A SURVEY ON A FEW RECENT PAPERS IN P-ADIC VALUE DISTRIBUTION

Alain Escassut (Clermaont-Ferrand, France)
In memory of Professor Wolfgang Tutschke

(Received 05 December 2021; accepted 20 January 2022)

Abstract

In this article, we propose to present several recent results: a new proof of the p-adic Hermite-Lindemann Theorem, a new proof of the p-adic Gel'fond-Schneider Theorem, exceptional values of meromorphic functions and derivatives and the p-adic Nevanlinna theory applied to small functions. We first have to recall the definitions of the p-adic logarithm and exponential.

1 Logarithm and exponential in a p-adic field

Notations: We denote by \mathbb{Q}_{p} the completion of \mathbb{Q} with respect to the p-adic absolute value and by \mathbb{C}_{p} the completion of the algebraic closure of \mathbb{Q}_{p}, which is known to be algebraically closed [7]. In general, we denote by \mathbb{K} an algebraically closed field of characteristic 0 complete with respect to an ultrametric absolute value, such as \mathbb{C}_{p}. The ultrametric absolute value of \mathbb{K} is denoted $|$.$| while$ the archimedean absolute value of \mathbb{C} is denoted $|\cdot|_{\infty}$.

Let $a \in \mathbb{K}$ and let $R \in \mathbb{R}_{+}$. We denote by $d(a, R)$ the "closed "disk $\left\{x \in \mathbb{K}||x-a| \leq R\}\right.$ and by $d\left(a, R^{-}\right)$the "open" disk $\{x \in \mathbb{K}||x-a|<R\}$.

We denote by $\mathcal{A}(\mathbb{K})$ the algebra of power series converging in all \mathbb{K}. Given $a \in \mathbb{K}$ and $R>0$, we denote by $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$the algebra of power series $\sum_{j=0}^{\infty} a_{n}(x-a)^{n}$ converging in $d\left(a, R^{-}\right)$and by $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$the subalgebra of
functions $f(x) \in \mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$that are bounded in $\left(d\left(a, R^{-}\right)\right)$and we put $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)=\mathcal{A}\left(d\left(a, R^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$.

Moreover we denote by $H\left(d(a, r)\right.$ the algebra of power series $\sum_{j=0}^{\infty} a_{n}(x-a)^{n}$ converging in $d(a, R)$ called analytic elements in $d(a, R)$. Given an element f of $H(d(0, R))$ we put $|f|(r)=\sup _{x \in d(0, R)}|f(x)|$.

We will define the p-adic logarithm and the p-adic exponential and will shortly study them, in connection with the study of the roots of 1 . Here, as in [7], we compute the radius of convergence of the p-adic exponential by using results on injectivity.

The following lemma 1.a is easy:
Lemma 1.a: $\quad \mathbb{K}$ is supposed to have residue characteristic $p \neq 0$. Let $r \in] 0,1\left[\right.$ and for each $n \in \mathbb{N}$, let $h_{n}(x)=(1+x)^{p^{n}}$. The sequence h_{n} converges to 1 with respect to the uniform convergence on $d(0, r)$.

Notations: We denote by log the real logarithm function of base e. Given a power series $\sum_{j=0}^{\infty} a_{j} x^{j}$ converging in $d\left(0, R^{-}\right)$and given a number $\mu<\log (R)$ we denote by $\nu^{+}(f, \mu)$ the biggest integer q such that $\sup _{j \geq 0} \log \left(\mid a_{j}\right) \mid+j \mu=$ $\log \left(\mid a_{q}\right) \mid+q \mu$.

For each $q \in \mathbb{N}^{*}$ we denote by R_{q} the positive number such that $\log _{p}\left(R_{q}\right)=$ $-\frac{1}{p^{q-1}(p-1)}$. We denote by $g(x)$ the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$.

The following lemma 1.b is well known (Theorem B.13.7 in [7]):
Lemma 1.b: Let $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j}$ be converging in $d\left(0, R^{-}\right)$and let $r<R$. Then $\nu^{+}(f, \log (r))$ is the number of zeros of f in $d(0, r)$, taken multiplicity into account.

Theorem 1.1: g has a radius of convergence equal to 1 . If the residue characteristic of \mathbb{K} is $p \neq 0$, then g is unbounded in $d\left(0,1^{-}\right)$. If the residue characteristic is zero, then $|g(x)|$ is bounded by 1 in $d\left(0,1^{-}\right)$. The function defined in $d\left(1,1^{-}\right)$as $\log (x)=g(x-1)$ has a derivative equal to $\frac{1}{x}$ and satisfies $\log (a b)=\log (a)+\log (b)$ whenever $a, b \in d\left(1,1^{-}\right)$.
Proof. It is clearly seen that the radius of g is 1 , because $|n| \geq \frac{1}{n}$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. As in the Archimedean context, the property $\log (a b)=$
$\log (a)+\log (b)$ comes from the fact that both \log and the function h_{a} defined as $h_{a}(x)=\log (a x)$ have the same derivative. The other statements are immediate.

Notation: When \mathbb{K} has residue characteristic $p \neq 0$, we introduce the group W of the p^{s}-th roots of 1 , i.e., the set of the $u \in \mathbb{K}$ satisfying $u^{p^{s}}=1$ for some $s \in \mathbb{N}$.

Recall that analytic elements were defined by M. Krasner and are defined in [7].

Theorem 1.2: \mathbb{K} is supposed to have residue characteristic $p \neq 0 \quad$ (resp. $0)$. All zeros of Log are of order 1. The set of zeros of the function Log is equal to W, (resp. 1 is the only zero of Log). The restriction of Log to the disk $d\left(1,\left(R_{1}\right)^{-}\right)$(resp. $d\left(1,1^{-}\right)$) is injective and is a bijection from $d\left(1,\left(R_{1}\right)^{-}\right)$ onto $d\left(0,\left(R_{1}\right)^{-}\right)$(resp. from $d\left(1,1^{-}\right)$onto $\left.d\left(0,1^{-}\right)\right)$.
Proof. It is obvious that the zeros of \log are of order 1 because the derivative of \log has no zero. First, we suppose \mathbb{K} to have residue characteristic $p \neq 0$. Each root of 1 in $d\left(1,1^{-}\right)$is a zero of $L o g$. Moreover, by Theorem A.6.8 of [7], we know that the only roots of 1 in $d\left(1,1^{-}\right)$are the p^{n}-th roots. Now we can check that $L o g$ admits no zero other than the roots of 1 . Indeed, suppose that a is a zero of \log but is not a root of 1 , and for each $n \in \mathbb{N}$, let $b_{n}=a^{p^{n}}$. Since b_{n} belongs to $d\left(1,1^{-}\right)$, by Lemma B.16.1 of [7] we have $\lim _{n \rightarrow \infty} b_{n}=1$. But obviously $\log \left(b_{n}\right)=0$ for every $n \in \mathbb{N}$, hence this contradicts the fact that 1 is an isolated zero of $L o g$.

Thus, $L o g$ has no zero in the disk $d\left(1,\left(R_{1}\right)^{-}\right)$, except 1 and therefore, by Lemma 1.b the series $f(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ satisfies $\nu^{+}(f, \log r)=1$ for every $r \in] 0, R_{1}\left[\right.$, hence $r>\frac{r^{n}}{|n|}$ for all $\left.r \in\right] 0, R_{1}\left[\right.$, for every $n \in \mathbb{N}^{*}$. Therefore, by Corollary B. 14.10 of [7] it is injective in $d\left(0, R_{1}^{-}\right)$. Then, by Corollary B. 13.10 of $[7]$, we see that $\log \left(d\left(1, R_{1}^{-}\right)\right)=d\left(0, R_{1}^{-}\right)$.

Now we suppose that \mathbb{K} has residue characteristic zero. Then, the function $f(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ satisfies $\nu^{+}(f, \log r)=1$ for every $\left.r \in\right] 0,1[$, hence $r>$ $\frac{r^{n}}{n}$ for all $\left.r \in\right] 0,1\left[\right.$, for every $n \in \mathbb{N}^{*}$. Therefore, f has no zero different from 1 in $d\left(0,1^{-}\right)$and, by Corollary B.14.10 of [7], is injective in $d\left(0,1^{-}\right)$. Then by Corollary B. 13.10 of $[7]$ we see that $\log \left(d\left(1,1^{-}\right)\right)=d\left(0,1^{-}\right)$. This ends the proof.

Corollary 1.A: \mathbb{K} is supposed to have residue characteristic 0 . There is no root of 1 in $d\left(1,1^{-}\right)$, except 1 . Proof. Indeed any root of 1 should be a zero of \log in $d\left(1,1^{-}\right)$.

Notations: If \mathbb{K} has residue characteristic $p \neq 0$, we first denote by exp the inverse (or reciprocal) function of the restriction of \log to $d\left(1, R_{1}^{-}\right)$, which obviously is a function defined in $d\left(0, R_{1}^{-}\right)$, with values in $d\left(1, R_{1}^{-}\right)$. If \mathbb{K} has residue characteristic 0 we denote by exp the inverse function of \log, which is obviously defined in $d\left(0,1^{-}\right)$and takes values in $d\left(1,1^{-}\right)$.

Theorem 1.3: \mathbb{K} is supposed to have residue characteristic $p \neq 0$ (resp. $p=0$). The function exp belongs to $\mathcal{A}_{b}\left(d\left(0, R_{1}^{-}\right)\right)$(resp. $\mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)$), is a bijection from $d\left(0, R_{1}^{-}\right)$onto $d\left(1, R_{1}^{-}\right)$(resp. from $d\left(0,1^{-}\right)$onto $d\left(1,1^{-}\right)$), and satisfies $\exp (x)=\exp ^{\prime}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ whenever $x \in d\left(0, R_{1}^{-}\right)$(resp. $x \in$ $\left.d\left(0,1^{-}\right)\right)$. Moreover, the disk of convergence of its series is equal to $d\left(0, R_{1}^{-}\right)$ (resp. $d\left(0,1^{-}\right)$). Further, if $p \neq 0$, then exp is not an analytic element on $d\left(0, R_{1}^{-}\right)$.
Proof. By Corollary B.14.15 of [7] we know that the function exp belongs to $\mathcal{A}_{b}\left(d\left(0, R_{1}^{-}\right)\right) \quad\left(\right.$ resp. $\left.\mathcal{A}_{b}\left(d\left(0,1^{-}\right)\right)\right)$and is obviously a bijection from $d\left(0, R_{1}^{-}\right)$ onto $d\left(1, R_{1}^{-}\right)$(resp. from $d\left(0,1^{-}\right)$onto $d\left(1,1^{-}\right)$). As it is the reciprocal of \log, it must satisfy $\exp (x)=\exp ^{\prime}(x)$ for all $x \in d\left(0, R_{1}^{-}\right)\left(\right.$resp. $\left.x \in d\left(0,1^{-}\right)\right)$and, therefore, $\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ whenever $x \in d\left(0, R_{1}^{-}\right) \quad\left(\right.$ resp. $\left.x \in d\left(0,1^{-}\right)\right)$. Thus the radius of convergence r is at least R_{1} (resp. 1). If the residue characteristic is 0 , it is obviously seen that the series cannot converge for $|x|=1$, hence the disk of convergence is $d\left(0,1^{-}\right)$.

Now we suppose that the residue characteristic is $p \neq 0$. Suppose that the power series of \exp converges in $d\left(0, R_{1}\right)$. Then \exp has continuation to an analytic element element on $d\left(0, R_{1}\right)$. On the other hand, since $\nu(f, \log r)=1$ for all $r \in] 0, R_{1}\left[\right.$, we have $\nu^{-}\left(f, \log R_{1}\right)=1$ and then by Theorem B.13.9 of [7] $\log \left(d\left(1, R_{1}\right)\right)$ is equal to $d\left(0, R_{1}\right)$. Hence, we can consider $\exp (\log (x))$ in all the disk $d\left(0, R_{1}\right)$. By Corollary B.3.3 of [7] this is an analytic element element on $d\left(1, R_{1}\right)$. But this element is equal to the identity in all of $d\left(1, R_{1}^{-}\right)$ and, therefore, in all of $d\left(1, R_{1}\right)$. Of course this contradicts the fact that $L o g$ is not injective in the circle $C\left(1, R_{1}\right)$. This finishes proving that the disk of convergence of exp is just $d\left(0, R_{1}^{-}\right)$.

Notations: Henceforth, we put $e^{x}=\exp (x)$.

Theorem 1.4: \mathbb{K} is supposed to have residue characteristic $p \neq 0$. Let $x \in$ $d\left(0, R_{1}^{-}\right)$. Then e^{x} is algebraic over \mathbb{Q}_{p} if and only if so is x. Let $u \in d\left(0,1^{-}\right)$. Then $\log (1+u)$ is algebraic over \mathbb{Q}_{p} if and only if so is u.
Proof. By Theorem B.5.24 of [7], if x is algebraic over \mathbb{Q}_{p}, so is e^{x}. Similarly, if u is algebraic over \mathbb{Q}_{p}, so is $\log (1+u)$. Consequently, suppose that e^{x} is algebraic over \mathbb{Q}_{p}. Then e^{x} is of the form $1+t$ with $|t|<1$, hence $\log (1+t)$ is algebraic over \mathbb{Q}_{p}. But then, $\log (1+t)=\log \left(e^{x}\right)=x$, hence x is algebraic over \mathbb{Q}_{p}. Now, more generally, suppose $\log (1+u)$ is algebraic over \mathbb{Q}_{p}, with $|u|<1$. Take $q \in \mathbb{N}$ such that $\left|p^{q} \log (1+u)\right|<R_{1}$. We have $p^{q} \log (1+u)=$ $\log \left((1+u)^{p^{q}}\right)$. Since $\left|p^{q} \log (1+u)\right|<R_{1}$, we have $\left|\log \left((1+u)^{p^{q}}\right)\right|<R_{1}$, hence $\exp \left(\log \left((1+u)^{p^{q}}\right)\right)=(1+u)^{p^{q}}$. Consequently, $(1+u)^{p^{q}}$ is algebraic over \mathbb{Q}_{p} and hence so is u.

We can show a similar result when $p=0$.
Theorem 1.5: \mathbb{K} is supposed to have residue characteristic 0 . Let $x \in$ $d\left(0,1^{-}\right)$. Then e^{x} is algebraic over \mathbb{Q}_{p} if and only if so is x. Let $u \in d\left(0,1^{-}\right)$. Then $\log (1+u)$ is algebraic over \mathbb{Q}_{p} if and only if so is u.

The following proposition 1.6 will be used in the poof of Theorem 2.3 and is proven by induction, similarly as (1.4.2) in [16].

Proposition 1.6: $\quad \operatorname{Let} P_{1}, \ldots, P_{q} \in \mathbb{K}[X]$ different from 0 and let $w_{1}, \ldots, w_{q} \in$ \mathbb{K} be pairwise distinct. Let $F(x)=\sum_{j=1}^{q} P_{j}(x) e^{w_{j} x}$. Then F is not identically zero.

2 Hermite-Lindemann's and Gel'fond-Schneider's Theorems in ultrametric fields

We will use the following classical notation:
Notation: We will denote by \mathcal{K} an algebraically closed complete ultrametric extension of \mathbb{Q} of residue characteristic 0 .

We will denote by U the disk $d(0,1)$ and by D_{0} the disk $d\left(0,1^{-}\right)$in the field \mathbb{K} no matter what the residue characteristic.

If the residue characteristic of \mathbb{K} is $p>0$ we put $R_{1}=p^{\frac{-1}{p-1}}$ and denote by D_{1} the disk $d\left(0, R_{1}^{-}\right)$.

Given an algebraic number $a \in \mathbb{C}_{p}$ (resp. $a \in \mathcal{K}$) and $a_{1}, a_{2}, \ldots, a_{q}$ its conjugates over $\mathbb{Q}\left(\right.$ with $\left.a_{1}=a\right)$, we put $\overline{|a|}=\max _{1 \leq j \leq q}\left|a_{j}\right|$ and we denote by
$\operatorname{den}(a)$ its smallest denominator, i.e. the smallest positive integer q such that $q a$ is an algebraic integer. Then we put $s(a)=\max (\log \overline{|a|}, \log (\operatorname{den}(a)))$ and $s(a)$ is called the size of a. More generaly we call denominator of a number a all positive integer multiple of its smallest denominator.

Given a polynomial $P\left(X_{1}, \ldots, X_{q}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{q}\right]$, we denote by $H(P)$ the supremum of the archimedean absolute values of its coefficients.

Given a positive real number a, we denote by $[a]$ the largest integer n such that $n \leq a$.

Hermite-Lindemann's theorem is well known in complex analysis. The same holds in p-adic analysis. The first proof was presented in 1930 by K. Malher [13]. This proof given in [13] is written in German and uses symbols which are not currently known. Here we present a new proof using classical methods in transcendental processes that are maybe easier to understand.

We will need Siegel's Lemma in all the following theorems of this chapter. We will choose a particular form of this famous lemma [16] whose formulation is due to M. Mignotte:

Lemma 2.a (Siegel): Let E be a finite extension of \mathbb{Q} of degree q and let $\lambda_{i, j} 1 \leq i \leq m, 1 \leq j \leq n$ be elements of E integral over \mathbb{Z}. Let $M=\max \left(| | \lambda_{i, j}|1 \leq i \leq m| 1 \leq j \leq n,\right)$ and let (\mathcal{S}) be the linear system $\left\{\sum_{j=1}^{n} \lambda_{i, j} x_{j}=0,1 \leq i \leq m\right\}$. There exists solutions $\left(x_{1}, \ldots, x_{n}\right)$ of (\mathcal{S}) such that $x_{j} \in \mathbb{Z} \forall j=1, \ldots, n$ and

$$
\log \left(\left|x_{j}\right|_{\infty}\right) \leq \log (M) \frac{q m}{n-q m}+\frac{\log (2)}{2} \forall j=1, \ldots, n
$$

Lemma 2.b will be necessary in the proof of Theorem 2.4 and is easily proven in [16] since its proof implies no change in the field \mathbb{K} since it only concerns algebraic numbers
Lemma 2.b: Let $a_{1}, \ldots, a_{q} \in \mathbb{K}$ be algebraic over \mathbb{Q}, let $P\left(X_{1}, \ldots, X_{q}\right) \in$ $\mathbb{Z}\left[X_{1}, \ldots, x_{q}\right]$ be such that $\operatorname{deg}_{X_{j}}(P) \leq r_{j} 1 \leq j \leq q$ and let $\beta=P\left(a_{1} \ldots a_{q}\right)$. Then β is algebraic over $\mathbb{Q}, d\left(a_{1}\right)^{r_{1}} \ldots d\left(a_{q}\right)^{r_{q}}$ is a multiple of $\operatorname{den}(\beta)$ and we have

$$
s(\beta) \leq \log H(P)+\sum_{j=1}^{q}\left(r_{j} s\left(a_{j}\right)+\log \left(r_{j}\right)+1\right)
$$

Theorem 2.1 (Hermite-Lindemann): Suppose that \mathbb{K} has residue characteristic $p>0$. Let $\alpha \in D_{1}$ be algebraic. Then e^{α} is transcendental.

Proof. We suppose that α and e^{α} are algebraic. Let $h=|\alpha|$. Let E be the field $\mathbb{Q}\left[\alpha, e^{\alpha}\right]$, let $q=[E: \mathbb{Q}]$ and let w be a common denominator of α and e^{α}. We will construct a sequence of polynomials $\left(P_{N}(X, Y)\right)_{N \in \mathbb{N}}$ in two variables such that $\operatorname{deg}_{X}\left(P_{N}\right)=\left[\frac{N}{\log (N)}\right], \operatorname{deg}_{Y}\left(P_{N}\right)=\left[(\log N)^{3}\right]$ and such that the function $F_{N}(x)=P_{N}\left(x, e^{x}\right)$ satisfiy further, for every $s=0, \ldots, N-1$ and for every $j=0, \ldots,[\log (N)]$

$$
\frac{d^{s}}{d x^{s}} F_{N}(j \alpha)=0
$$

According to formal computations in the proof of Hermite Lindemann's Theorem in the complex context, (Theorem 3.1.1 in [16]) we have

$$
\begin{gathered}
\frac{d^{M} F_{N}\left(\gamma_{N}\right)}{d x^{M}}=\sum_{l=0}^{u_{1}(N)} \sum_{m=0}^{u_{2}(N)} b_{l, m, N} \sum_{\sigma=0}^{u_{1}(N)}\left(\frac{u_{1}(N)!}{\sigma!\left(u_{1}(N)-\sigma\right)!}\right)\left(\frac{l!}{\left(u_{1}(N)-\sigma\right)!}\right) . \\
m^{u_{1}(N)-\sigma}(1) j^{u_{1}(N)-\sigma} \cdot(\alpha)^{u_{1}(N)-\sigma} \cdot\left(e^{\alpha}\right)^{j u_{2}(N)} .
\end{gathered}
$$

We put $u_{1}(N)=\operatorname{deg}_{X}\left(P_{N}\right), \quad u_{2}(N)=\operatorname{deg}_{Y}\left(P_{N}\right)$. We will solve the system

$$
w^{u_{1}(N)+u_{2}(N)} \frac{d^{s}}{d x^{s}} F_{N}(j \alpha)=0, \quad 0 \leq s \leq N-1, j=0, \ldots,[\log (N)]
$$

where the undeterminates are the coefficients $b_{l, m, N}$ of P_{N}. We then write the system under the form

$$
\begin{gather*}
\sum_{l=0}^{u_{1}(N)} \sum_{m=0}^{u_{2}(N)} b_{l, m, N} \sum_{\sigma=0}^{\min (s, l)}\left(\frac{s!}{\sigma!(s-\sigma)!}\right)\left(\frac{l!}{(l-\sigma)!}\right) m^{s-\sigma} \cdot j^{l-\sigma} . \\
(w \alpha)^{l-\sigma}\left(w e^{\alpha}\right)^{j m} \cdot w^{u_{1}(N)-(l-\sigma)+u_{2}(N)-j m}=0 . \tag{2}
\end{gather*}
$$

That represents a system of $N[\log (N)]$ equations of at least $N([\log (N)])^{2}$ undeterminates, with coefficients in E, integral over \mathbb{Z}.

According to formal computations of Hermite-Lindemann's Theorem in the complex context (Theorem 3.1.1 in [16]), it appears that in the system (2), each factor $\left(\frac{s!}{\sigma!(s-\sigma)!}\right),\left(\frac{l!}{(l-\sigma)!}\right), m^{s-\sigma}, \quad j^{l-\sigma},(w \alpha)^{l-\sigma}, \quad\left(w e^{\alpha}\right)^{j m}$, $w^{u_{1}(N)-(l-\sigma)+u_{2}(N)-j m}$ admits a bounding of the form $S N(\log (\log (N))$ when N goes to $+\infty$. On one hand $w^{u_{1}(N)+u_{2}(N)}$ is a common denominator and we have

$$
\log \left(w^{u_{1}(N)+u_{2}(N)}\right) \leq \log (\omega)\left(\frac{N}{\log (N)}+\left(\log (N)^{3}\right)\right.
$$

and hence we have a constant $T>0$ such that

$$
\begin{equation*}
\log \left(w^{u_{1}(N)+u_{2}(N)}\right) \leq \frac{T M}{\log M} \tag{3}
\end{equation*}
$$

Next we notice that
(4) $\quad \log \left(\frac{u_{1}(N)!}{\sigma!\left(u_{1}(N)-\sigma\right)!}\right) \leq u_{1}(N) \log \left(u_{1}(N)\right) \leq \frac{N}{\log (N)} \log \left(\frac{N}{\log (N)}\right) \leq N$
and similarly,

$$
\begin{equation*}
\log \left(\frac{l!}{\left(u_{1}(N)-\sigma\right)!}\right) \leq u_{1}(N) \log \left(u_{1}(N)\right) \leq N \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \left(m^{u_{1}(N)-\sigma}\right) \leq \frac{3 N}{\log (N)} \log (\log (N)) \tag{6}
\end{equation*}
$$

Now, we check that

$$
\begin{aligned}
\log \left(j^{u_{1}(N)-\sigma} \cdot(|\bar{\alpha}|)^{u_{1}(N)-\sigma} \cdot\left(\left|\overline{e^{\alpha}}\right|\right)^{j u_{2}(N)}\right) & \leq N+\frac{N}{\log (N)} \log (|\bar{\alpha}|)+ \\
& \log (N)(\log (N))^{3} \log \left(\left|\overline{e^{\alpha}}\right|\right)
\end{aligned}
$$

and hence there exists a constant $L>0$ such that

$$
\begin{equation*}
\log \left(j^{u_{1}(N)-\sigma} \cdot(|\bar{\alpha}|)^{u_{1}(N)-\sigma} \cdot\left(\left|\overline{e^{\alpha}}\right|\right)^{j u_{2}(N)}\right) \leq L N \tag{7}
\end{equation*}
$$

Therefore by (2), (3), (4), (5), (6) and (7) we have a constant $C>0$ such that each coefficient a of the system satisfies

$$
\begin{equation*}
s(a) \leq C N(\log (\log (N)) \tag{8}
\end{equation*}
$$

By Siegel's Lemma 2.a and by (8) there exist integers $b_{l, m, N}, 0 \leq l \leq u_{1}(N), 0 \leq$ $m \leq u_{2}(N)$ in \mathbb{Z} such that
$0<\max _{l \leq u_{1}(N), m \leq u_{2}(N)} \log \left(\left|b_{l, m, N}\right|_{\infty}\right) \leq \frac{q N \log (N)}{N(\log (N))^{2}-q N \log (N)}(C N \log (\log (N))$
and such that the function

$$
\begin{equation*}
F_{N}(x)=\sum_{l=0}^{u_{1}(N)} \sum_{m=0}^{u_{2}(N)} b_{l, m ; N} x^{l} e^{m x} \tag{10}
\end{equation*}
$$

satisfies

$$
\frac{d^{s}}{d x^{s}} F_{N}(j \alpha)=0,0 \leq s \leq N-1, j=0,1, \ldots,[\log (N)]
$$

Now, by (9), we can check that there exists a constant $G>0$ such that

$$
\begin{equation*}
\max _{l \leq u_{1}(N), m \leq u_{2}(N)}\left(\log \left(\left|b_{l, m, N}\right|_{\infty}\right) \leq \frac{G N \log (\log (N))}{\log (N)}\right. \tag{11}
\end{equation*}
$$

The function F_{N} defined in (10) belongs to $\mathcal{A}\left(D_{1}\right)$ and is not identically zero, hence at least one of the numbers $\frac{d^{s}}{d x^{s}} F_{N}(0)$ is not null. Let M be the biggest of the integers such that $\frac{d^{s}}{d x^{s}} F_{N}(j \alpha)=0 \forall s=0, \ldots, M-1, j=0,1,2, \ldots,[\log (N)]$. Thus we have $M \geq N$ and there exists $j_{0} \in\{0,1, \ldots,[\log (N)]\}$ such that $\frac{d^{M}}{d x^{M}} F_{N}\left(j_{0} \alpha\right) \neq 0$. We put $\gamma_{N}=\frac{d^{M}}{d x^{M}} F_{N}\left(j_{0} \alpha\right)$.

Let us now give an upper bound of $s\left(\gamma_{N}\right)$. On one hand $w^{u_{1}(N)+u_{2}(N)}$ is a common denominator and by (2) we have a constant $T>0$ such that

$$
\log \left(w^{u_{1}(N)+u_{2}(N)}\right) \leq \frac{T M}{\log M}
$$

On the other hand, by (1) we have

$$
\begin{gathered}
\frac{d^{M} F_{N}\left(\gamma_{N}\right)}{d x^{M}}=\sum_{l=0}^{u_{1}(N)} \sum_{m=0}^{u_{2}(N)} b_{l, m, N} \sum_{\sigma=0}^{u_{1}(N)}\left(\frac{u_{1}(N)!}{\sigma!\left(u_{1}(N)-\sigma\right)!}\right)\left(\frac{l!}{\left(u_{1}(N)-\sigma\right)!}\right) . \\
m^{u_{1}(N)-\sigma} \cdot j^{u_{1}(N)-\sigma} \cdot(\alpha)^{u_{1}(N)-\sigma} \cdot\left(e^{\alpha}\right)^{j u_{2}(N)} .
\end{gathered}
$$

Now, by (2), (3), (6), (7), (8), (10) and taking into account that the number of terms is bounded by $N(\log N)^{2}$, we can check that there exists a constant B such that

$$
\begin{equation*}
s\left(\gamma_{N}\right) \leq B N \tag{12}
\end{equation*}
$$

Let us now give an upper bound of $\left|\gamma_{N}\right|$. For convenience, we first suppose that $j_{0}=0$, hence $\frac{d^{M}}{d x^{M}} F_{N}(0) \neq 0$. Set $h=|\alpha|$. Then by Theorem B.9.1 of [7] we have $\left|\gamma_{N}\right| \leq \frac{\left|F_{N}\right|(h)}{h^{M}}$. Moreover, we notice that F_{N} admits at least $M[\log (M)]$ zeros in $d(0, h)$ and therefore by Corollary B.13.30 of [7] we have $\left|F_{N}\right|(h) \leq\left(\frac{h}{R_{1}}\right)^{M[\log (M)]}$ because $\left|F_{N}\right|(r) \leq 1 \forall r<R_{1}$. Consequently, $\left|\gamma_{N}\right| \leq$ $\frac{h^{M(\log (M-1)}}{\left(R_{1}\right)^{M \log M}}$ and hence

$$
\left.\log \left(\left|\gamma_{N}\right|\right) \leq M(\log (M)-1)(\log (h))-M \log (M)\left(\log \left(R_{1}\right)\right)\right)
$$

Let $\lambda=\log (h)-\log \left(R_{1}\right)$. Then $\lambda<0$. And we have $\log \left(\left|\gamma_{N}\right|\right) \leq \lambda M \log (M)-$ $M \log (h)$, therefore there exists a constant $A>0$ such that

$$
\begin{equation*}
\log \left(\left|\gamma_{N}\right|\right) \leq-A M \log (M) \tag{13}
\end{equation*}
$$

Let us now stop assuming that $j_{0}=0$. Putting $z=x-j \alpha$ and $g(z)=f(x)$, since all points $j \alpha$ belong to $d(0, h)$, it is immediate to go back to the case $j_{0}=0$, which confirms (13) in the general case. But now, by Lemma A.8.10 in [7], relations (12) and (13) make a contradiction to the relation $-2 q s\left(\gamma_{N}\right) \leq$ $\log \left(\left|\gamma_{N}\right|\right)$ satisfied by algebraic numbers and show that γ_{N} is transcendental. But then, so is e^{α}.

Example: Let $Q(x) \in \mathbb{Z}[x]$. Then $e^{p Q(p)}$ is transcendental. Moreover, if Q is monic, and if α is a zero of Q, then $|p \alpha| \leq \frac{1}{p}$ because Q is monic and obviously $p \alpha$ is algebraic, hence $e^{p \alpha}$ is transcendental.

In the field of characteristic $0, \mathcal{K}$ such as Levi-Civita's field [15], we have a similar version:

Theorem 2.2: Let $\alpha \in \mathcal{K}$ be algebraic, such that $|\alpha|<1$. Then e^{α} is transcendental over \mathbb{Q}.
Proof. Everything works in \mathcal{K} as in a field of residue characteristic $p \neq 0$ up to Relation (8) in the proof of Theorem 2.1. Here we can replace R_{1} by 1 and therefore the conclusion is the same as in Theorem 2.1.

Similarly as Hermite-Lindermann's Theorem, Gelfond-Schneider's Theorem is well known in the field \mathbb{C} and has an analogue in an ultrametric field.

In the proof of Theorem 2.4 we will need the following theorem:
Theorem 2.3: Let $b_{1}, \ldots, b_{n} \in D_{1}$ (resp. in D_{0}). the functions $x, e^{b_{1} x}, \ldots, e^{b_{n} x}$ are algebraically independant over \mathbb{K} (resp. over \mathcal{K}) if and only if b_{1}, \ldots, b_{n} are \mathbb{Q}-linearly independant.

Theorem 2.4 (Gel'fond-Schneider): \mathbb{K} is supposed to have residue characteristic $p \neq 0$. Let $\ell \in D_{1}, \quad \ell \neq 0$, and let $b \notin \mathbb{Q}$ belong to \mathbb{K} be such that $b \ell \in D_{1}$. Then at least one of the three numbers $a=e^{\ell}, b, e^{b \ell}$ is transcendental.
Proof. A large part of the proof does not involve the topology of the feld \mathbb{K} and hence is similar to the proof in the field $\mathbb{C}[16]$ where we can copy many technical relations. We suppose that $a=e^{\ell}, b$ and $e^{b \ell}$ are algebraic over \mathbb{Q}. Let $L=\mathbb{Q}\left[e^{\ell}, b, e^{b \ell}\right]$ and let $\delta=[L: \mathbb{Q}]$ and let d be a common denominator of $b, e^{\ell}, e^{b \ell}$.

Put $S=\max (1,|b|), T \in] S, \frac{R_{1}}{|\ell|}\left[, \sigma=\log \left(\frac{T}{S}\right), \tau=\log T, \Lambda=d(0, S)\right.$ and $\Delta=d(0, T)$. We will consider integers N of the form q^{2}, with $q \in \mathbb{N}$ and we will first show that there exists a non-identically zero polynomial $P_{N}(X, Y) \in$ $\mathbb{Z}[X, Y]$ such that $\operatorname{deg}_{X}\left(P_{N}\right) \leq N^{\frac{3}{2}}$, and $\operatorname{deg}_{Y}\left(P_{N}\right) \leq 2 \delta N^{\frac{1}{2}}$ such that the function $F_{N}(x)$ defined in Δ by $F_{N}(x)=P_{N}\left(x, e^{\ell x}\right)$ satisfy

$$
F_{N}(i+j b)=0 \forall i=1, \ldots, N, \forall j=1, \ldots, N
$$

In order to find P_{N}, let us write it

$$
\sum_{h=0}^{N^{\frac{3}{2}}-1} \sum_{k=0}^{2 \delta N^{\frac{1}{2}}-1} C_{h, k}(N) X^{h} Y^{k}
$$

with $C_{h, k}(N) \in \mathbb{Z}$ and consider the system of equations where the $C_{h, k}(N)$ are the undeterminates:

$$
d^{(4 \delta+1) N^{\frac{3}{2}}} \cdot F_{N}(i+j b)=0(1 \leq i \leq N ; 1 \leq j \leq N) .
$$

Thus, we obtain a system of N^{2} equations of $2 \delta N^{2}$ undeterminates in \mathbb{Z}, with coefficients in L. By Lemma 2.b, these coefficients have size bounded by
$N^{\frac{3}{2}} \log (N)+N^{\frac{3}{2}}(8 \delta+2) \log (d)+\log (1+\overline{|b|})+2 \delta \log \left(\overline{\left|e^{\ell+b \ell}\right|}\right) \leq \frac{3}{2} N^{\frac{3}{2}} \log (N)$.
By Lemma 2.a we can find in \mathbb{Z} a family of integers not all equal to zero, $\left(C_{h, k}(N), 0 \leq N^{\frac{3}{2}}-1,0 \leq k \leq 2 \delta N^{\frac{1}{2}}-1\right)$ satisfying

$$
\log \left(\max _{h, k}\left|C_{h, k}(N)\right|_{\infty}\right) \leq 2 N^{\frac{3}{2}} \log N\left(\frac{\delta N^{2}}{2 \delta N^{2}-\delta N^{2}}\right)=2 N^{\frac{3}{2}} \log N
$$

such that the function F_{N} defined by $F_{N}(x)=P_{N}\left(x, e^{\ell x}\right)$ satisfies $F_{N}(i+j b)=$ $0 \forall i=1, \ldots, N, j=1, \ldots, N$.

Now we can check the function F_{N} is an analytic element in every disk of the form $d(0, r)$ such that $r|\ell|<R_{1}$ and hence in $\Delta=d(0, T)$ [7]. Since the power of x in the various terms is at most $N^{\frac{3}{2}}$ and since all coefficients are integers, we can check that $\log \left(\left|F_{N}\right|(T)\right) \leq \tau N^{\frac{3}{2}}$. On the other hand, since the polynomial P_{N} is not identically zero, by Proposition $1.6 F_{N}$ is not identically zero and then, by classical results [7], the function F_{N} has finitely many zeros in Λ. Particularly, there exists a point of the form $i+j b$ such that $F_{N}(i+j b) \neq 0$. Consequently there exists $M \geq N$ such that $F_{N}(i+j b)=0 \forall i \leq M, \forall j \leq M$ and there exists a point γ_{N} of the form $i_{0}+j_{0} b$ such that $F_{N}\left(\gamma_{N}\right) \neq 0$ with $M<i_{0} \leq M+1, M<j_{0} \leq M+1$. Consequently the number of zeros of F_{N}
in Λ is at least M^{2}. Then by Corollary B. 13.30 in [7] we have $\log \left(\left|F_{N}\left(\gamma_{N}\right)\right|\right) \leq$ $\tau N^{\frac{3}{2}}-\sigma M^{2}$, hence there exists $\lambda>0$ such that

$$
\begin{equation*}
\log \left(\left|F_{N}\left(\gamma_{N}\right)\right|\right) \leq-\lambda M^{2} \forall N \in \mathbb{N} \tag{1}
\end{equation*}
$$

By definition neither σ nor τ depend on N, hence neither does λ.
On the other hand, by Lemma 2.b we can check that $s\left(F_{N}\left(\gamma_{N}\right)\right)$ satisfies an inequality of the form $s\left(F_{N}\left(\gamma_{N}\right)\right) \leq A M^{\frac{3}{2}} \log (M)$ which by (1) contradicts the inequality $-2 \delta s\left(F_{N}\left(\gamma_{N}\right)\right) \leq \log \left(\left|F_{N}\left(\gamma_{N}\right)\right|\right)$ and this ends the proof.

Example: Let $\ell=p e^{p}$ and let let $b \notin \mathbb{Q}$ be such that $|b| \leq 1$. Then at least one of the 3 numbers $\ell, b, e^{b \ell}$ is transcendental.

Theorem 2.5 (Gel'fond-Schneider in zero residue characteristic): Let \mathcal{K} be an algebraically closed complete ultrametric field whose residue characteristic is 0 . Let $\ell \in D_{0}, \ell \neq 0$, and let $b \notin \mathbb{Q}$ belong to \mathcal{K} and be such that $b \ell \in D_{0}$. Then at least one of the three numbers $a=e^{\ell}, b, e^{b \ell}$ is transcendental.
Proof. The proof is identical to the proof of Theorem 2.4 except that T now belongs to $] S, \frac{1}{|\ell|}[$.

3 Nevanlinna Theory in \mathbb{K} and in an open disk

Notations: We denote by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K} i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$. Let $d\left(a, R^{-}\right)$be a disk in \mathbb{K}. We denote by $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$the field of fractions $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$and by $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$the field of fractions $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$. Finally we put $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)=\mathcal{M}\left(d\left(a, R^{-}\right)\right) \backslash$ $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$.

Given two meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ or $f, g \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$ $(a \in \mathbb{K}, R>0)$, we will denote by $W(f, g)$ the Wronskian of f and $g: f^{\prime} g-f g^{\prime}$.

Let $f \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ (resp. Let $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$). A value $b \in \mathbb{K}$ will be called a quasi-exceptional value for f if $f-b$ has finitely many zeros in \mathbb{K} (resp. in $\left.\left(\alpha, R^{-}\right)\right)$) and it will be called an exceptional value for f if $f-b$ has no zero in \mathbb{K} (resp. in $d\left(\alpha, R^{-}\right)$).

We have the follwing result:
Theorem 3.1: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$). Then f amits at most one quasi-exceptional value. Moreover, if $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$ then f amits no quasi-exceptional value

The Nevanlinna Theory was made by Rolf Nevanlinna on complex functions [14], and widely used by many specialists of complex functions, particularly Walter Hayman [10]. It consists of defining counting functions of zeros and poles of a meromorphic function f and giving an upper bound for multiple zeros and poles of various functions $f-b, b \in \mathbb{C}$.

A similar theory for functions in a p-adic field was constructed and correctly proved by A. Boutabaa [5] in the field \mathbb{K}, after some previous work by Ha Huy Khoai [9]. See also [11]. In [6] the theory was extended to functions in $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$by taking into account Lazard's problem [12]. A new extension to functions out of a hole was made in [7] but we won't describe it because we would miss place. Here we will only give an abstract of the ultrametric Nevanlinna Theory in order to give the new theorems on q small functions.

Notations: Recall that given three functions ϕ, ψ, ζ defined in an interval $J=] a,+\infty[$ (resp. $J=] a, R[$), with values in $[0,+\infty[$, we shall write $\phi(r) \leq$ $\psi(r)+O(\zeta(r))$ if there exists a constant $b \in \mathbb{R}$ such that $\phi(r) \leq \psi(r)+b \zeta(r)$. We shall write $\phi(r)=\psi(r)+O(\zeta(r))$ if $|\psi(r)-\phi(r)|$ is bounded by a function of the form $b \zeta(r)$.

Similarly, we shall write $\phi(r) \leq \psi(r)+o(\zeta(r))$ if there exists a function h from $J=] a,+\infty[$ (resp. from $J=] a, R\left[\right.$) to \mathbb{R} such that $\lim _{r \rightarrow+\infty} \frac{h(r)}{\zeta(r)}=0$ (resp. $\lim _{r \rightarrow R} \frac{h(r)}{\zeta(r)}=0$) and such that $\phi(r) \leq \psi(r)+h(r)$. And we shall write $\phi(r)=\psi(r)+o(\zeta(r))$ if there exists a function h from $J=] a,+\infty[$ (resp. from $J=] a, R\left[\right.$) to \mathbb{R} such that $\lim _{r \rightarrow+\infty} \frac{h(r)}{\zeta(r)}=0$ (resp. $\lim _{r \rightarrow R} \frac{h(r)}{\zeta(r)}=0$) and such that $\phi(r)=\psi(r)+h(r)$.

Throughout the next paragraphs, we will denote by I the interval $[t,+\infty[$ and by J an interval of the form $[t, R[$ with $t>0$.

We have to introduce the counting function of zeros and poles of f, counting or not multiplicity. Here we will choose a presentation that avoids assuming that all functions we consider admit no zero and no pole at the origin.

Definitions: Next, let $f=\frac{h}{l} \in \mathcal{M}(\mathbb{K})$ (resp. $f=\frac{h}{l} \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$). The order of a zero α of f will be denoted by $\omega_{\alpha}(f)$. Next, given any point $\alpha \in \mathbb{K}$ resp. $\alpha \in d\left(a, R^{-}\right)$), the number $\omega_{\alpha}(h)-\omega_{\alpha}(l)$ does not depend on the functions h, l chosed to make $f=\frac{h}{l}$. Thus, we can generalize the notation by setting $\omega_{\alpha}(f)=\omega_{\alpha}(h)-\omega_{\alpha}(l)$. We then denote by $Z(r, f)$ the counting function of zeros of f in $d(0, r)$ in the following way.

Let $\left(a_{n}\right), 1 \leq n \leq \sigma(r)$ be the finite sequence of zeros of f such that $0<\left|a_{n}\right| \leq r$, of respective order s_{n}.

We set $Z(r, f)=\max \left(\omega_{0}(f), 0\right) \log r+\sum_{n=1}^{\sigma(r)} s_{n}\left(\log r-\log \left|a_{n}\right|\right)$ and so, $Z(r, f)$ is called the counting function of zeros of f in $d(0, r)$, counting multiplicity.

In order to define the counting function of zeros of f without multiplicity, we put $\overline{\omega_{0}}(f)=0$ if $\omega_{0}(f) \leq 0$ and $\overline{\omega_{0}}(f)=1$ if $\omega_{0}(f) \geq 1$.

Now, we denote by $\bar{Z}(r, f)$ the counting function of zeros of f without multiplicity:
$\bar{Z}(r, f)=\overline{\omega_{0}}(f) \log r+\sum_{n=1}^{\sigma(r)}\left(\log r-\log \left|a_{n}\right|\right)$ and so, $\bar{Z}(r, f)$ is called the counting function of zeros of f in $d(0, r)$ ignoring multiplicity.

In the same way, considering the finite sequence $\left(b_{n}\right), 1 \leq n \leq \tau(r)$ of poles of f such that $0<\left|b_{n}\right| \leq r$, with respective multiplicity order t_{n}, we put
$N(r, f)=\max \left(-\omega_{0}(f), 0\right) \log r+\sum_{n=1}^{\tau(r)} t_{n}\left(\log r-\log \left|b_{n}\right|\right)$ and then $N(r, f)$ is called the counting function of the poles of f, counting multiplicity

Next, in order to define the counting function of poles of f without multiplicity, we put $\overline{\overline{\omega_{0}}}(f)=0$ if $\omega_{0}(f) \geq 0$ and $\overline{\overline{\omega_{0}}}(f)=1$ if $\omega_{0}(f) \leq-1$ and we set
$\bar{N}(r, f)=\overline{\overline{\omega_{0}}}(f) \log r+\sum_{n=1}^{\tau(r)}\left(\log r-\log \left|b_{n}\right|\right)$ and then $\bar{N}(r, f)$ is called the counting function of the poles of f, ignoring multiplicity

Now we can define the the Nevanlinna function $T(r, f)$ in I or J as
$T(r, f)=\max (Z(r, f), N(r, f))$ and the function $T(r, f)$ is called characteristic function of f or Nevanlinna function of f.

Finally, if S is a subset of \mathbb{K} we will denote by $Z_{0}^{S}\left(r, f^{\prime}\right)$ the counting function of zeros of f^{\prime}, excluding those which are zeros of $f-a$ for any $a \in S$.

Remark: If we change the origin, the functions Z, N, T are not changed, up to an additive constant.

In a p-adic field such as \mathbb{K}, the first Main Theorem is almost immediate.
Theorem 3.2: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$have no zero and no pole at 0 . Then $\log (|f|(r))=\log (|f(0)|)+Z(r, f)-N(r, f)$.

Then we can derive Theorem 3.3 (Theorem C.4.3 in [7])
Theorem 3.3: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). Then $Z(r, f g) \leq Z(r, f)+Z(r, g), N(r, f g) \leq N(r, f)+N(r, g), T(r, f g) \leq T(r, f)+$ $T(r, g), \quad T(r, f+g) \leq T(r, f)+T(r, g)+O(1), T(r, c f)=T(r, f) \forall c \in \mathbb{K}^{*}$, $\left.\left.T\left(r, \frac{1}{f}\right)=T(r, f)\right), \quad T\left(r, \frac{f}{g}\right) \leq T(r, f)\right)+T(r, g)$.

Suppose now $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Then $Z(r, f g)=$ $Z(r, f)+Z(r, g), T(r, f)=Z(r, f)), T(r, f g)=T(r, f)+T(r, g)+O(1)$ and $T(r, f+g) \leq \max (T(r, f), T(r, g))$. Moreover, if $\lim _{r \rightarrow+\infty} T(r, f)-T(r, g)=+\infty$ then $T(r, f+g)=T(r, f)$ when r is big enough.

Corollary 3.A: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). Then

$$
Z\left(r, \frac{f^{\prime}}{f}\right)-N\left(r, \frac{f^{\prime}}{f}\right) \leq-\log r+O(1)
$$

Thus we have Theorem 3.4 (Theorem C.4.8 in [7])
Theorem 3.4 (First Main Fundamental Theorem): Let f, $g \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). Then $T(r, f+b)=T(r, f)+O(1)$. Let h be a Moebius function. Then $T(r, f)=T(r, h \circ f)+O(1)$. Let $P(X) \in \mathbb{K}[X]$. Then $T(r, P(f))=\operatorname{deg}(P) T(r, f)+O(1)$ and $T\left(r, f^{\prime} P(f) \geq T(r, P(f))\right.$.

Suppose now $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$). Then $Z(r, f g)=$ $Z(r, f)+Z(r, g), T(r, f)=Z(r, f)), T(r, f g)=T(r, f)+T(r, g)+O(1)$ and $T(r, f+g) \leq \max (T(r, f), T(r, g))$. Moreover, if $\lim _{r \rightarrow+\infty} T(r, f)-T(r, g)=+\infty$ then $T(r, f+g)=T(r, f)$ when r is big enough.

The following Theorem 3.5 is a good way to obtain the famous Second Main Theorem (Theorem C.4.24 in [7]).

Theorem 3.5: Let $f \in \mathcal{M}(\mathbb{K})$ and let $a_{1}, \ldots, a_{q} \in \mathbb{K}$ be distinct. Then

$$
(q-1) T(r, f) \leq \max _{1 \leq k \leq q}\left(\sum_{j=1, j \neq k}^{q} Z\left(r, f-a_{j}\right)\right)+O(1)
$$

Theorem 3.6 (Second Main Theorem, Theorem C.4.24 in [7]): Let $\alpha_{1}, \ldots, \alpha_{q} \in \mathbb{K}$, with $q \geq 2$, let $S=\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ and let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$. Then
$(q-1) T(r, f) \leq \sum_{j=1}^{q} \bar{Z}\left(r, f-\alpha_{j}\right)+\bar{N}(r, f)-Z_{0}^{S}\left(r, f^{\prime}\right)-\log r+O(1) \quad \forall r \in I$ (resp. $\forall r \in J$).

Now we can easily deduce the following corollaries:
Corollary 3.B: Let $a_{1}, a_{2} \in \mathbb{K}\left(a_{1} \neq a_{2}\right)$ and let $f, g \in \mathcal{A}(\mathbb{K})$ satisfy $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right)(i=1,2)$. Then $f=g$.

Remark: Corollary 3.B does not hold in complex analysis. Indeed, let $f(z)=$ $e^{z}, g(z)=e^{-z}$, let $a_{1}=1, a_{2}=-1$. Then $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right)(i=1,2)$, though $f \neq g$.

Corollary 3.C: Let $a_{1}, a_{2}, a_{3} \in \mathbb{K}\left(a_{i} \neq a_{j} \forall i \neq j\right)$ and let $f, g \in$ $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)\left(\right.$resp.f, $\left.g \in \mathcal{A}_{u}(D)\right)$ satisfy $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right)(i=1,2,3)$. Then $f=g$.

Corollary 3.D: Let $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{K}\left(a_{i} \neq a_{j} \forall i \neq j\right)$ and let $f, g \in \mathcal{M}(\mathbb{K})$ satisfy $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right)(i=1,2,3,4)$. Then $f=g$.

Corollary 3.E: Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in \mathbb{K}\left(a_{i} \neq a_{j} \forall i \neq j\right)$ and let $f, g \in$ $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) (resp. $f, g \in \mathcal{M}_{u}(D)$ satisfy $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right) \quad(i=$ $1,2,3,4,5)$. Then $f=g$.

Remark: Let $f(x)=\frac{x}{3 x-1}, g(x)=\frac{x^{2}}{x^{2}+2 x-1}$. Let $a_{0}=0, a_{1}=1, a_{2}=$ $\frac{1}{2}$. Then we can check that $f^{-1}\left(\left\{a_{i}\right\}\right)=g^{-1}\left(\left\{a_{i}\right\}\right), i=1,2,3$. So, Corollary 3.D is sharp.

4 Exceptional values of meromorphic functions and derivatives

The paragraph is aimed at studying various properties of derivatives of meromorphic functions, particularly their sets of zeros [2], [3], [4]. Many important results are due to Jean-Paul Bézivin [1], [2].

We will first notice a general property concerning quasi-exceptional values of meromorphic functions and derivatives.

Theorem 4.1: Let $f \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ (resp. Let $f \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$). If f admits a quasi-exceptional value, then f^{\prime} has no quasi-exceptional value different from 0. Proof. Without loss of generality, we may assume $\alpha=0$ and that f has no zero and no pole at 0 . Let $b \in \mathbb{K}$ and suppose that b is a quasi-exceptional value of f. There exist $P \in \mathbb{K}[x]$ and $l \in \mathcal{A}(\mathbb{K}) \backslash \mathbb{K}[x]$ (resp. and $\left.l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)\right)$without common zeros, such that $f=b+\frac{P}{l}$.

Let $c \in \mathbb{K}^{*}$. Remark that $f^{\prime}-c=\frac{P^{\prime} l-P l^{\prime}-c l^{2}}{l^{2}}$. Let $a \in \mathbb{K}$ (resp. let $a \in d\left(0, R^{-}\right)$). If a is a pole of f, it is a pole of $f^{\prime}-c$ and we can check that
(1) $\quad \omega_{a}\left(P^{\prime} l-P l^{\prime}-c l^{2}\right)=\omega_{a}\left(l^{\prime}\right)=\omega_{a}(l)-1$
because a is not a zero of P.
Now suppose that a is not a pole of f. Then
(2) $\quad \omega_{a}\left(f^{\prime}-c\right)=\omega_{a}\left(P^{\prime} l-P l^{\prime}-c l^{2}\right)$

Consequently, $Z\left(r, f^{\prime}-c\right)=Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x) \neq 0\right)$. But, by (1) we have
(3) $Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x)=0\right)<Z(r, l)$.
and therefore by (2) and (3) we obtain
(4) $Z\left(r, f^{\prime}-c\right)=Z\left(r,\left(P^{\prime} l-P l^{\prime}-c l^{2}\right) \mid l(x) \neq 0\right)>Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)-Z(r, l)$

Now, let us examine $Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)$. Let $\left.r \in\right] 0,+\infty[$ (resp. let $r \in$ $] 0, R\left[\right.$). Since $l \in \mathcal{A}(\mathbb{K})$ is transcendental (resp. since $l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$), we can check that when r is big enough, we have $\left|P l^{\prime}\right|(r)<|c|(|l|(r))^{2}$ and $|P l|(r)<$ $|c|(|l|(r))^{2}$, hence clearly $\left|P^{\prime} l-P l^{\prime}\right|(r)<|c|(|l|(r))^{2}$ and hence $\mid P^{\prime} l-P l^{\prime}-$ $c l^{2}\left|(r)=|c|(|l|(r))^{2}\right.$. Consequently, when r is big enough, by Theorem C.4.2 in [7] we have $Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)=Z\left(r, l^{2}\right)+O(1)$. But $Z\left(r, l^{2}\right)=2 Z(r, l)$, hence $Z\left(r, P^{\prime} l-P l^{\prime}-c l^{2}\right)=2 Z(r, l)+O(1)$ and therefore by (4) we check that when r is big enough, we obtain
(5) $Z\left(r, f^{\prime}-c\right)>Z(r, l)$.

Now, if $l \in \mathcal{A}(\mathbb{K})$, since l is transcendental, by (5), for every $q \in \mathbb{N}$, we have $Z\left(r, f^{\prime}-c\right)>Z(r, l)>q \log r$, when r is big enough, hence $f^{\prime}-c$ has infinitely many zeros in \mathbb{K}. And similarly if $l \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$, then by (5), $Z\left(r, f^{\prime}-c\right)$ is unbounded when r tends to R, hence $f^{\prime}-c$ has infinitely many zeros in $d\left(0, R^{-}\right)$.

We will now notice a property of differential equations of the form $y^{(n)}-$ $\psi y=0$ that is almost classical.

The problem of a constant Wronskian is involved in several questions.

Theorem 4.2: Let $h, l \in \mathcal{A}(\mathbb{K})$ (resp. $h, \quad l \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) and satisfy $h^{\prime} l-h l^{\prime}=c \in \mathbb{K}$, with h non-affine. If h, l belong to $\mathcal{A}(\mathbb{K})$, then $c=0$ and $\frac{h}{l}$ is a constant. If $c \neq 0$ and if $h, l \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$, there exists $\phi \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$ such that $h^{\prime \prime}=\phi h, l^{\prime \prime}=\phi l$. Proof. Suppose $c \neq 0$. If $h(a)=0$, then $l(a) \neq 0$. Next, h and l satisfy
(1) $\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l}$.

Remark first that since h is not affine, $h^{\prime \prime}$ is not identically zero. Next, every zero of h or l of order ≥ 2 is a trivial zero of $h^{\prime} l-h l^{\prime}$, which contradicts $c \neq 0$. So we can assume that all zeros of h and l are of order 1.

Now suppose that a zero a of h is not a zero of $h^{\prime \prime}$. Since a is a zero of h of order $1, \frac{h^{\prime \prime}}{h}$ has a pole of order 1 at a and so does $\frac{l^{\prime \prime}}{l}$, hence $l(a)=0$, a contradiction. Consequently, each zero of h is a zero of order 1 of h and is a zero of $h^{\prime \prime}$ and hence, $\frac{h^{\prime \prime}}{h}$ is an element ϕ of $\mathcal{M}(\mathbb{K})$ (resp. of $\left.\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)\right)$) that has no pole in \mathbb{K} (resp. in $d\left(\alpha, R^{-}\right)$). Therefore ϕ lies in $\mathcal{A}(\mathbb{K})$ (resp. in $\left.\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)\right)$.

The same holds for l and so, $l^{\prime \prime}$ is of the form ψl with $\psi \in \mathcal{A}(\mathbb{K})$ (resp. in $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$). But since $\frac{h^{\prime \prime}}{h}=\frac{l^{\prime \prime}}{l}$, we have $\phi=\psi$.

Now, suppose h, l belong to $\mathcal{A}(\mathbb{K})$. Since $h^{\prime \prime}$ is of the form ϕh with $\phi \in$ $\mathcal{A}(\mathbb{K})$, we have $\left|h^{\prime \prime}\right|(r)=|\phi|(r)|h|(r)$. But by Theorem C.2.10 in [7], we know that $\left|h^{\prime \prime}\right|(r) \leq \frac{1}{r^{2}}|h|(r)$, a contradiction when r tends to $+\infty$. Consequently, $c=0$. But then $h^{\prime} l-h l^{\prime}=0$ implies that the derivative of $\frac{h}{l}$ is identically zero, hence $\frac{h}{l}$ is constant.

Corollary 4.A : Let $h, l \in \mathcal{A}(\mathbb{K})$ with coefficients in \mathbb{Q}, also be entire functions in \mathbb{C}, with h non-affine. If $h^{\prime} l-h l^{\prime}$ is a constant c, then $c=0$.

Theorem 4.3: Let $\psi \in \mathcal{M}(\mathbb{K})$ (resp. let $\psi \in \mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$) and let (\mathcal{E}) be the differential equations $y^{\prime \prime}-\psi y=0$. Let E be the sub-vector space of $\mathcal{A}(\mathbb{K})$ (resp. of $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$) of the solutions of (\mathcal{E}). Then, the dimension of E is 0 or 1. Proof. Suppose E is not $\{0\}$. Let $h, l \in E$ be non-identically zero. Then $h^{\prime \prime} l-h l^{\prime \prime}=0$ and therefore $h^{\prime} l-h l^{\prime}$ is a constant c. On the other hand, since h, l are not identically zero, neither are $h^{\prime \prime}, l^{\prime \prime}$. Therefore, h, l are not affine functions.

Suppose ψ belongs to $\mathcal{M}(\mathbb{K})$ and that h, l belong to $\mathcal{A}(\mathbb{K})$. By Theorem 4..2, we have $c=0$ and hence $\frac{h}{l}$ is a constant, which proves that E is of
dimension 1.
Suppose now that ψ lies in $\mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)$and that h, l belong to $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$. If ψ lies in $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$, then by Theorem $4.1, E=\{0\}$. Finally, suppose that ψ lies in $\mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right) \backslash \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$. If $c \neq 0$, by Theorem 4.2 , there exists $\phi \in \mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$such that $h^{\prime \prime}=\phi h, l^{\prime \prime}=\phi l$. Consequently, $\phi=\psi$, hence $\psi \in \mathcal{A}(\mathbb{K})$ and therefore $c=0$. Hence $h^{\prime} l-h l^{\prime}=0$ again and hence $\frac{h}{l}$ is a constant. Thus, we see that E is at most of dimension 1 .

Remark: The hypothesis ψ unbounded in $d\left(\alpha, R^{-}\right)$is indispensable to show that the space E is of dimension 0 or 1 , as shows the example given again by the p-adic hyperbolic functions $h(x)=\cosh (x)$ and $l(x)=\sinh (x)$. The radius of convergence of both h, l is $p^{\frac{-1}{p-1}}$ when \mathbb{K} has residue characteristic p and is 1 when \mathbb{K} has residue characteristic 0 . Of course, both functions are solutions of $y^{\prime \prime}-y=0$ but they are bounded.

The following Theorem 4.4 is an improvement of Theorem 4.2. It follows previous results [1].

Theorem 4.4 [2]: \quad Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $W(f, g)$ is a non-identically zero polynomial. Then both f, g are polynomials. Proof. First, by Theorem 4.2 we check that the claim is satisfied when $W(f, g)$ is a polynomial of degree 0 . Now, suppose the claim holds when $W(f, g)$ is a polynomial of certain degree n. We will show it for $n+1$. Let $f, g \in \mathcal{A}(\mathbb{K})$ be such that $W(f, g)$ is a non-identically zero polynomial P of degree $n+1$

Thus, by hypothesis, we have $f^{\prime} g-f g^{\prime}=P$, hence $f^{\prime \prime} g-f g "=P^{\prime}$. We can extract g^{\prime} and get $g^{\prime}=\frac{\left(f^{\prime} g-P\right)}{f}$. Now consider the function $Q=f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}$ and replace g^{\prime} by what we just found: we can get $Q=f^{\prime}\left(\frac{\left(f^{\prime \prime} g-f g^{\prime \prime}\right)}{f}\right)-\frac{P f^{\prime \prime}}{f}$.

Now, we can replace $f^{\prime \prime} g-f g^{\prime \prime}$ by P^{\prime} and obtain $Q=\frac{\left(f^{\prime} P^{\prime}-P f^{\prime \prime}\right)}{f}$. Thus, in that expression of Q, we can write $|Q|(R) \leq \frac{|f|(R)|P|(R)}{R^{2}|f|(R)}$, hence $|Q|(R) \leq$ $\frac{|P|(R)}{R^{2}} \forall R>0$. But by definition, Q belongs to $\mathcal{A}(\mathbb{K})$. Consequently, Q is a polynomial of degree $t \leq n-1$.

Now, suppose Q is not identically zero. Since $Q=W\left(f^{\prime}, g^{\prime}\right)$ and since $\operatorname{deg}(Q)<n$, by the induction hypothesis f^{\prime} and g^{\prime} are polynomials and so are f, g. Finally, suppose $Q=0$. Then $P^{\prime} f^{\prime}-P f "=0$ and therefore f^{\prime}, P are two solutions of the differential equation of order 1 for meromorphic functions in $\mathbb{K}:(\mathcal{E}) y^{\prime}=\psi y$ with $\psi=\frac{P^{\prime}}{P}$, whereas y belongs to $\mathcal{A}(\mathbb{K})$. By Theorem 4.3, the space of solutions of (\mathcal{E}) is of dimension 0 or 1 . Consequently, there exists $\lambda \in \mathbb{K}$ such that $f^{\prime}=\lambda P$, hence f is a polynomial. The same holds for g.

Here we can find again the following result that is known and may be proved without ultrametric properties:

Let F be an algebraically closed field and let $P, Q \in F[x]$ be such that $P Q^{\prime}-P^{\prime} Q$ is a constant c, with $\operatorname{deg}(P) \geq 2$. Then $c=0$.

Notation: Let $f \in \mathcal{A}(\mathbb{K})$. We can factorize f in the form $\bar{f} \widetilde{f}$ where the zeros of \bar{f} are the distinct zeros of f each with order 1 . Moreover, if $f(0) \neq 0$ we will take $\bar{f}(0)=1$.

Lemma 4.a: Let $U, V \in \mathcal{A}(\mathbb{K})$ have no common zero and let $f=\frac{U}{V}$. If f^{\prime} has finitely many zeros, there exists a polynomial $P \in \mathbb{K}[x]$ such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$ Proof. If V is a constant, the statement is obvious. So, we assume that V is not a constant. Now \widetilde{V} divides V^{\prime} and hence V^{\prime} factorizes in the way $V^{\prime}=\widetilde{V} Y$ with $Y \in \mathcal{A}(\mathbb{K})$. Then no zero of Y can be a zero of V. Consequently, we have

$$
f^{\prime}(x)=\frac{U^{\prime} V-U V^{\prime}}{V^{2}}=\frac{U^{\prime} \bar{V}-U Y}{\bar{V}^{2} \widetilde{V}}
$$

The two functions $U^{\prime} \bar{V}-U Y$ and $\bar{V}^{2} \widetilde{V}$ have no common zero since neither have U and V. So, the zeros of f^{\prime} are those of $U^{\prime} \bar{V}-U Y$ which therefore has finitely many zeros and consequently is a polynomial.

Theorem 4.5: Let $f \in \mathcal{M}(\mathbb{K})$ have finitely many multiple poles, such that for certain $b \in \mathbb{K}, f^{\prime}-b$ has finitely many zeros. Then f belongs to $\mathbb{K}(x)$.
Proof. Suppose first $b=0$. Let us write $f=\frac{U}{V}$ with $U, V \in \mathcal{A}(\mathbb{K})$, having no common zeros. By Lemma 4.a, there exists a polynomial $P \in \mathbb{K}[x]$ such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$. Since f has finitely many multiple poles, \widetilde{V} is a polynomial, hence so is $U^{\prime} V-U V^{\prime}$. But then by Theorem 4.4, both U, V are polynomials, which ends the proof when $b=0$. Consider now the general case. $f^{\prime}-b$ is the derivative of $f-b x$ that satisfies the same hypothesis, so the conclusion is immediate.

Notation: For each $n \in \mathbb{N}^{*}$, we set $\lambda_{n}=\max \left\{\frac{1}{|k|}, 1 \leq k \leq n\right\}$. Given positive integers n, q, we denote by C_{n}^{q} the combination $\frac{n!}{q!(n-q)!}$. Let us recall that \log is the Neperian logarithm, we denote by e the number such that $\log (e)=1$ and Exp is the real exponential function.

Remark: For every $n \in \mathbb{N}^{*}$, we have $\lambda_{n} \leq n$ because $k|k| \geq 1 \forall k \in \mathbb{N}$. The equality holds for all n of the form p^{h}.

Lemmas 4.b and 4.c are due to Jean-Paul Bézivin [1]:
Lemma 4.b: Let $U, V \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$. Then for all $\left.r \in\right] 0, R[$ and $n \geq 1$ we have

$$
\left|U^{(n)} V-U V^{(n)}\right|(r) \leq|n!| \lambda_{n} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{r^{n-1}}
$$

More generally, given $j, l \in \mathbb{N}$, we have

$$
\left|U^{(j)} V^{(l)}-U^{(l)} V^{(j)}\right|(r) \leq|(j!)(l!)| \lambda_{j+l} \frac{\left|U^{\prime} V-U V^{\prime}\right|(r)}{r^{j+l-1}}
$$

Lemma 4.c: Let $U, V \in \mathcal{A}(\mathbb{K})$ and let $r, R \in] 0,+\infty[$ satisfy $r<R$. For all $x, y \in \mathbb{K}$ with $|x| \leq R$ and $|y| \leq r$, we have the inequality:

$$
|U(x+y) V(x)-U(x) V(x+y)| \leq \frac{R\left|U^{\prime} V-U V^{\prime}\right|(R)}{e(\log R-\log r)}
$$

Notation: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For each $\left.r \in\right] 0, R[$, we denote by $\zeta(r, f)$ the number of zeros of f in $d(0, r)$, taking multiplicity into account and set $\xi(r, f)=\zeta\left(r, \frac{1}{f}\right)$. Similarly, we denote by $\beta(r, f)$ the number of multiple zeros of f in $d(0, r)$, each counted with its multiplicity and we set $\gamma(r, f)=\beta\left(r, \frac{1}{f}\right)$.

Theorem $4.6[2] \quad$ Let $f \in \mathcal{M}(\mathbb{K})$ be such that for some $c, q \in] 0,+\infty[, \gamma(r, f)$ satisfies $\gamma(r, f) \leq c r^{q}$ in $\left[1,+\infty\left[\right.\right.$. If f^{\prime} has finitely many zeros, then $f \in \mathbb{K}(x)$

Proof. Suppose f^{\prime} has finitely many zeros and set $f=\frac{U}{V}$. If V is a constant, the statement is immediate. So, we suppose V is not a constant and hence it admits at least one zero a. By Lemma 4.a, there exists a polynomial $P \in \mathbb{K}[x]$ such that $U^{\prime} V-U V^{\prime}=P \widetilde{V}$. Next, we take $r, R \in[1,+\infty[$ such that $|a|<r<R$ and $x \in d(0, R), y \in d(0, r)$. By Lemma 4.c we have

$$
|U(x+y) V(x)-U(x) V(x+y)| \leq \frac{R\left|U^{\prime} V-U V^{\prime}\right|(R)}{e(\log R-\log r)}
$$

Notice that $U(a) \neq 0$ because U and V have no common zero. Now set $l=$ $\max (1,|a|)$ and take $r \geq l$. Setting $c_{1}=\frac{1}{e|U(a)|}$, we have

$$
|V(a+y)| \leq c_{1} \frac{R|P|(R)|\widetilde{V}|(R)}{\log R-\log r}
$$

Then taking the supremum of $|V(a+y)|$ inside the disk $d(0, r)$, we can derive

$$
\begin{equation*}
|V|(r) \leq c_{1} \frac{R|P|(R)|\widetilde{V}|(R)}{\log R-\log r} \tag{1}
\end{equation*}
$$

Let us apply Corollary B. 13.30 in [7], by taking $R=r+\frac{1}{r^{q}}$, after noticing that the number of zeros of $\widetilde{V}(R)$ is bounded by $\beta(R, V)$. So, we have

$$
\begin{equation*}
|\widetilde{V}|(R) \leq\left(1+\frac{1}{r^{q+1}}\right)^{\beta\left(\left(r+\frac{1}{r^{q}}\right), V\right)}|\widetilde{V}|(r) \tag{2}
\end{equation*}
$$

Now, due to the hypothesis: $\beta(r, V)=\gamma(r, f) \leq c r^{q}$ in $[1,+\infty[$, we have

$$
\begin{gather*}
\left(1+\frac{1}{r^{q+1}}\right)^{\beta\left(\left(r+\frac{1}{r^{q}}\right), V\right)} \leq\left(1+\frac{1}{r^{q+1}}\right)^{\left[c\left(r+\frac{1}{r^{q}}\right)^{m}\right]}= \tag{3}\\
\operatorname{Exp}\left[c\left(r+\frac{1}{r^{q}}\right)^{q} \log \left(1+\frac{1}{r^{q+1}}\right)\right]
\end{gather*}
$$

The function $h(r)=c\left(r+\frac{1}{r^{m}}\right)^{m} \log \left(1+\frac{1}{r^{m+1}}\right)$ is continuous on $] 0,+\infty[$ and equivalent to $\frac{c}{r}$ when r tends to $+\infty$. Consequently, it is bounded on $[l,+\infty[$. Therefore, by (2) and (3) there exists a constant $M>0$ such that, for all $r \in[l,+\infty[$ by (3) we obtain

$$
\begin{equation*}
|\widetilde{V}|\left(r+\frac{1}{r^{q}}\right) \leq M|\widetilde{V}|(r) \tag{4}
\end{equation*}
$$

On the other hand, $\log \left(r+\frac{1}{r^{q}}\right)-\log r=\log \left(1+\frac{1}{r^{q+1}}\right)$ clearly satisfies an inequality of the form $\log \left(1+\frac{1}{r^{q+1}}\right) \geq \frac{c_{2}}{r^{q+1}}$ in $\left[l,+\infty\left[\right.\right.$ with $c_{2}>0$. Moreover, we can find positive constants c_{3}, c_{4} such that $\left(r+\frac{1}{r^{q}}\right)|P|\left(r+\frac{1}{r^{q}}\right) \leq c_{3} r^{c_{4}}$. Consequently, by (1) and (4) we can find positive constants c_{5}, c_{6} such that $|V|(r) \leq c_{5} r^{c_{6}}|\tilde{V}|(r) \forall r \in[l,+\infty[$. Thus, writing again $V=\bar{V} \tilde{V}$, we have $|\bar{V}|(r)|\widetilde{V}|(r) \leq c_{5} r^{c_{6}}|\widetilde{V}|(r)$ and hence $|\bar{V}|(r) \leq c_{5} r^{c_{6}} \forall r \in[l,+\infty[$. Consequently, by Corollary B.13.31 in [7], \bar{V} is a polynomial of degree $\leq c_{6}$ and hence it has finitely many zeros and so does V. But then, by Theorem 4.5, f must be a rational function.

Corollary 4.B: Let f be a meromorphic function on \mathbb{K} such that, for some $c, q \in] 0,+\infty\left[, \gamma(r, f)\right.$ satisfies $\gamma(r, f) \leq c r^{q}$ in $\left[1,+\infty\left[\right.\right.$. If for some $b \in \mathbb{K} f^{\prime}-b$ has finitely many zeros, then f is a rational function. Proof. Suppose $f^{\prime}-b$ has finitely many zeros. Then $f-b x$ satisfies the same hypothesis as f, hence it is a rational function and so is f.

Corollary 4.C: Let $f \in \mathcal{M}(\mathbb{K}) \backslash \mathbb{K}(x)$ be such that $\xi(r, f) \leq c r^{q}$ in $[1,+\infty[$ for some $c, q \in] 0,+\infty\left[\right.$. Then for each $k \in \mathbb{N}^{*}, f^{(k)}$ has no quasi-exceptional value.
Proof. Indeed, if $k=1$, the statement just comes from Corollary 4.B Now suppose $k \geq 2$. Each pole a of order n of f is a pole of order $n+k$ of $f^{(k)}$ and $f^{(k)}$ has no other pole. Consequently, we have $\gamma\left(r, f^{k-1}\right)=\xi\left(r, f^{(k-1)}\right) \leq k c r^{q}$. So, we can apply Corollary 4.B to $f^{(k-1)}$ to show the claim.

Theorem 4.6 suggests us the following conjecture:
Conjecture: Let $f \in \mathcal{M}(\mathbb{K})$ be such that f^{\prime} admits finitely many zeros. Then $f \in \mathbb{K}(x)$.

In other words, the conjecture suggests that the derivative of a meromorphic function in \mathbb{K} has no quasi-exceptional value, except if it is a rational function.

Remark: Of course, there exist meromorphic functions in \mathbb{K} having no zero but not satisfying the hypotheses of Theorem 4.6 , hence such a function cannot have primitives. For example, consider an entire function f having an infinity of zeros $\left(a_{n}\right)_{n \in \mathbb{N}}$ of order 2 such that $\left|a_{n}\right|<\left|a_{n+1}\right|, \lim _{n \rightarrow+\infty}\left|a_{n}\right|=+\infty$ and $2 n \leq\left|a_{n}\right|$. Then the meromorphic function $g=\frac{1}{f}$ has no zeros but does not satisfy the hypotheses of Theorem 4.6 hence it has no primitives.

5 Small functions

Small functions with respect to a meromorphic function are well known in the general theory of complex functions. Particularly, one knows the Nevanlinna theorem on 3 small functions. Here we will recall the construction of a similar theory.

Definitions and notation: Throughout the chapter we set $a \in \mathbb{K}$ and $R \in$ $] 0,+\infty\left[\right.$. For each $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$we denote by $\mathcal{M}_{f}(\mathbb{K})$, (resp. $\mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$) the set of functions $h \in \mathcal{M}(\mathbb{K})$, (resp. $\left.h \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)\right)$ such that $T(r, h)=o(T(r, f))$ when r tends to $+\infty$ (resp. when r tends to R). Similarly, if $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)$) we shall denote by $\mathcal{A}_{f}(\mathbb{K})$ (resp. $\left.\mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right)\right)$the set $\mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{A}(\mathbb{K}),\left(\operatorname{resp} . \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{A}\left(d\left(a, R^{-}\right)\right)\right)$.

The elements of $\mathcal{M}_{f}(\mathbb{K})$ (resp. $\mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$) are called small meromorphic functions with respect to f, (small functions in brief). Similarly, if $f \in \mathcal{A}(\mathbb{K})\left(\right.$ resp. $\left.f \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)\right)$the elements of $\mathcal{A}_{f}(\mathbb{K})\left(\right.$ resp. $\left.\mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right)\right)$ are called small analytic functions with respect to f, (small functions in brief).

Theorems 5.1 and Theorem 5.2 are immediate consequences of Theorems C.9.1 and C.9.2 in [7]:

Theorem 5.1: Let $a \in \mathbb{K}$ and $r>0$. Then $\mathcal{A}_{f}(\mathbb{K})$ is a \mathbb{K}-subalgebra of $\mathcal{A}(\mathbb{K}), \mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right)$is a \mathbb{K}-subalgebra of $\mathcal{A}\left(d\left(a, R^{-}\right)\right) \mathcal{M}_{f}(\mathbb{K})$ is a subfield field of $\mathcal{M}(\mathbb{K}), \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$is a subfield of field of $\left.\mathcal{M}\left(a, R^{-}\right)\right)$. Moreover, $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right.$is a sub-algebra of $\mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right.$and $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right.$is a subfield of $\mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right.$.

Theorem 5.2 : Let $f \in \mathcal{M}(\mathbb{K})$, (resp.f $\in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$) and let $g \in$ $\mathcal{M}_{f}(\mathbb{K}),\left(\right.$ resp.g $\in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$). Then $T(r, f g)=T(r, f)+o(T(r, f))$ and $T\left(r, \frac{f}{g}\right)=T(r, f)+o(T(r, f)), \quad($ resp. $\quad T(r, f g)=T(r, f)+o(T(r, f))$ and $\left.T\left(r, \frac{f}{g}\right)=T(r, f)+o(T(r, f))\right)$.

Theorem 5.3 is known as Second Main Theorem on Three Small Functions in p-adic analysis [7] and [10]. It holds as well as in complex analysis, where it was showed first and it is proven in the same way.

Theorem 5.3: \quad Let $f \in \mathcal{M}(\mathbb{K})\left(\right.$ resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) and let $w_{1}, w_{2}, w_{3} \in$ $\mathcal{M}_{f}(\mathbb{K})\left(\right.$ resp. $w_{1}, w_{2}, w_{3} \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$be pairwaise distinct. Then $T(r, f) \leq$ $\sum_{j=1}^{3} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f)), \operatorname{resp} T(r, f) \leq \sum_{j=1}^{3} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))$, resp. $T_{R}(r, f) \leq \sum_{j=1}^{3} \bar{Z}_{R}\left(r, f-w_{j}\right)+o(T(r, f))$.

Theorem 5.4: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) and let $w_{1}, w_{2} \in$ $\mathcal{M}_{f}(\mathbb{K})\left(\right.$ resp. $w_{1}, w_{2} \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$be distinct. Then $T(r, f) \leq \bar{Z}(r, f-$ $\left.w_{1}\right)+\bar{Z}\left(r, f-w_{2}\right)+\bar{N}(r, f)+o(T(r, f)),\left(r e s p . T(r, f) \leq \bar{Z}\left(r, f-w_{1}\right)+\bar{Z}(r, f-\right.$ $\left.\left.w_{2}\right)+\bar{N}(r, f)+o(T(r, f))\right)$.
Proof. Suppose first $f \in \mathcal{M}(\mathbb{K})$ or $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$. Let $g=\frac{1}{f}, h_{j}=\frac{1}{w_{j}}$, $j=1,2, h_{3}=0$. Clearly,

$$
T(r, g)=T(r, f)+O(1), T(r, h)=T\left(r, w_{j}\right), j=1,2
$$

so we can apply Theorem 5.3 to g, h_{1}, h_{2}, h_{3}. Thus we have: $T(r, g) \leq$ $\bar{Z}\left(r, g-h_{1}\right)+\bar{Z}\left(r, g-h_{2}\right)+\bar{Z}(r, g)+o(T(r, g))$.

But we notice that $\bar{Z}\left(r, g-h_{j}\right)=\bar{Z}\left(r, f-w_{j}\right)$ for $j=1,2$ and $\bar{Z}(r, g)=$ $\bar{N}(r, f)$. Moreover, we know that $o(T(r, g))=o(T(r, f))$. Consequently, the claim is proved when $w_{1} w_{2}$ is not identically zero.

Now, suppose that $w_{1}=0$. Let $\lambda \in \mathbb{K}^{*}$, let $l=f+\lambda$ and $\tau_{j}=u_{j}+$ $\lambda,(j=1,2,3)$. Thus, we have $T(r, l)=T(r, f)+O(1), T\left(r, \tau_{j}\right)=T\left(r, w_{j}\right)+$
$O(1),(j=1,2), \bar{N}(r, l)=\bar{N}(r, f)$. By the claim already proven whenever $w_{1} w_{2} \neq 0$ we may write $\left.T(r, l) \leq \bar{Z}\left(r, l-\tau_{1}\right)+\bar{Z}\left(r, l-\tau_{2}\right)+\bar{N}(r, l)+o(T(r, l))\right)$ hence
$\left.T(r, f) \leq \bar{Z}\left(r, f-w_{1}\right)+\bar{Z}\left(r, f-w_{2}\right)+\bar{N}(r, l)+o(T(r, f))\right)$.
Next, by setting $g=f-w_{1}$ and $w=w_{1}+w_{2}$, we can write Corollary 5.A:
Corollary 5.A: Let $g \in \mathcal{M}(\mathbb{K})$ (resp. $g \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) and let $w \in$ $\mathcal{M}_{g}(\mathbb{K})$. Then $T(r, g) \leq \bar{Z}(r, g)+\bar{Z}(r, g-w)+\bar{N}(r, g)+o(T(r, g))$, (resp. $T(r, g) \leq \bar{Z}(r, g)+\bar{Z}(r, g-w)+\bar{N}(r, g)+o(T(r, g)))$.

Corollary 5.B: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$) and let $w_{1}, w_{2} \in$ $\mathcal{A}_{f}(\mathbb{K}) \quad$ (resp. $w_{1}, w_{2} \in \mathcal{A}_{f}\left(d\left(0, R^{-}\right)\right)$be distinct. Then $T(r, f) \leq \bar{Z}(r, f-$ $\left.w_{1}\right)+\bar{Z}\left(r, f-w_{2}\right)+o(T(r, f))(r \rightarrow+\infty)$, resp. $\left(r \rightarrow R^{-}\right)$.

And similarly to Corollary 5.A, we can get Corollary 5.C:
Corollary 5.C: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$, resp. $f \in \mathcal{A}^{c}(D)$) and let $w \in \mathcal{A}_{f}(\mathbb{K})$). Then $T(r, f) \leq \bar{Z}(r, f)+\bar{Z}(r, f-w)+o(T(r, f))$, (resp. $T(r, f) \leq \bar{Z}(r, f)+\bar{Z}(r, f-w)+o(T(r, f)))$.

We are now able to state a theorem on q small functions that is not as good as Yamanoi's Theorem [17] in complex analysis, but seems the best possible in ultrametric analysis;

Theorem 5.5 [8] (A. Escassut, C.C. Yang): Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) and let $w_{j} \in \mathcal{M}_{f}(\mathbb{K})(j=1, \ldots, q)$
(resp. $w_{j} \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$be q distinct small functions other than the constant ∞. Then

$$
q T(r, f) \leq 3 \sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))
$$

(resp.

$$
\left.q T(r, f) \leq 3 \sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))\right)
$$

Moreover, if f has finitely many poles in $\mathbb{K}\left(\right.$ resp. in $d\left(0, R^{-}\right)$), then

$$
q T(r, f) \leq 2 \sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))
$$

(resp.

$$
\left.q T(r, f) \leq 2 \sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f)) .\right)
$$

Proof. By Theorem 5.3, for every triplet (i, j, k) such that $1 \leq i \leq j \leq$ $k \leq q$, we can write

$$
T(r, f) \leq \bar{Z}\left(r, f-w_{i}\right)+\bar{Z}\left(r, f-w_{j}\right)+\bar{Z}\left(r, f-w_{k}\right)+o(T(r, f))
$$

The number of such inequalities is C_{q}^{3}. Summing up, we obtain
$C_{q}^{3} T(r, f) \leq \sum_{(i, j, k), 1 \leq i \leq j \leq k \leq q} \bar{Z}\left(r, f-w_{i}\right)+\bar{Z}\left(r, f-w_{j}\right)+\bar{Z}\left(r, f-w_{k}\right)+o(T(r, f))$.
In this sum, for each index i, the number of terms $\bar{Z}\left(r, f-w_{i}\right)$ is clearly C_{q-1}^{2}. Consequently, by (1) we obtain

$$
C_{q}^{3} T(r, f) \leq C_{q-1}^{2} \sum_{i=1}^{q} \bar{Z}\left(r, f-w_{i}\right)+o(T(r, f))
$$

and hence

$$
\frac{q}{3} T(r, f) \leq \sum_{i=1}^{q} \bar{Z}\left(r, f-w_{i}\right)+o(T(r, f))
$$

Suppose now that f has finitely many poles. By Theorem 5.4 , for every pair (i, j) such that $1 \leq i \leq j \leq q$, we have

$$
T(r, f) \leq \bar{Z}\left(r, f-w_{i}\right)+\bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))
$$

The number of such inequalities is then C_{q}^{2}. Summing up we now obtain

$$
\begin{equation*}
C_{q}^{2} T(r, f) \leq \sum_{(i, j, 1 \leq i \leq j \leq q} \bar{Z}\left(r, f-w_{i}\right)+\bar{Z}\left(r, f-w_{j}\right)+o(T(r, f)) \tag{2}
\end{equation*}
$$

In this sum, for each index i, the number of terms $\bar{Z}\left(r, f-w_{i}\right)$ is clearly $C_{q-1}^{1}=q-1$. Consequently, by (1) we obtain

$$
C_{q}^{2} T(r, f) \leq(q-1) \sum_{i=1}^{q} \bar{Z}\left(r, f-w_{i}\right)+o(T(r, f))
$$

and hence

$$
\frac{q}{2} T(r, f) \leq \sum_{i=1}^{q} \bar{Z}\left(r, f-w_{i}\right)+o(T(r, f))
$$

Definition: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$). Then f and g will be to share a small function, I.M. $w \in \mathcal{M}(\mathbb{K})$ (resp. $w \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) if $f(x)=w(x)$ implies $g(x)=w(x)$ and if $g(x)=w(x)$ implies $f(x)=w(x)$.

Theorem 5.6: Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) be distinct and share q distinct small functions I.M. $w_{j} \in \mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{M}_{g}(\mathbb{K})(j=$ $1, \ldots, q)\left(\right.$ resp. $\left.w_{j} \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)(j=1, \ldots, q)\right)$ other than the constant ∞. Then

$$
\sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right) \leq \bar{Z}(r, f-g)+o(T(r, f))+o(T(r, g))
$$

Proof. Suppose that f and g belong to $\mathcal{M}(\mathbb{K})$, are distinct and share q distinct small functions I.M. $w_{j} \in \mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{M}_{g}(\mathbb{K})(j=1, \ldots, q)$.

Lat b be a zero of $f-w_{i}$ for a certain index i. Then it is also a zero of $g-w_{i}$. Suppose that b is counted several times in the sum $\sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)$, which means that it is a zero of another function $f-w_{h}$ for a certain index $h \neq i$. Then we have $w_{i}(b)=w_{h}(b)$ and hence b is a zero of the function $w_{i}-w_{h}$ which belongs to $\mathcal{M}_{f}(\mathbb{K})$. Now, put $\widetilde{Z}\left(r, f-w_{1}\right)=\bar{Z}\left(r, f-w_{1}\right)$ and for each $j>1$, let $\widetilde{Z}\left(r, f-w_{j}\right)$ be the counting function of zeros of $f-w_{j}$ in the disk $d\left(0, r^{-}\right)$ignoring multiplicity and avoiding the zeros already counted as zeros of $f-w_{h}$ for some $h<j$. Consider now the sum $\sum_{j=1}^{q} \widetilde{Z}\left(r, f-w_{j}\right)$. Since the functions $w_{i}-w_{j}$ belong to $\mathcal{M}_{f}(\mathbb{K})$, clearly, we have

$$
\sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)=\sum_{j=1}^{q} \widetilde{Z}\left(r, f w_{j}\right)=o(T(r, f))
$$

It is clear, from the assumption, that $f(x)-w_{j}(x)=0$ implies $g(x)-w_{j}(x)=$ 0 and hence $f(x)-g(x)=0$. Since $f-g$ is not the identically zero function, it follows that

$$
\sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right) \leq \bar{Z}(r, f-g)
$$

Consequently,

$$
\sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right) \leq \bar{Z}(r, f-g)+o(T(r, f))+o(T(r, g))
$$

Now, if f and g belong to $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$the proof is exactly the same.

Theorem 5.7 [8] (A. Escassut, C.C. Yang): Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) be distinct and share 7 distinct small functions (other than the constant ∞) I.M. $w_{j} \in \mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{M}_{g}(\mathbb{K})(j=1, \ldots, 7)$ $\left(\right.$ resp. $w_{j} \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)$, resp. $w_{j} \in \mathcal{M}_{f}(D) \cap \mathcal{M}_{g}(D)(j=$ $1, \ldots, 7)$,). Then $f=g$.

Moreover, if f and g have finitely many poles and share 3 distinct small functions (other than the constant ∞) I.M. then $f=g$.
Proof. We put $M(r)=\max (T(r, f), T(r, g))$. Suppose that f and g are distinct and share q small function I.M. $w_{j}, \quad(1 \leq j \leq q)$. By Theorem 5.5, we have

$$
q T(r, f) \leq 3 \sum_{j=1}^{q} \bar{Z}\left(r, f-w_{j}\right)+o(T(r, f))
$$

But thanks to Theorem 5.6, we can derive

$$
q T(r, f) \leq 3 T(r, f-g)+o(T(r, f))
$$

and similarly

$$
q T(r, g) \leq 3 T(r, f-g)+o(T(r, g))
$$

hence

$$
\begin{equation*}
q M(r) \leq 3 T(r, f-g)+o(M(r)) \tag{1}
\end{equation*}
$$

By Theorem C.4.8 in [7], we can derive that

$$
q M(r) \leq 3(T(r, f)+T(r, g))+o(M(r)))
$$

and hence $q M(r) \leq 6 M(r)+o(M(r))$. That applies to the situation when f and g belong to $\mathcal{M}(\mathbb{K})$ as well as when when f and g belong to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$. Consequently, it is impossible if $q \geq 7$ and hence the first statement of Theorem 5.7 is proved.

Suppose now that f and g have finitely many poles. By Theorems C.4.8 in [7], Relation (1) gives us

$$
q M(r) \leq 2 M(r)+o(M(r))
$$

which is obviously absurd whenever $q \geq 3$ and proves that $f=g$ when f and g belong to $\mathcal{M}(\mathbb{K})$ as well as when f and g belong to $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.

Corollary 5.D: Let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$) be distinct and share 3 distinct small functions (other than the constant ∞) I.M. $w_{j} \in \mathcal{A}_{f}(\mathbb{K}) \cap \mathcal{A}_{g}(\mathbb{K})(j=1,2,3)\left(\right.$ resp. $w_{j} \in \mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{A}_{g}\left(d\left(a, R^{-}\right)\right), \quad(j=$ $1,2,3)$). Then $f=g$.

References

[1] Bezivin, J.-P., Wronskien et equations differentielles p-adiques, Acta Arith., 158, no. 1, 6178 (2013).
[2] Bezivin, J.-P., Boussaf, K. and Escassut, A. A. Zeros of the derivative of a p-adic meromorphic function, Bull. Sci. Math., 136, no. 8, 839847 (2012).
[3] Boussaf, K. Picard values of p-adic meromorphic functions, p-Adic Numbers Ultrametric Anal. Appl., 2, no. 4, 285292 (2010).
[4] Boussaf, K., Ojeda, J. and Escassut,A. Primitives of p-adic meromorphic functions, Contemp. Math., 551, 5156 (2011).
[5] Boutabaa, A. Théorie de Nevanlinna p-adique, Manuscripta Math. 67, p. 251-269 (1990).
[6] Boutabaa, A. and Escassut, A. URS and URSIMS for p-adic meromorphic functions inside a disk, Proc. of the Edinburgh Mathematical Society 44, p. 485-504 (2001).
[7] Escassut, A. p-adic Analytic Functions. World Scientific Publishing Co. Pte. Ltd. Singapore, (2021).
[8] Escassut, A. and Yang, C.C. A short note on two p-adic meromorphic functions sharing a few small ones, Rendiconti del Circolo Matematico di Palermo 70 (2), p. 623-630.
[9] Ha H. K. On p-adic meromorphic functions, Duke Mathematical Journal, 50, 695-711 (1983).
[10] Hayman, W. K. Meromorphic Functions. Oxford University Press, (1975)
[11] Hu, P.C. and Yang, C.C. Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000).
[12] Lazard, M. Les zéros des fonctions analytiques sur un corps valué complet, IHES, Publications Mathématiques no. 14, pp. 47-75 (1962).
[13] Malher, K. Ein Beweis der Transzendenz der P-adischen Exponentialfunktion, J. reine angew. Math., 169, pp. 61-66 (1932).
[14] Nevanlinna, R. Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthiers-Villars, Paris (1929).
[15] Shamseddine, K. A brief survey of the study of power series and analytic func- tions on the Levi-Civita fields, Contemporary Mathematics Volume 596, p. 269-279, (2013).
[16] Waldschmidt, M. Nombres transcendants, Lecture Notes in Mathematics, 402, Springer Verlag (1974).
[17] Yamanoi, K. The second main theorem for small functions and related problems Acta Mathematica 192, p. 225-294 (2004).

Alain Escassut
Laboratoire de Mathématiques Blaise Pascal UMR CNRS 6620
Université Clermont Auvergne
F 63000 Clermont-Ferrandt
France
e-mail adress: alain.escassut@uca.fr

