2

where ϕi,1 ∈ π,ϕi,1 ∈ π̃ are chosen functions in dual spaces (factorizable
adelic Schwartz functions on the group U(n)(A)), E((g1, g2), fsi,χi) the
pull-back of the Eisenstein series on U(n, n), f = fsi,χi its Siegel section
f ∈ IUP = Ind

U(n,n)
PSiegel

, E(g, f) =
∑

γ∈P (K)\G(K)

f(γg).

• From Siegel sections fχi,si to critical values L∗geom(π, si, χi).

Families of automorphic distributions {µr}, 0 ≤ r ≤ s∗−s∗ on the weight
space X attached to U(a, b). They produce Q̄-valued distributions µi on
X such that

∫
X
χi(xp)dµs∗−si = L∗geom(π, si, χi), where Xπ → Z∗p is

a p-part projection. Fixing embeddings Q̄
i∞
↪→ C, Q̄

ip
↪→ Cp = ̂̄Qp produces

p-adic-valued distributions.
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3.4. Constructing p-adic measures via congruences

• Proving Kummer type congruences in the form
Definition. Let M be a O-module of finite rank where O ⊂ Cp. For
h ≥ 1, consider the following Cp-vector spaces of functions on Z∗p : Ch ⊂
Cloc−an ⊂ C. Then a continuous homomorphism µ : C → M is called a
(bounded) M -valued measure on Z∗p. Let us define a measure with given
integrals.

Take a dense family of continuous functions {ϕi = ϕsi,χi} in C(Xπ,Cp)
on the p-adic space Xπ. Then Kummer says:∑
i

βiϕi ≡ 0 mod pN =⇒
∑
i

βiL
∗
geom(π, si, χi) ≡ 0 mod pN .

Each ϕ ∈ C(Xπ,Cp) can be approximated by {ϕi}i, and a measure µπ(ϕ)
with given µπ(ϕi) = L∗geom(π, si, χi) is a well-defined limit over all ap-
proximations of ϕ.

• From bounded measures on X to admissible measures using hπ,p =
PNewton,p(d/2)− PHodge(d/2) ≥ 0.

Computing critical values at s = s∗, · · · , s∗ and prove admissibility con-
gruences for them as follows

A Cp-linear mapping µ : Ch → M is called an h admissible M -valued
measure on Z∗p if the following growth condition is satisfied∣∣∣∣∣

∫
a+(pv)

(x− a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, ..., h− 1. Such µ extends to Cloc−an (and to
Yp = Homcont(Z∗p,C∗p), the space of definition of p-adic Mellin transform)

3.5. Perspectives and applications

1. The case U(n, n): a striking analogue of Manin-Mazur’s result on p-
adic analytic interpolation of critical values, [62], [68], to any imaginary
quadraic K, a hermitian Hecke-eigenform of weight ` > 2n, s∗ = n,
s∗ = `− n.

2. Using the Hodge and Newton polygons of an Euler product with a func-
tional equation, for its geometric recognition
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3. Link to a new revolutionary tool – Prisms and Prismatic cohomology
(by P.Scholze-B.Bhatt [4], via Kisin-Fargue-Wach-modules and Iwasawa
cohomology, using the obtained Iwasawa series,.

Given a formally smooth Zp-schemeX, this cohomology yields a universal
q-deformation of the de Rham cohomology ofX/Zp across the map Zp[[q−
1]]

q→1−→Zp, and the Iwasawa algebra Zp[[q − 1]] provides a description.

4. Special hypergeometric motives and their L-functions: Asai recognition,
see [22] The generalized hypergeometric functions are often used in arith-
metic and algebraic geometry. They come as periods of certain algebraic
varieties, and consequently they encode important information about the
invariants of these varieties. Euler factors, Newton and Hodge polygons

attached to them, provide a tool for their geometric recognition.

4. The case U(n, n). Hermitian modular group Γn,K and the stan-
dard zeta function Z(s, f) (definitions)

The followng function Z(s, f) is a special case of Euler products constructed
by G. Shimura. Let θ = θK be the quadratic character attached to K =
Q(
√
−DK), n′ =

[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK)|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
,

Z(s, f) =

(
2n∏
i=1

L(2s− i+ 1, θi−1)

)∑
a

λ(a)N(a)−s,

(defined via Hecke’s eigenvalues: f |T (a) = λ(a)f , a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X) = 2n, the Satake parameters ti,q, i = 1, · · · , n),

D(s, f) = Z(s− `

2
+

1

2
, f) (Geometrically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n, and geometric weight `− 1),

ΓD(s) =

n−1∏
i=0

ΓC(s− i)2.
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Main result in the lifted case: Assuming ` > 2n, a p-adic interpo-
lation is constructed of all critical values D(s, f , χ) normalized by ×ΓD(s)/Ωf ,
in the critical strip n ≤ s ≤ ` − n for all χ mod pr in both bounded or un-
bounded case , i.e. when the product αf =

(∏
q|p
∏n
i=1 tq,i

)
p−n(n+1) is not a

p-adic unit.

4.1. The Hodge and Newton polygons of D(s)

are used in order to state our Main result. The Hodge polygon PH(t) :
[0, d]→ R of the function D(s) and
the Newton polygon PN,p(t) : [0, d]→ R at p are piecewise linear:

The Hodge polygon of (weak) pure weight w has the slopes j of lengthj =
hj,w−j given by Serre’s Gamma factors of the functional equation of the form
s 7→ w+ 1− s, relating ΛD(s, χ) = ΓD(s)D(s, χ) and ΛDρ(w+ 1− s, χ̄), where
ρ is the complex conjugation of an, and ΓD(s) = ΓDρ(s) equals to the product
ΓD(s) =

∏
j≤w2

Γj,w−j(s), where

Γj,w−j(s) =

{
ΓC(s− j)hj,w−j , if j < w,

ΓR(s− j)h
j,j
+ ΓR(s− j + 1)h

j,j
− , if 2j = w, where

ΓR(s) = π−
s
2 Γ
(s

2

)
,ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s), hj,j = hj,j+ + hj,j− ,∑

j

hj,w−j = d, see [20] for the various examples with Gamma factors.

The Newton polygon at p is the convex hull of points (i, ordp(ai)) (i =
0, . . . , d); its slopes λ are the p-adic valuations ordp(αi) of the inverse roots αi
of Dp(X) ∈ Q̄[X] ⊂ Cp[X]: lengthλ = ]{i | ordp(αi) = λ}. According to [9],
Th8.36, PNewton,p(t) ≥ PHodge(t) on [0, d], see also [12].

4.2. Hodge/Newton polygons for f = Lift(∆),n = 3, U(3, 3)

Let us draw PHodge(t) (slopes 0, 1, 2, 1, 12,13), and PNewton,p(t) (slopes
1,2,3,10,11,12), symmetry for slopes: j 7→ 13− j, for p = 7, f = Lift(∆), k =
12, n′ = 1, ` = 14 = k+2n′, d = 4n = 12, ΓD(s) = ΓC(s)2ΓC(s−1)2ΓC(s−2)2,
symmetry s 7→ 14 − s. PNewton,p(6) = 12, PHodge(6) = 6, h = 6 ("the Hasse
invariant")
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4.3. Description of the Main theorem

Let Ωf be a period attached to an Hermitian cusp eigenform f , D(s, f) =
Z(s − `

2 + 1
2 , f) the standard zeta function, and

αf = αf ,p =

∏
q|p

n∏
i=1

tq,i

 p−n(n+1), h = ordp(αf ,p),

The number αf turns out to be an eigenvalue of Atkin’s type operator Up :∑
H AHq

H 7→
∑
H ApHq

H (the Hermitian Fourier expansion) on some f0, and

h = PN (d2 )− PH(d2 ), d = 4n,
d

2
= 2n.

Definition. Let M be a O-module of finite rank where O ⊂ Cp. For h ≥ 1,
consider the following Cp-vector spaces of functions on Z∗p : Ch ⊂ Cloc−an ⊂ C.
Then

- a continuous homomorphism µ : C → M is called a (bounded) measure
M -valued measure on Z∗p.
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- µ : Ch → M is called an h admissible measure M -valued measure on Z∗p
measure if the following growth condition is satisfied∣∣∣∣∣

∫
a+(pv)

(x− a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, ..., h − 1, and et Yp = Homcont(Z∗p,C∗p) be the space of definition
of p-adic Mellin transform

Theorem ([2], [68]) For an h-admissible measure µ, the Mellin transform
Lµ : Yp → Cp exists and has growth o(logh) (with infinitely many zeros).

4.4. Main Theorem.

Let f be a Hermitian cusp eigenform of degree n ≥ 2 and of weight ` > 2n.
There exist distributions µD,s for s = n, · · · , `− n with the properties:

i) for all pairs (s, χ) such that s ∈ Z with n ≤ s ≤ `− n,∫
Z∗p
χdµD,s = Ap(s, χ)

D∗(s, f , χ)

Ωf

(under the inclusion ip), with elementary factors Ap(s, χ) =
∏

q|pAq(s, χ) in-
cluding a finite Euler product, Satake parameters tq,i, gaussian sums, the con-
ductor of χ; the integral is a finite sum.

(ii) if ordp

(
(
∏

q|p
∏n
i=1 tq,i)p

−n(n+1)
)

= 0 then the above distributions µD,s

are bounded measures, we set µD = µD,s∗ and the integral is defined for all
continuous characters y ∈ Hom(Z∗p,C∗p) =: Yp.

Their Mellin transforms LµD,s
(y) =

∫
Z∗p
ydµD,s, LµD

: Yp → Cp,
give bounded p-adic analytic interpolation of the above L-values to on the

Cp-analytic group Yp; and these distributions are related by:
∫
X

χdµD,s =∫
X

χxs
∗−sµD,s∗ , X = Z∗p, where s∗ = `− n, s∗ = n.

Main theorem (continued)
(iii) in the admissible case assume that 0 < h ≤ s∗−s∗+1 = `+1−2n, where

h = ordp

(
(
∏

q|p
∏n
i=1 tq,i)p

−n(n+1)
)
> 0, Then there exists an h–admissible
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measure µD whose integrals
∫
Z∗p
χxspdµD are given by ip

(
Ap(s, χ)

D∗(s, f , χ)

Ωf

)
∈

Cp with Ap(s, χ) as in (i); their Mellin transforms LD(y) =
∫
Z∗p
ydµD, belong

to the type o(log xhp). (iv) the functions LD are determined by (i)-(iii).

Remarks. (a) Interpretation of s∗: the smallest of the "big slopes" of PH
(b) Interpretation of s∗ − 1: the biggest of the "small slopes" of PH .

A. Appendix . Recovering geometric objects from automorphic
forms and special functions

For an irreducible automorphic representation π = πϕ of a Q-algebraic
group G(A), the eventual geometric type of π is determined by the component
π∞, where π = ⊗vπv, v the set of valuations.

- (Wiles) Elliptic curves E/Q↔ Hecke cusp eigenforms f =
∑∞
n=1 anq

n of
weight w = 2 and an ∈ Q (where q = e2πiz).

- (Deligne,Serre, Scholl, Carayol) Holomorphic modular forms of higher
weight w ≥ 2  Xf , certain (w − 1)-dimensional parts Xf (called "mo-
tives") of a Kuga-Sato variety Ew−2

univ, such that
Lf (s) =

∑∞
n=1 ann

−s = L(Hw−1(Xf ), s)

- (Manin-Shimura-Mazur) Periods and modular symbols
∫ i∞

x

f(z)zrdz  

Normalized special values L∗f (r + 1, χ), where L∗f (s, χ) := Γ(s)Lf (s, χ),
for any Dirichlet character χ, 0 ≤ r ≤ w−2, x ∈ Q). That is, the integrals
on the left give linear forms on homology classes of geodesics {x, i∞}, i.e.
elements of certain cohomology groups Hw−1(Xf ), producing Xf and
L(Xf ), s) .

- The use of the Iwasawa algebra Λ = Zp[[T ]] = Dist(Zp,Zp), Λ 3 µ ←→

Aµ(T ) =
∑
k≥0

AkT
k, where Ak =

∫
Zp

(
x

k

)
dµ.
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The integral I =

∫
Zp

ϕ(x)dµ(x) of any continuous function ϕ =
∑
k≥0

ak

(
x

k

)
∈

C(Zp,Zp) becomes I =
∑
k≥0

akAk.

B. Appendix.Prisms and Prismatic cohomology [4]

This new tool in the theory of geometric p-adic Galois representations
appeared since [80], [81] and can be used for the study of q-universal de-
formation the De Rham cohomology of locally-symmetric hermitian spaces
(or Shimura varieties of PEL-type). The above example of unitary groups
UK(n, n) describes analytic families of abelian varieties A with imbedding
ι : K ↪→ EndK(A). Thus obtained p-adic schemes Xπ,p produce de Rham co-
homology groups as above, and their universal deformations can be described
using prisms [4] as cerain Iwasawa-type modules, notably, Zp[[q − 1]]-modules,
where T = q − 1 is the Iwasawa variable attached to the quantum variable q.

According to [4], the notion of a prism substitutes in applications the notion
of a perfectoid ring. Using prisms, one may attach a ringed site - the prismatic
site - to a formal Zp-scheme. The resulting cohomology theory specializes to
most known integral p-adic cohomology theories (étale, crystalline, de Rham).
As application, a co-ordinate free description of q-de Rham cohomology is given.

Given a formally smooth Zp-scheme X, this cohomology yields a deforma-
tion of the de Rham cohomology of X/Zp across the map Zp[[q − 1]]

q→1−→Zp.

C. Appendix . Ikeda’s lifting f  f = Lift(f)

Its L-function gives a crucial motivation for both complex and p-adic theory
of L-functions on unitary groups, and extends to a general (not necessarily
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lifted) case. Recall that in [27]

S2k+1(Γ0(D), θ) 3 f  f = Lift(f) ∈ S2k+2n′(ΓK,n), if n = 2n′ is even (E)

S2k(SL(Z)) 3 f  f = Lift(f) ∈ S2k+2n′(ΓK,n), if n = 2n′ + 1 is odd (O)

the standard L-function of f = Lift(n)(f) is a nice product: Z(s, f) =
n∏
i=1

L(s+ k + n′ − i+ (1/2), f)L(s+ k + n′ − i+ (1/2), f, θ) [27]

=

n−1∏
i=0

L(s+ `/2− i− (1/2), f)L(s+ `/2− i− (1/2), f, θ).

Notice k+n′ = `/2, then the Gamma factor of the standard zeta function with
the symmetry s 7→ 1− s becomes ΓZ(s) =

∏n−1
i=0 ΓC(s+ `/2− i− (1/2))2.

D. Appendix . Special hypergeometric motives and their L-functions:
Asai recognition, [22]

The generalized hypergeometric functions are a familiar player in arithmetic
and algebraic geometry. They come quite naturally as periods of certain alge-
braic varieties, and consequently they encode important information about the
invariants of these varieties.

Euler factors, Newton and Hodge polygons attached to them, provide a tool
for their geometric recognition.
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