J. Math. Math. Sci., 2022 (1), 27-56

A SURVEY ON A FEW RECENT PAPERS IN P-ADIC
VALUE DISTRIBUTION

Alain Escassut (Clermaont-Ferrand, France)

In memory of Professor Wolfgang Tutschke

(Received 05 December 2021; accepted 20 January 2022)

Abstract. In this article, we propose to present several recent results:
a new proof of the p-adic Hermite-Lindemann Theorem, a new proof of
the p-adic Gel’fond-Schneider Theorem, exceptional values of meromorphic
functions and derivatives and the p-adic Nevanlinna theory applied to small
functions. We first have to recall the definitions of the p-adic logarithm
and exponential.

1 Logarithm and exponential in a p-adic field

Notations: We denote by Q, the completion of Q with respect to the p-adic
absolute value and by C, the completion of the algebraic closure of Q,,, which is
known to be algebraically closed [7]. In general, we denote by K an algebraically
closed field of characteristic 0 complete with respect to an ultrametric absolute
value, such as C,. The ultrametric absolute value of K is denoted | . | while
the archimedean absolute value of C is denoted | . |oo.

Let a € K and let R € Ry. We denote by d(a,R) the "closed ” disk
{z € K| |z —a| < R} and by d(a, R™) the "open” disk {z € K | |z — a| < R}.
We denote by A(K) the algebra of power series converging in all K. Given
a € Kand R > 0, we denote by A(d(a, R™)) the algebra of power series

Zan(x —a)" converging in d(a, R™) and by Au(d(a, R™)) the subalgebra of
j=0
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functions f( ) € Ap(d(a, R7)) that are bounded in (d(a, R~)) and we put

@ )
Au(d(a, R™)) = A(d(a, ) \ Ay(d(a, R)).

Moreover we denote by H(d(a,r) the algebra of power series Z an(x —a)”
§=0
converging in d(a, R) called analytic elements in d(a, R). Given an element f
of H(d(0,R)) we put |f|(r) = SUPLed(0,R) |f(x)].

We will define the p-adic logarithm and the p-adic exponential and will
shortly study them, in connection with the study of the roots of 1. Here, as in
[7], we compute the radius of convergence of the p-adic exponential by using
results on injectivity.

The following lemma 1.a is easy:

Lemma 1.a: K is supposed to have residue characteristic p # 0. Let
r €]0,1[ and for each n € N, let h,(x) = (1+2)?". The sequence h,, converges
to 1 with respect to the uniform convergence on d(0,7).

Notations: We denote by log the real logarithm function of base e. Given a
o]

power series Zajxj converging in d(0, R~) and given a number u < log(R)
§=0
we denote by v (f, ) the biggest integer ¢ such that sup;q log(la;)| + ju =
log(lag)| + gqp.
For each ¢ € N* we denote by R, the positive number such that log,(R,) =

1 "
———————. We denote by g(z) the series ) 1z
ptp—1) Z

The following lemma 1.b is well known (Theorem B.13.7 in [7]):

Lemma 1.b: Let f(x Zajx] be converging in d(0, R™) and let r < R.
7=0

Then v (f,log(r)) is the number of zeros of f in d(0,r), taken multiplicity into

account.

Theorem 1.1: g has a radius of convergence equal to 1. If the residue
characteristic of K is p # 0, then g is unbounded in d(0,17). If the residue
characteristic is zero, then |g(x)| is bounded by 1 in d(0,17). The function

1
defined in d(1,17) as Log(z) = g(x — 1) has a derivative equal to — and
x

satisfies Log(ab) = Log(a) + Log(b) whenever a, b € d(1,17).

1
Proof. Tt is clearly seen that the radius of g is 1, because |n| > — and

3

[n| <1 for all n € N. As in the Archimedean context, the property Log(ab) =
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Log(a) + Log(b) comes from the fact that both Log and the function h, de-
fined as hq(x) = Log(ax) have the same derivative. The other statements are
immediate.

Notation: When K has residue characteristic p # 0, we introduce the group
W of the p*-th roots of 1, i.e., the set of the u € K satisfying u?* = 1 for some
seN.

Recall that analytic elements were defined by M. Krasner and are defined
in [7].

Theorem 1.2: K is supposed to have residue characteristic p # 0 (resp.
0). All zeros of Log are of order 1. The set of zeros of the function Log is
equal to W, (resp. 1 is the only zero of Log). The restriction of Log to the
disk d(1,(R1)™) (resp. d(1,17)) is injective and is a bijection from d(1, (Ry)™)
onto d(0,(R1)™) ( resp. from d(1,17) onto d(0,17)).

Proof. It is obvious that the zeros of Log are of order 1 because the derivative
of Log has no zero. First, we suppose K to have residue characteristic p # 0.
Each root of 1 in d(1,17) is a zero of Log. Moreover, by Theorem A.6.8 of [7],
we know that the only roots of 1 in d(1,17) are the p™-th roots. Now we can
check that Log admits no zero other than the roots of 1. Indeed, suppose that
a is a zero of Log but is not a root of 1, and for each n € N, let b, = a?".
Since b,, belongs to d(1,17), by Lemma B.16.1 of [7] we have n11_>n;0 b, = 1. But
obviously Log(b,) = 0 for every n € N, hence this contradicts the fact that 1
is an isolated zero of Log.

Thus, Log has no zero in the disk d(1,(R1)™), except 1 and therefore, by

Lemma 1.b the series f(z) = Z(—l)”_lx— satisfies v (f,logr) = 1 for every
n
n=1
r €]0, Ry[, hence r > ﬁ for all r €]0, Ry[, for every n € N*. Therefore, by
n
Corollary B.14.10 of [7] it is injective in d(0, Ry ). Then, by Corollary B.13.10
of [7], we see that Log(d(1, Ry )) = d(0, Ry ).

Now we suppose that K has residue characteristic zero. Then, the function
0 n
fz) = Z(—l)"_lx— satisfies v (f,logr) = 1 for every r €0, 1], hence r >
n
n=1
n
" forall v €10, 1], for every n € N*. Therefore, f has no zero different from

n
1in d(0,17) and, by Corollary B.14.10 of [7], is injective in d(0,17). Then by
Corollary B.13.10 of [7] we see that Log(d(1,17)) = d(0,17). This ends the
proof.
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Corollary 1.A: K is supposed to have residue characteristic 0. There is no
root of 1 in d(1,17), except 1. Proof. Indeed any root of 1 should be a zero
of Log in d(1,17).

Notations: If K has residue characteristic p # 0, we first denote by exp
the inverse (or reciprocal) function of the restriction of Log to d(1, Ry ), which
obviously is a function defined in d(0, Ry ), with values in d(1, Ry ). If K has

residue characteristic 0 we denote by exp the inverse function of Log, which is
obviously defined in d(0,17) and takes values in d(1,17).

Theorem 1.3: K is supposed to have residue characteristic p # 0 (resp.
p = 0). The function exp belongs to Ay(d(0,Ry)) (resp. Aup(d(0,17))), is
a bijection from d(0, Ry ) onto d(1,R]) (resp. from d(0,17) onto d(1,17)),
and satisfies exp(z) = exp’(x) = Z x—' whenever x € d(0,Ry) (resp. © €
n!
n=0

d(0,17)). Moreover, the disk of convergence of its series is equal to d(0, Ry )
(resp. d(0,17)). Further, if p # 0, then exp is not an analytic element on
d(0, Ry).

Proof. By Corollary B.14.15 of [7] we know that the function exp belongs to
Ap(d(0,Ry)) (resp. Ap(d(0,17))) and is obviously a bijection from d(0, R;)
onto d(1, Ry) (resp. from d(0,17) onto d(1,17)). Asit is the reciprocal of Log,
it must satisfy exp(z) = exp’(z) for all x € d(0, R;) (resp. = € d(0,17)) and,

x© n
therefore, exp(x) = Z x;' whenever z € d(0, Ry) (resp. € d(0,17)). Thus
n!
n=0
the radius of convergence r is at least Ry (resp. 1). If the residue characteristic
is 0, it is obviously seen that the series cannot converge for |x| = 1, hence the
disk of convergence is d(0,17).

Now we suppose that the residue characteristic is p # 0. Suppose that the
power series of exp converges in d(0,R;). Then exp has continuation to an
analytic element element on d(0, Ry). On the other hand, since v(f,logr) =1
for all r €]0, Ry[, we have v~ (f,log R1) = 1 and then by Theorem B.13.9 of
[7] Log(d(1,Ry)) is equal to d(0,R;). Hence, we can consider exp(Log(x))
in all the disk d(0, Ry). By Corollary B.3.3 of [7] this is an analytic element
element on d(1, Ry). But this element is equal to the identity in all of d(1, R;)
and, therefore, in all of d(1, Ry). Of course this contradicts the fact that Log
is not injective in the circle C(1, Ry). This finishes proving that the disk of
convergence of exp is just d(0, R} ).

Notations: Henceforth, we put e* = exp(x).
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Theorem 1.4: K is supposed to have residue characteristic p # 0. Let x €
d(0,Ry). Then e* is algebraic over Q, if and only if so is x. Let u € d(0,17).
Then log(1 + u) is algebraic over Qy, if and only if so is u.

Proof. By Theorem B.5.24 of [7], if x is algebraic over Q,, so is €”. Similarly,
if u is algebraic over Qy, so is log(1l + u). Consequently, suppose that e” is
algebraic over Q,. Then e” is of the form 1 + ¢ with |t < 1, hence log(1 + t)
is algebraic over Q,. But then, log(1l + t) = log(e®) = x, hence x is algebraic
over Q,. Now, more generally, suppose log(1 + u) is algebraic over Q,, with
|u|] < 1. Take g € N such that |p?log(1l + u)| < R;. We have p?log(l + u) =
log((1+u)P"). Since |p?log(1+u)| < Ry, we have |log((1+u)P")| < Ry, hence
exp(log((1 4+ u)P")) = (1 +u)P". Consequently, (1 +u)P" is algebraic over Q,
and hence so is u.

We can show a similar result when p = 0.

Theorem 1.5: K is supposed to have residue characteristic 0. Let x €
d(0,17). Then €” is algebraic over Qy, if and only if so is x. Let u € d(0,17).
Then log(1 + u) is algebraic over Qy, if and only if so is u.

The following proposition 1.6 will be used in the poof of Theorem 2.3 and
is proven by induction, similarly as (1.4.2) in [16].

Proposition 1.6:  Let Py, ..., P, € K[X] different from 0 and let wy, ..., wq €
q

K be pairwise distinct. Let F(x) = ZPj(x)ewjz. Then F is not identically
j=1

ZETO0.

2 Hermite-Lindemann’s and Gel’fond-Schneider’s Theorems in ul-
trametric fields

We will use the following classical notation:

Notation: We will denote by IC an algebraically closed complete ultrametric
extension of Q of residue characteristic 0.

We will denote by U the disk d(0,1) and by Dy the disk d(0,17) in the field
K no matter what the residue characteristic.

If the residue characteristic of K is p > 0 we put Ry = pp%ll and denote by
D, the disk d(0, Ry).

Given an algebraic number a € C, (resp. a € K) and ai,a9,...,aq its

conjugates over Q (with a1 = a), we put |a| = maxi<;j<4 |a;| and we denote by
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den(a) its smallest denominator, i.e. the smallest positive integer ¢ such that
qa is an algebraic integer. Then we put s(a) = max(log|al|,log(den(a))) and
s(a) is called the size of a. More generaly we call denominator of a number a
all positive integer multiple of its smallest denominator.

Given a polynomial P(X, ..., Xq) € Z[X1, ..., X,], we denote by H(P) the
supremum of the archimedean absolute values of its coefficients.

Given a positive real number a, we denote by [a] the largest integer n such
that n < a.

Hermite-Lindemann’s theorem is well known in complex analysis. The same
holds in p-adic analysis. The first proof was presented in 1930 by K. Malher
[13]. This proof given in [13] is written in German and uses symbols which are
not currently known. Here we present a new proof using classical methods in
transcendental processes that are maybe easier to understand.

We will need Siegel’s Lemma in all the following theorems of this chapter.
We will choose a particular form of this famous lemma [16] whose formulation
is due to M. Mignotte:

Lemma 2.a (Siegel): Let E be a finite extension of Q of degree q and
let i;j 1 < i <m, 1 <35 < n be elements of E integral over Z. Let

M =max(|\i;] 1 <i<m, | 1 <j < n)andlet (S) be the linear system

{Z Xijz; =0, 1 <i<m}. There exists solutions (z1, ..., Z,) of (S) such that
j=1
x; €LNVj=1,...n and

qm log(2)

log([ ) < log(3) "+ 25

Lemma 2.b will be necessary in the proof of Theorem 2.4 and is easily proven
in [16] since its proof implies no change in the field K since it only concerns
algebraic numbers

Lemma 2.b: Let a1,...,a, € K be algebraic over Q, let P(Xy,...,X,) €
Z[Xq,...,xq] be such that deng(P) <r;1<j<gqandletf = Pla...aq).
Then B is algebraic over Q, d(a1)™...d(aq)"is a multiple of den(B) and we

have
q

s(B) <log H(P) + Z(rjs(aj) +log(r;) +1)

j=1

Theorem 2.1 (Hermite-Lindemann): Suppose that K has residue charac-
teristic p > 0. Let o € D1 be algebraic. Then e® is transcendental.
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Proof. We suppose that « and e® are algebraic. Let h = |a|. Let E be
the field Q[a, ], let ¢ = [E : Q] and let w be a common denominator of «
and e®. We will construct a sequence of polynomials (Py(X,Y))nen in two
[m], degy (Pn) = [(log N)3] and such

that the function F(z) = Pn(z,e") satisfiy further, for every s =0,....,N —1
and for every j =0, ..., [log(V)]

variables such that degy (Py) =

S

dzs

FN(jOé) =0.

According to formal computations in the proof of Hermite Lindemann’s Theo-
rem in the complex context, (Theorem 3.1.1 in [16]) we have

dM Fy(yy) W)l u1 (V) !
P8 e 8 Gt ) )

(V)= U(l)ju1(N) a_(a)ul(N) ".(e )Juz(N).
We put vy (N) =degx(Pn), u2(N)=degy (Py). We will solve the system
dS
w“l(NH”?(N)%FN(ja) =0, 0<s<N-1,j=0,..,[log(N)]

where the undeterminates are the coefficients b; ,, ;v of Pny. We then write the
system under the form

w1 (N) uz(N) min(s,l)

s! i o o
; mZ::Obz,m,N ;} (U'(s—a) )((Z—U) )m gt
(2) (’U)Oé)lig(wea)jm.wul(N)*(l*U)*Fuz(N)*jm - 0.

That represents a system of N([log(N)] equations of at least N ([log(N)])? un-
determinates, with coefficients in E, integral over Z.

According to formal computations of Hermite-Lindemann’s Theorem in
the complex context (Theorem 3.1.1 in [16]), it appears that in the system
! I ,
(2), each factor ( '(ss— o ) <(l sy ), ms=7, §70 (wa)=o, (we®)I™,
w (V) =(=o)+uz(N)=jm 3dqmits a bounding of the form SN (log(log(N)) when
N goes to +0o. On one hand w*t (M) +u2(V) i5 5 common denominator and we
have

log(w" M Fu2(N)y < Jog(w)(

N 3
el (log(N)?)
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and hence we have a constant 7" > 0 such that

(3) log(w® (M) Fu2(N)y < M .

Next we notice that

(4) log (U!(I:EJ(V%) < ur (V) log(ur (N))

and similarly,

I

(5) log (m) <ui(N)log(ui(N)) < N
and
(6) log(mul(N)_”) < IOZZV) log(log(N)).

Now, we check that

U —0 (|=|\u® —0 (|Zal\Ju N -
log (] 1= (Ja]) (M=o ([en])] 2(N)> < N+m10g(|a|)+

log(N)(log(N))*log(le7])
and hence there exists a constant L > 0 such that

(7) log ()7 ()= M)~ (Jes) =) < LN,

Therefore by (2), (3), (4), (5), (6) and (7) we have a constant C' > 0 such
that each coefficient a of the system satisfies

(8) s(a) < CN (log(log(N)).

By Siegel’s Lemma 2.a and by (8) there exist integers by, n, 0 <1 < wui(N), 0 <
m < uz(N) in Z such that

(9)
gN log(N)
log(|b < CN log(log(N
Lo (V) s () 08 (lbr.m.nloo) = N(log(N))? —quog(N)( og(log(N))
and such that the function
u1(N) uz(N)
(10) FN(Q':) — Z Z bl’m;leemz

=0 m=0

satisfies
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S

Fn(ja)=0,0<s<N-1, j=0,1,..., [log(N)].

dz®
Now, by (9), we can check that there exists a constant G > 0 such that
GN log(log(N))
11 max log(|bm.N|oo) < —————————==.
(11) 1<ui(N), mSug(N)< &([btm. Nloo) log(N)

The function F defined in (10) belongs to A(D;) and is not identically zero,
hence at least one of the numbers %FN(O) is not null. Let M be the biggest of

(ja) =0Vs=0,...M—1, j=0,1,2,..., [log(N)].

Thus we have M > N and there exists jo € {0,1,...,[log(N)]} such that
M M

d d
e ——r F'v(Joa) # 0. We put yn = T ——7 v (Jov).

Let us now give an upper bound of s(vyx). On one hand wit (N Fu2(N) g 5
common denominator and by (2) we have a constant T' > 0 such that

™
ur(N)Fua(N)y o« =77
log(w" )= log M~
On the other hand, by (1) we have
w1 (N) us(N) w1 (N)
dMFn(yn) N I!
™! ; mzobl“ Z (o' >')(<u1<N>—o>!)'

m

Now, by (2), (3), (6), (7), (8), (10) and taking into account that the number of
terms is bounded by N(log N)?, we can check that there exists a constant B
such that

(12) s(yn) < BN.

uy (N)— 0']u1(N) (a)ul(N) .(6 )JUZ(N)'

Let us now give an upper bound of |yy|. For convenience, we first suppose
M

dx—MFN(O) # 0. Set h = |a|. Then by Theorem B.9.1

En|(h
of [7] we have |yy| < | NILE )
M log(M)] zeros in d(0, h) and therefore by Corollary B.13.30 of [7] we have

h \ M [log(M)]
i) < (%)

hM(log(Mfl)

(RI)M log M

log(|yn|) < M(log(M) — 1)(log(h)) — M log(M)(log(R1))).

that jo = 0, hence

. Moreover, we notice that Fy admits at least

because |Fn|(r) <1 Vr < Ry. Consequently, |yn| <

and hence
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Let A =log(h) —log(R1). Then A < 0. And we have log(|yn|) < AM log(M) —
M log(h), therefore there exists a constant A > 0 such that

(13) log(|yn|) < —AM log(M).

Let us now stop assuming that jo = 0. Putting z = 2 — ja and g(2) = f(z),
since all points ja belong to d(0,h), it is immediate to go back to the case
jo = 0, which confirms (13) in the general case. But now, by Lemma A.8.10 in
[7], relations (12) and (13) make a contradiction to the relation —2¢gs(yy) <
log(|vn|) satisfied by algebraic numbers and show that 7y is transcendental.
But then, so is e®.

Example: Let Q(z) € Z[z]. Then e?@(®) is transcendental. Moreover, if Q is
monic, and if « is a zero of @, then |pa| < % because () is monic and obviously
pa is algebraic, hence eP® is transcendental.

In the field of characteristic 0, K such as Levi-Civita’s field [15], we have a
similar version:

Theorem 2.2: Let a € K be algebraic, such that |a] < 1. Then e® is tran-
scendental over Q.

Proof. Everything works in I as in a field of residue characteristic p # 0 up
to Relation (8) in the proof of Theorem 2.1. Here we can replace Ry by 1 and
therefore the conclusion is the same as in Theorem 2.1.

Similarly as Hermite-Lindermann’s Theorem, Gelfond-Schneider’s Theorem
is well known in the field C and has an analogue in an ultrametric field.

In the proof of Theorem 2.4 we will need the following theorem:

Theorem 2.3:  Letby,...,b, € Dy (resp. in Dy). the functions z, ehrw . ebn®
are algebraically independant over K (resp. over K) if and only if by, ..., b, are
Q-linearly independant.

Theorem 2.4 (Gel’fond-Schneider): K is supposed to have residue char-

acteristic p # 0. Let £ € Dy, £ # 0, and let b ¢ Q belong to K be such that

bl € Dy. Then at least one of the three numbers a = e, b, e is transcendental.

Proof. A large part of the proof does not involve the topology of the feld K
and hence is similar to the proof in the field C [16] where we can copy many
technical relations. We suppose that a = e, b and e’ are algebraic over Q.
Let L = Q[e’, b, €] and let § = [L : Q] and let d be a common denominator

of b, ef, .
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Put S = max(1,b]), T €]S, — [, 0 = log(g), T =logT, A =d(0,5) and

A = d(0,T). We will consider integers N of the form ¢?, with ¢ € N and we
will first show that there exists a non-identically zero polynomial Py(X,Y") €
Z]X,Y] such that degy(Py) < N2, and degy (Py) < 26Nz such that the
function Fy(z) defined in A by Fy(x) = Py(z,e®) satisfy

Ry
"1

Fy(i+7b)=0Vi=1,..,N, Vj=1,..,N.
In order to find Py, let us write it

3 1
N2—-1 26N2-1

with C, (V) € Z and consider the system of equations where the Cj, ;(N) are
the undeterminates:

3
dWOHIN2 pu(i44b) =0 (1 <i < N;1<j < N).

Thus, we obtain a system of N? equations of 26 N? undeterminates in Z, with
coefficients in L. By Lemma 2.b, these coefficients have size bounded by

3
2

N

N w

N?log(N) + N2 (85 + 2) log(d) + log(1 + [b]) + 26 log(Je?+?¢]) < log(N).

By Lemma 2.a we can find in Z a family of integers not all equal to zero,
(Chi(N), 0< N3 =1, 0 <k <25N? — 1) satisfying

IN?

3
log (H}}%CX‘Ch,k(N)‘OO) <2N IOgN(m

) — 9N%log N
such that the function Fiy defined by Fi(x) = Py(z, ) satisfies Fi (i+jb) =
0Vi=1,.,N, j=1,..,N.

Now we can check the function F is an analytic element in every disk of
the form d(0,r) such that r|¢| < R; and hence in A = d(0,T) [7]. Since the
power of x in the various terms is at most N % and since all coefficients are
integers, we can check that log(|[Fy|(T)) < 7N2. On the other hand, since the
polynomial Py is not identically zero, by Proposition 1.6 F is not identically
zero and then, by classical results [7], the function Fiy has finitely many zeros in
A. Particularly, there exists a point of the form i+ jb such that F (i+ jb) # 0.
Consequently there exists M > N such that Fy(i 4 jb) =0Vi < M, Vj < M
and there exists a point yy of the form ig 4 job such that Fyx(yy) # 0 with
M<ig<M+1, M < jo< M+ 1. Consequently the number of zeros of Fy
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in A is at least M?2. Then by Corollary B.13.30 in [7] we have log(|Fx (vn)|) <
TN3 — oM?, hence there exists A > 0 such that

(1) log(|Fx(yw)]) € —AM? VN € N.

By definition neither o nor 7 depend on N, hence neither does .

On the other hand, by Lemma 2.b we can check that S(F N(’yN)) satisfies
an inequality of the form s(Fy(yy)) < AM 2 log(M) which by (1) contradicts
the inequality —28s(Fn(yn)) <log (|Fn(vn)|) and this ends the proof.

Example: Let ¢ = pe? and let let b ¢ Q be such that |b] < 1. Then at least
one of the 3 numbers ¢, b, e is transcendental.

Theorem 2.5 (Gel’fond-Schneider in zero residue characteristic): Let
IC be an algebraically closed complete ultrametric field whose residue character-
istic is 0. Let £ € Dy, £ # 0, and let b ¢ Q belong to K and be such that bl € Dy.
Then at least one of the three numbers a = e, b, e is transcendental.
Proof. The proof is identical to the proof of Theorem 2.4 except that T' now

1
belongs to ].5, m[

3 Nevanlinna Theory in K and in an open disk

Notations: We denote by M(K) the field of meromorphic functions in K
i.e. the field of fractions of A(K). Let d(a, R™) be a disk in K. We denote
by M(d(a, R™)) the field of fractions A(d(a, R™)) and by My(d(a, R™)) the
field of fractions Ay(d(a, R™)). Finally we put M, (d(a, R™)) = M(d(a, R7))\
Mb(d(aa R_))

Given two meromorphic functions f, g € M(K) or f, g € M(d(a,R7))
(a € K, R > 0), we will denote by W(f, g) the Wronskian of f and ¢g: f'g— fg'.

Let f € M(K)\ K(x) (resp. Let f € My (d(a, R7))). A value b € K will
be called a quasi-exceptional value for f if f — b has finitely many zeros in K
(resp. in (a, R7))) and it will be called an exceptional value for f if f — b has
no zero in K (resp. in d(o, R7)).

We have the follwing result:

Theorem 3.1:  Let f € M(K) (resp.f € My(d(a,R7))). Then f amits at
most one quasi-exceptional value. Moreover, if f € A(K) (resp.f € A,(d(a, R7))
then f amits no quasi-exceptional value
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The Nevanlinna Theory was made by Rolf Nevanlinna on complex functions
[14], and widely used by many specialists of complex functions, particularly
Walter Hayman [10]. It consists of defining counting functions of zeros and
poles of a meromorphic function f and giving an upper bound for multiple
zeros and poles of various functions f — b, b € C.

A similar theory for functions in a p-adic field was constructed and correctly
proved by A. Boutabaa [5] in the field K, after some previous work by Ha
Huy Khoai [9]. See also [11]. In [6] the theory was extended to functions in
M(d(0, R7)) by taking into account Lazard’s problem [12]. A new extension
to functions out of a hole was made in [7] but we won’t describe it because
we would miss place. Here we will only give an abstract of the ultrametric
Nevanlinna Theory in order to give the new theorems on ¢ small functions.

Notations: Recall that given three functions ¢, 1, ( defined in an interval
J =la,+oo[ (resp. J =l|a, R[), with values in [0, 4occ[, we shall write ¢(r) <
P(r) + O(¢(r)) if there exists a constant b € R such that ¢(r) < ¢(r) + b((r).
We shall write ¢(r) = ¥(r) + O(((r)) if |¢(r) — ¢(r)| is bounded by a function
of the form b{(r).

Similarly, we shall write ¢(r) < 9(r) + o(¢(r)) if there exists a function

B B . h(r)
h from J =la,+oo[ (resp. from J =la, R[) to R such that TEIEOO@ =0
h(r)

(resp. lim RC] = 0) and such that ¢(r) < @(r) + h(r). And we shall write
T
(1) = (r) + o(¢{(r)) if there exists a function h from J =]a, +o0[ (resp. from
h(r)

J =la, R[) to R such that TEIJPOO }gg:g =0 (resp. Tlgr]l% 0] = 0) and such that
¢(r) = ¢(r) + h(r).

Throughout the next paragraphs, we will denote by I the interval [t, +o0]
and by J an interval of the form [¢, R[ with ¢ > 0.

We have to introduce the counting function of zeros and poles of f, counting
or not multiplicity. Here we will choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

h h
Definitions: Next, let f = 7€ M(K) (resp. f = 7€ M(d(a,R7))). The
order of a zero «a of f will be denoted by w,(f). Next, given any point a € K
resp. « € d(a, R7)), the number w,, (h)—wq (1) does not depend on the functions
h, [ chosed to make f = T Thus, we can generalize the notation by setting

wa(f) = wa(h) — wa(l). We then denote by Z(r, f) the counting function of
zeros of f in d(0,r) in the following way.
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Let (an), 1 < n < o(r) be the finite sequence of zeros of f such that
0 < |ap| < 7, of respective order s,,.
a(r)
We set Z(r, f) = max(wo(f),0) logr+z sn(logr — log |a,|) and so, Z(r, f)
n=1

is called the counting function of zeros of f in d(0,r), counting multiplicity.

In order to define the counting function of zeros of f without multiplicity,
we put Wo(f) =0 if wo(f) <0 and wo(f) =1 if wo(f) > 1.
Now, we denote by Z(r, f) the counting function of zeros of f without
multiplicity:
o(r)
Z(r, f) = wo(f) logr+Z(logr —log |a,|) and so, Z(r, f) is called the counting

n=1
function of zeros of f in d(0,r) ignoring multiplicity.

In the same way, considering the finite sequence (b,), 1 < n < 7(r) of poles
of f such that 0 < |b,| < r, with respective multiplicity order ¢,,, we put

7(r)
N(r, f) = max(—wo(f),0)logr + Ztn(logr—10g|bn|) and then N(r, f) is

n=1
called the counting function of the poles of f, counting multiplicity

Next, in order to define the counting function of poles of f without multi-
plicity, we put @o(f) = 0 if wo(f) > 0 and Wo(f) = 1 if wo(f) < —1 and we
set

7(r)
N(r, f) =wo(f) logr—l—Z(logr —log |b,,|) and then N(r, f) is called the count-

n=1
ing function of the poles of f, ignoring multiplicity

Now we can define the the Nevanlinna function T'(r, f) in I or J as

T(r, f) = max(Z(r, f), N(r, f)) and the function T'(r, f) is called characteristic
function of f or Nevanlinna function of f.

Finally, if S is a subset of K we will denote by Zg (r, f') the counting function
of zeros of f’, excluding those which are zeros of f — a for any a € S.

Remark: If we change the origin, the functions Z, N, T are not changed,
up to an additive constant.

In a p-adic field such as K, the first Main Theorem is almost immediate.

Theorem 3.2: Let f € M(K) (resp. f € M(d(0,R™))) have no zero and no
pole at 0. Then log(|f|(r)) = log(|f(0)[) + Z(r, f) = N(r, f).
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Then we can derive Theorem 3.3 (Theorem C.4.3 in [7])

Theorem 3.3: Let f, g € M(K) (resp. f, g € M(d(0,R™))). Then
Z(r, fg) < Z(r, f)+Z(r,9), N(r,fg) < N(r, f)+ N(r,g), T(r, fg) <T(r, )+
T(r,g), T(r.f+g) <T(r,f)+T(rg)+0Q1), T(r,cf) = T(r,f) Ve € K,

T(r, %) —T(r. ), T(r §> <T(r, ) + T(r.g).

Suppose now f,g € AK) (resp. f, g € A(d(0,R™))). Then Z(r, fg) =
Z(T’ f) + Z(T’ g)’ T(T’ f) = Z(Tv f))v T(Ta fg) = T(T’ f) + T(T’ g) + O(l) and
T(r, f4+g) <max(T(r, f),T(r,g)). Moreover, if THI-‘POO T(r,f)—T(r,g) = +00
then T(r, f + g) = T(r, f) when r is big enough.

Corollary 3.A: Let f € M(K) (resp. f € M(d(0,R™))). Then

Z(T,J;/) — N(r,J;) < —logr+ O(1).

Thus we have Theorem 3.4 (Theorem C.4.8 in [7])

Theorem 3.4 (First Main Fundamental Theorem): Let f, g € M(K)
(resp. let f, g € M(d(0,R™))). Then T(r,f+b) =T(r,f)+ O(1). Let h be a
Moebius function. Then T(r, f) =T(r,ho f)+O(1). Let P(X) € K[X]. Then
T(r, P(f)) = deg(P)T(r, f) + O(1) and T(r, f'P(f) = T(r, P(f)).

Suppose now f,g € AK) (resp. f, g € A(d(0,R™))). Then Z(r, fg) =
Z(T’ f) + Z(’I“7g), T(Ta f) = Z(Ta f))7 T(’I", fg) = T(rv f) + T(r, g) + 0(1) and
T(r, f4+g) <max(T(r, f),T(r,g)). Moreover, if TEI-POO T(r,f)—T(r,g) = +o0

then T'(r, f + g) = T(r, f) when r is big enough.

The following Theorem 3.5 is a good way to obtain the famous Second Main
Theorem (Theorem C.4.24 in [7]).

Theorem 3.5:  Let f € M(K) and let aq, ..., ay € K be distinct. Then

q

(¢g—1DT(r, f) < max ( Z Z(r, f — aj)) +0(1).

1<k<q \ . “—
J=1j#k

Theorem 3.6 (Second Main Theorem, Theorem C.4.24 in [7]): Let
1,00 € K, with ¢ > 2, let S = {oa,...,aq} and let f € M(K) (resp.
feMy(d(0,R7))). Then
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(¢g—1)T(r, f) §Z7rf—a] )+ N(r, f) = Z5(r, f') —logr + O(1) Vrel

(resp. ¥r € J).

Now we can easily deduce the following corollaries:

Corollary 3.B: Let ay,a2 € K (a1 # az) and let f, g € A(K) satisfy
“({ai}) =97 ({ai}) (i=1, 2). Then f =g.

Remark: Corollary 3.B does not hold in complex analysis. Indeed, let f(z) =
e*, g(z) =e*,let ag = 1, ag = —1. Then f~'({a;}) = g7 '({a;}) (i = 1, 2),
though f # g.

Corollary 3.C: Let a1, as, a3 € K (a; # a; Vi # j) and let f, g €

Au(d(a, R7)) (resp.f, g € Au(D) ) satisfy f~'({ai}) = g7 ({ai}) (i =1, 2, 3).
Then f = g.

Corollary 3.D: Letay, as, a3, as € K (a; # a; Vi # j) and let f, g € M(K)
satisfy f~1({a;}) = g7 '({as}) (i=1, 2, 3, 4). Then f =g.

Corollary 3.E: Let a1, as, a3, as, as € K (a; #a; Vi # j) and let f, g €

My(d(a,R7))) (resp. [, g € Mu(D) satisfy f~'({a;}) = g7 ({ai}) (i =
1, 2, 3, 4, 5). Then f =g.

2

x
3z —1 9(x) = x2+2x—1
%. Then we can check that f~'({a;}) = g7 *({a;}), i =1, 2, 3. So, Corollary
3.D is sharp.

Remark: Let f(z) = .Letag=0, a1 =1, as =

4 Exceptional values of meromorphic functions and derivatives

The paragraph is aimed at studying various properties of derivatives of
meromorphic functions, particularly their sets of zeros [2], [3], [4]. Many im-
portant results are due to Jean-Paul Bézivin [1], [2].

We will first notice a general property concerning quasi-exceptional values
of meromorphic functions and derivatives.
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Theorem 4.1: Let f € M(K) \ K(z) (resp. Let f € My(d(a, R7))). If f
admits a quasi-exceptional value, then f’ has no quasi-exceptional value dif-
ferent from 0. Proof. Without loss of generality, we may assume a = 0
and that f has no zero and no pole at 0. Let b € K and suppose that b is a
quasi-exceptional value of f. There exist P € K[z] and | € A(K) \ K[z] (resp.

and | € A,(d(0,R7))) without common zeros, such that f = b+ T

P'l — Pl' — cI?

Let ¢ € K*. Remark that f' —c= l—2€ Let a € K (resp. let
a €d(0,R7)). If a is a pole of f, it is a pole of f’ — ¢ and we can check that
(1) wa(P'l— Pl —cl?) = wo (') = wa(l) — 1
because a is not a zero of P.

Now suppose that a is not a pole of f. Then
(2) wa(f —c¢)=wa(P'l— Pl —cl?)

Consequently, Z(r, f' —¢) = Z(r, (P'l — Pl' — cl?) | I(z) # 0). But, by (1)
we have
(3) Z(r,(P'l— Pl —cl?) | l(x) =0) < Z(r,1).
and therefore by (2) and (3) we obtain
(4) Z(r,f'—c) = Z(r,(P'l-PU'=cl?) | l(z) # 0) > Z(r, P'l—Pl'—cl*) - Z(r,])

Now, let us examine Z(r, P'l — Pl' — cl?). Let r €]0,4o0[ (resp. let r €
10, R[). Since | € A(K) is transcendental (resp. since | € A, (d(0, R™))), we can
check that when r is big enough, we have |Pl'|(r) < |c|(|l|(7“))2 and |Pl|(r) <
|c|(\l|(r))2, hence clearly |P'l — Pl'|(r) < |c\(|l|(r))2 and hence |P'l — Pl —
cl?|(r) = |c|(\l|(7“))2 Consequently, when r is big enough, by Theorem C.4.2
in [7] we have Z(r, P'l — Pl' — cl?) = Z(r,1?) + O(1). But Z(r,1?) = 2Z(r,1),
hence Z(r, P'l — Pl' — cl?) = 2Z(r,1) + O(1) and therefore by (4) we check that
when 7 is big enough, we obtain
(5) Z(r,f’—c)>Z(r,l).

Now, if I € A(K), since [ is transcendental, by (5), for every ¢ € N, we have
Z(r, f' —¢) > Z(r,l) > qlogr, when r is big enough, hence f’ — ¢ has infinitely
many zeros in K. And similarly if | € A, (d(0, R™)), then by (5), Z(r, f' — ¢)
is unbounded when r tends to R, hence f’ — ¢ has infinitely many zeros in
d(0, R™).

We will now notice a property of differential equations of the form y(™) —
1y = 0 that is almost classical.

The problem of a constant Wronskian is involved in several questions.
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Theorem 4.2: Let h, | € A(K) (resp. h, | € A(d(a, R7))) and satisfy
h
Kl —hl' =ceK, with h non-affine. If h, 1 belong to A(K), then ¢ =0 and 7
is a constant. If c# 0 and if h, | € A(d(a, R™)), there exists ¢ € A(d(a, R7))
such that h' = ¢h, 1" = ¢l. Proof. Suppose ¢ # 0. If h(a) = 0, then
l(a) # 0. Next, h and [ satisfy
h// l//
1) — =,
1) =7
Remark first that since & is not affine, h” is not identically zero. Next, every
zero of h or [ of order > 2 is a trivial zero of I/l — hl’, which contradicts ¢ # 0.
So we can assume that all zeros of i and [ are of order 1.

Now suppose that a zero a of h is not a zero of h”. Since a is a zero of h
1 1

of order 1, W has a pole of order 1 at a and so does —, hence I(a) = 0, a

contradiction. Consequently, each zero of h is a zero of order 1 of h and is a
"

zero of h” and hence, " is an element ¢ of M(K) (resp. of M(d(a,R7))))

that has no pole in K (resp. in d(a, R™)). Therefore ¢ lies in A(K) (resp. in
Ald(a, R7))).
The same holds for [ and so, I” is of the form ! with ¢ € A(K) (resp. in

1 "

A(d(a, R7))). But since % = we have ¢ = 1.

Now, suppose h, [ belong to A(K). Since h” is of the form ¢h with ¢ €
A(K), we have |h"”|(r) = |¢|(r)|h|(r). But by Theorem C.2.10 in [7], we know

that |h”|(r) < 74—2|h\(r)7 a contradiction when r tends to +o0o. Consequently,
h
¢ = 0. But then 'l — hl’ = 0 implies that the derivative of 7 is identically

h .
zero, hence 7 1s constant.

Corollary 4.A : Let h, | € A(K) with coefficients in Q, also be entire func-
tions in C, with h non-affine. If h'l — hl’ is a constant ¢, then ¢ = 0.

Theorem 4.3: Let v € M(K) (resp. let v € M (d(a, R7))) and let (€) be
the differential equations y"” — 1y = 0. Let E be the sub-vector space of A(K)
(resp. of A(d(a, R7))) of the solutions of (£). Then, the dimension of E is 0
or 1. Proof. Suppose E is not {0}. Let h, [ € E be non-identically zero.
Then h”l — hl” = 0 and therefore h'l — hi’ is a constant c. On the other hand,
since h, [ are not identically zero, neither are h”, I”. Therefore, h, [ are not
affine functions.

Suppose 3 belongs to M(K) and that h, [ belong to A(K). By Theorem

4..2, we have ¢ = 0 and hence 7 is a constant, which proves that F is of
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dimension 1.

Suppose now that ¢ lies in M,,(d(a, R™)) and that h, [ belong to A(d(c, R7)).
If 4 lies in A(d(a, R7)), then by Theorem 4.1, E = {0}. Finally, suppose that
¥ lies in My, (d(a, R7)) \ A(d(et, R7)). If ¢ # 0, by Theorem 4.2, there exists
¢ € A(d(a, R7)) such that h” = ¢h, I"” = ¢l. Consequently, ¢ = 1, hence

h
€ and therefore ¢ = 0. Hence — = 0 again and hence — is a
P e AK d theref 0. H Kl—hl' =0 i d h i i

constant. Thus, we see that F is at most of dimension 1.

Remark: The hypothesis ¢ unbounded in d(c, R™) is indispensable to show
that the space F is of dimension 0 or 1, as shows the example given again by
the p-adic hyperbolic functions h(z) = cosh(x) and I(x) = sinh(z). The radius

of convergence of both h, [ is p»~1 when K has residue characteristic p and is
1 when K has residue characteristic 0. Of course, both functions are solutions
of 4" — y = 0 but they are bounded.

The following Theorem 4.4 is an improvement of Theorem 4.2. It follows
previous results [1].

Theorem 4.4 [2]:  Let f, g € A(K) be such that W(f,g) is a non-identically
zero polynomial. Then both f, g are polynomials. Proof. First, by Theorem
4.2 we check that the claim is satisfied when W (f, g) is a polynomial of degree
0. Now, suppose the claim holds when W (f,g) is a polynomial of certain
degree n. We will show it for n + 1. Let f, g € A(K) be such that W(f,g) is a
non-identically zero polynomial P of degree n + 1

Thus, by hypothesis, we have f'g— fg’ = P, hence f"g— fg” = P’. We can

extract ¢’ and get ¢’ = L;P). Now consider the function Q = f"¢" — f'g”

and replace ¢’ by what we just found: we can get Q = f’(%) — %
Now, we can replace f”g — fg” by P’ and obtain Q = w. Thus,
[fI(R)|P|(R)

in that expression of @, we can write |Q|(R) , hence |Q|(R) <

- RSfI(R)
‘PA{# VR > 0. But by definition, @ belongs to A(K). Consequently, @ is a
polynomial of degree t < n — 1.

Now, suppose @ is not identically zero. Since @ = W(f’,¢') and since
deg(@) < n, by the induction hypothesis f’ and ¢’ are polynomials and so are
f»g. Finally, suppose Q = 0. Then P’f' — Pf” = 0 and therefore f’, P are two
solutions of the differential eguation of order 1 for meromorphic functions in
K: (&) y = ¢y with ¢ = %, whereas y belongs to A(K). By Theorem 4.3,
the space of solutions of (£) is of dimension 0 or 1. Consequently, there exists
A € K such that f/ = AP, hence f is a polynomial. The same holds for g.
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Here we can find again the following result that is known and may be proved
without ultrametric properties:

Let F be an algebraically closed field and let P, Q € F[x] be such that
PQ' — P'Q is a constant ¢, with deg(P) > 2. Then ¢ = 0.

Notation: Let f € A(K). We can factorize f in the form Ff where the zeros
of f are the distinct zeros of f each with order 1. Moreover, if f(0) # 0 we will
take f(0) = 1.

U
Lemma 4.a: Let U,V € A(K) have no common zero and let f = —.

If ' has finitely many zeros, there exists a polynomial P € Kx] such that
U'V —UV' = PV Proof. IfVisa constant, the statement is obvious. So,
we assume that V is not a constant. Now V' divides V' and hence V' factorizes
in the way V! = VY with Y € A(K). Then no zero of ¥ can be a zero of V.
Consequently, we have

UV -uv' UV -UY
V2 VZ"; .

f'(=)

The two functions U’V — UY and 72X~/ have no common zero since neither
have U and V. So, the zeros of f’ are those of U’V — UY which therefore has
finitely many zeros and consequently is a polynomial.

Theorem 4.5:  Let f € M(K) have finitely many multiple poles, such that
for certain b € K, f' — b has finitely many zeros. Then f belongs to K(z).

Proof. Suppose first b = 0. Let us write f = % with U, V' € A(K), having no

common zeros. By Lemma 4.a, there exists a polynomial P € K|[z] such that
U'V—-UV' = PV. Since f has finitely many multiple poles, Visa polynomial,
hence so is U’V — UV’. But then by Theorem 4.4, both U, V are polynomials,
which ends the proof when b = 0. Consider now the general case. [’ — b is
the derivative of f — bz that satisfies the same hypothesis, so the conclusion is
immediate.

Notation: For each n € N*, we set \, = max{llﬂ, 1 < k < n}. Given

n!
positive integers n, ¢, we denote by CZ the combination ﬁ Let us
q'(n —q)!
recall that log is the Neperian logarithm, we denote by e the number such that
log(e) = 1 and Exp is the real exponential function.
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Remark: For every n € N*,| we have )\, < n because k|k| > 1 Vk € N. The
equality holds for all n of the form p”.

Lemmas 4.b and 4.c are due to Jean-Paul Bézivin [1]:

Lemma 4.b: Let U, V € A(d(0,R™)). Then for all v €]0, R] and n > 1 we

have UV UV
U™y —uv®™i(r) < |n!|/\n|;n—71|(r).
More generally, given j, | € N, we have
|[U'V —UV'|(r)

N Derti ‘
UDYVO — gOVD| () < |(G)AY|Nj o )

Lemma 4.c: Let U,V € A(K) and let v, R €]0,400][ satisfy r < R. For all
x,y € K with |x| < R and |y| < r, we have the inequality:

RU'V —UV'|(R)
e(log R —logr)

Uz +y)V(z) = U@)V(z +y)| <

Notation: Let f € M(d(0,R™)). For each r €]0, R[, we denote by ((r, f)
the number of zeros of f in d(0,r), taking multiplicity into account and set
&(ry f) = ¢(r, %) Similarly, we denote by B(r, f) the number of multiple zeros

of f in d(0,7), each counted with its multiplicity and we set v(r, f) = 5(r, %)

Theorem 4.6 [2] Let f € M(K) be such that for some c,q €]0,+o0[, v(r, f)
satisfies y(r, f) < cr? in [1,4o0[. If f' has finitely many zeros, then f € K(x)

U
Proof. Suppose f’ has finitely many zeros and set f = v If V is a constant,
the statement is immediate. So, we suppose V is not a constant and hence it
admits at least one zero a. By Lemma 4.a, there exists a polynomial P € K[z]
such that U'V—-UV’ = PV. Next, we take r, R € [1, +o00[ such that |a| <7 < R
and z € d(0, R), y € d(0,7). By Lemma 4.c we have

RIU'V —UV'|(R)

U@ +y)V(@) - U@V + ol < = a0 e

Notice that U(a) # 0 because U and V have no common zero. Now set | =

1
max(1,|a|) and take r > [. Setting ¢; = ————, we have
e|lU(a)
R|P|(R)|V|(R
Vo )| < o PRIV

log R —logr
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Then taking the supremum of |V (a + y)| inside the disk d(0,r), we can derive

R|P|(R)|V|(R)

1 < .
(1) Vitr) < e log R —logr

1
Let us apply Corollary B.13.30 in [7], by taking R = r+ ot after noticing that
~ r
the number of zeros of V(R) is bounded by S(R, V). So, we have

2 7R < (14 =) 7

ra+1
Now, due to the hypothesis: 8(r,V) =~(r, f) < ¢r? in [1, +00[, we have

1 \B((r+77),V) 1\ [letr+3)™
(1+ ) < (1+ )

(3)
E L 91og(1
xpe(r + =) log(1 + —=7)|.
The function h(r) = c(r + =)™ log(1 + 1) is continuous on 0, +oc[ and
. c s
equivalent to — when r tends to +00. Consequently, it is bounded on [I, +oo.

r
Therefore, by (2) and (3) there exists a constant M > 0 such that, for all
r € [I,+oo[ by (3) we obtain

(4) 71+ ) < MIT|(r)

1 1
On the other hand, log (r + —) —logr =log (1 + —) clearly satisfies an
rd ratl

1
inequality of the form log (1 + MT) > T(fil in [I, oo with ¢3 > 0. Moreover,

1 1
we can find positive constants ¢z, ¢4 such that (r + —q)|P| (r + —q) < cgr®.
T r

Consequently, by (1) and (4) we can find positive constants ¢z, c¢g such that
[V|(r) < esre|V|(r) Vr € [I,+oo[. Thus, writing again V = VV, we have
[V|()|V|(r) < 57|V |(r) and hence [V|(r) < ¢5r° Vr € [I,+00[. Consequently,
by Corollary B.13.31 in [7], V is a polynomial of degree < ¢ and hence it has
finitely many zeros and so does V. But then, by Theorem 4.5, f must be a
rational function.

Corollary 4.B: Let f be a meromorphic function on K such that, for some
¢, q €]0,4o00[, y(r, f) satisfies y(r, f) < cr? in [1,+o0]. If for someb e K f'—b
has finitely many zeros, then f is a rational function. Proof. Suppose f' —b
has finitely many zeros. Then f — bx satisfies the same hypothesis as f, hence
it is a rational function and so is f.
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Corollary 4.C:  Let f € M(K)\K(x) be such that £(r, f) < er? in [1,+o0[ for
some ¢, q €]0,+00[. Then for each k € N*, f*) has no quasi-exceptional value.
Proof. Indeed, if £ = 1, the statement just comes from Corollary 4.B Now
suppose k > 2. Each pole a of order n of f is a pole of order n + k of f*) and
% has no other pole. Consequently, we have y(r, f*~1) = £(r, f*=D) < kerd.
So, we can apply Corollary 4.B to f*~1) to show the claim.

Theorem 4.6 suggests us the following conjecture:

Conjecture: Let f € M(K) be such that ' admits finitely many zeros. Then
feK(z).

In other words, the conjecture suggests that the derivative of a meromorphic
function in K has no quasi-exceptional value, except if it is a rational function.

Remark: Of course, there exist meromorphic functions in K having no zero
but not satisfying the hypotheses of Theorem 4.6, hence such a function cannot
have primitives. For example, consider an entire function f having an infinity
of zeros (an)nen of order 2 such that |a,| < |ant1] , ngr-‘,r-loo la,,| = +o0 and

1
2n < |ap|. Then the meromorphic function g = — has no zeros but does not

satisfy the hypotheses of Theorem 4.6 hence it has no primitives.

5 Small functions

Small functions with respect to a meromorphic function are well known in
the general theory of complex functions. Particularly, one knows the Nevan-
linna theorem on 3 small functions. Here we will recall the construction of a
similar theory.

Definitions and notation: Throughout the chapter we set a € K and R €
10, 4+o00[. For each f € M(K) (resp. f € M(d(a,R™)) we denote by M ¢(K),
(resp. My(d(a,R™))) the set of functions h € M(K), (resp. h € M(d(a,R7)))
such that T'(r,h) = o(T(r, f)) when r tends to +oo (resp. when r tends to R).
Similarly, if f € A(K) (resp. f € A(d(a, R™))) we shall denote by A;(K) (resp.
Ag(d(a,R7))) the set M;(K) N A(K), (resp. Ms(d(a,R7)) N A(d(a, R7))).
The elements of M;(K) (resp. Ms(d(a,R7))) are called small meromor-
phic functions with respect to f, (small functions in brief). Similarly, if
f € AK) (resp. f € A(d(a, R7))) the elements of A (K) (resp. As(d(a, R7)))
are called small analytic functions with respect to f, (small functions in brief).



50 A. Escassut

Theorems 5.1 and Theorem 5.2 are immediate consequences of Theorems
C.9.1 and C.9.2 in [7]:

Theorem 5.1: Let a € K and r > 0. Then Af(K) is a K-subalgebra of
A(K), Af(d(a,R7)) is a K-subalgebra of A(d(a,R™)) M(K) is a subfield
field of M(K), My(d(a,R™)) is a subfield of field of M(a,R™)). Moreover,
Ap(d(a, R™) is a sub-algebra of Ar(d(a, R™) and My(d(a, R™) is a subfield of
Miy(d(a,R7).

Theorem 5.2 :  Let f € M(K), (resp.f € M(d(0,R7))) and let g €
M;(K), (resp.g € Ms(d(0,R7))). Then T(r, fg) = T(r,f) + o(T(r,f)) and
T(Té) = T(r,f) + o(T(r, f)), (resp. T(r,fg) = T(r,f) + o(T(r,[)) and
T =10 1)+ o7 1))

Theorem 5.3 is known as Second Main Theorem on Three Small Functions
in p-adic analysis [7] and [10]. It holds as well as in complex analysis, where it
was showed first and it is proven in the same way.

Theorem 5.3:  Let f € M(K) (resp. f € M,(d(0,R™))) and let wy, we, w3 €
M¢(K) (resp. wi, w2, w3 € Ms(d(0,R7))) be pairwaise distinct. Then T'(r, f)

Y51 Z(r, f —wy) +o(T(r, [)), resp T(r, f) < 374 Z(r, f —w;) +o(T(r, f)),
Tesp. TR(Tv f) < Z?:l ZR(T’ f - wj) + O(T(T’ f))

IN

Theorem 5.4: Let f € M(K) (resp. f € My(d(0,R7))) and let wy, ws €
My(K) (resp. wi,wy € Myg(d(0,R7))) be distinct. Then T(r, f) < Z(r, f —
w1)+Z(r, f—w2) +N(r, f)+o(T(r, f)), (resp. T(r, f) < Z(r, f—w1)+Z(r, f -

wz) + N(r, f) + o(T(r, f))).
Proof. Suppose first f € M(K) or f € M,(d(0,R7)). Let g =
j=1, 2, hg =0. Clearly,

—l
g
<

T(r,g) =T(r, f)+0Q), T(r,h) =T(r,w;), j=1,2,

so we can apply Theorem 5.3 to g, hi, ha, hs. Thus we have: T(r,g) <
Z(r,g — 1) + Z(r,g — ha) + Z(r, g) + o(T(r, 9)).

But we notice that Z(r,g — h;) = Z(r, f —w;) for j = 1,2 and Z(r,g) =

N(r, f). Moreover, we know that o(T(r,9)) = o(T(r, )) onsequently, the
claim is proved when wjws is not identically zero.

Now, suppose that w; = 0. Let A € K*, let [ = f+ X and 7; = u; +
A, (=1, 2, 3). Thus, we have T(r,l) =T(r, f) + O(1), T(r,7;) = T(r,w;) +
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O(1), (j =1, 2), N(r,1) = N(r,f). By the claim already proven whenever
wiwe # 0 we may write T(r, 1) < Z(r,l—71)+ Z(r,l —72) + N(r,1) + o(T(r,1)))
hence

T(r,f) < Z(r,f —w1) + Z(r, f —w2) + N(r,1) + o(T(r, f))).
Next, by setting g = f — w; and w = w; + wy, we can write Corollary 5.A:

Corollary 5.A: Let g € M(K) (resp. g € My(d(0,R7))) and let w €

My(K). Then T(r,g) < Z(r,g) + Z(r,g — w) + N(r, g) o(T(r,g)), (resp.
T(’l‘7g) S Z(T’g) + Z(rvg - w) +N( g ) +0(T(T’g)))'

Corollary 5.B: Let f € A(K) (resp. f € Au(d(0,R7))) and let wy, wy €
A (K) (resp. wi,wy € Ap(d(0,R7))) be distinct. Then T(r,f) < Z(r,f —
wy) + Z(r, f —wa) +o(T(r, f)) (r — +00), resp.(r — R™).

And similarly to Corollary 5.A, we can get Corollary 5.C:

Corollary 5.C: Let f € A(K) (resp. f € Au(d(0,R7)), resp. f € A%(D) )
and let w € Ay(K)). Then T(r,f) < Z(r, f)+ Z(r, f —w) +o(T(r, f)), (resp.
T(r,f) < Z(r f) + Z(r, f —w) + o(T(r, )))-

We are now able to state a theorem on ¢ small functions that is not as good
as Yamanoi’s Theorem [17] in complex analysis, but seems the best possible in
ultrametric analysis;

Theorem 5.5 [8] (A. Escassut, C.C. Yang): Let f € M(K)be transcen-
dental (resp. f € My (d(0,R7))) and let wj € M¢(K) (j =1,...,q)

(resp. w;j € My(d(a,R™)) ) be g distinct small functions other than the con-
stant co. Then

qT(r, f) <3) Z(r,f —w;) +o(T(r, f)),

-

<
I
—

(resp.

qT(Tmf) <3 7(r’f_wj)+0(T(T’f)))v

-

1

J

Moreover, if f has finitely many poles in K (resp. in d(0,R™)), then

qT(r, f) <2) Z(r.f —w;)+o(T(r, f)),

-

<
Il
—_
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(resp.

) <2 Z rof —wj) +o(T(r. f)).),

Proof. By Theorem 5.3, for every triplet (7,j, k) such that 1 <i < j <
k < q, we can write

T(’I“, f) < Z(T’ f - wl) + Z(T? f - wj) +7(T7 f - U)k) + O(T(Tv f))

The number of such inequalities is C’;;’. Summing up, we obtain

CT(r, f) < > Z(r, f=wi)+Z(r, f=w;)+Z(r, f=wi)+o(T(r, [)).

(i,5,k), 1<i<j<k<q

In this sum, for each index 4, the number of terms Z(r, f — w;) is clearly
C?_,. Consequently, by (1) we obtain

cqT Z r, [ —w;) +o(T(r, f))
and hence

ST ) < Z7rf w;) +o(T(r, f)).

Suppose now that f has finitely many poles. By Theorem 5.4, for every
pair (7,7) such that 1 <i < j < g, we have

T(r,f) < Z(r, f —wi) + Z(r, f = w;) + o(T(r, f)).

The number of such inequalities is then C’g. Summing up we now obtain

2) T f)< Y Z(rf—w)+Z(r,f—w)+o(T(r, f))

(1,4, 1<i<j<q

In this sum, for each index 4, the number of terms Z(r, f — w;) is clearly
0371 = g — 1. Consequently, by (1) we obtain

q
C2T(r, f) < (q—1) ) Z(r, f —wi) +o(T(r, f))
=1

and hence

)< D20 f )+ olT ()



A survey on a few recent papers in p-adic value distribution 53

Definition: Let f, g € M(K) (resp. f, g € My(d(a,R7))). Then f and g
will be to share a small function, .M. w € M(K) (resp. w € M(d(a,R7))) if
f(z) = w(z) implies g(z) = w(z) and if g(x) = w(x) implies f(z) = w(x).

Theorem 5.6:  Let f, g € M(K)be transcendental (resp. f, g € My (d(a, R7)))
be distinct and share ¢ distinct small functions LM. w; € M (K)NM4(K) (5 =
1,...,q) (resp. wj € Mys(d(a,R™)) N Mgy(d(a,R™)) (j = 1,....,q)) other than
the constant co. Then

27 rf —w;) < Z(r, f = g) +o(T(r, f)) + o(T(r,g)).

Proof. Suppose that f and g belong to M(K), are distinct and share ¢
distinct small functions LM. w; € M;(K) N My (K) (j =1, ..., q).

Lat b be a zero of f — w; for a certain index 7. Then it is also a zero of
q

g — w;. Suppose that b is counted several times in the sum ZZ(T, f—w;j),

which means that it is a zero of another function f — wy, forj alcertain index

h # 4. Then we have w;(b) = wp,(b) and hence b is a zero of the function w; —wy,

which belongs to M ;(K). Now, put Z(r, f — wy) = Z(r, f —w) and for each

7> 1, let Z(r, f —wj) be the counting function of zeros of f — w; in the disk

d(0,r~) ignoring multiplicity and avoiding the zeros already counted as zeros
q

of f — wy for some h < j. Consider now the sum Z Z(r, f —w;j). Since the
j=1
functions w; — w; belong to M;(K), clearly, we have

It is clear, from the assumption, that f(z)—w,(z) = 0 implies g(z)—w;(z) =
0 and hence f(z) — g(z) = 0. Since f — g is not the identically zero function,
it follows that

q
D Z(r f—w;) <Z(r,f —9).

Jj=1

Consequently,
D Z(r ] —wy) S Z(r.f = g) +o(T(r.f)) + o(T(r,9)).
j=1

Now, if f and g belong to M(d(0, R™)) the proof is exactly the same.
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Theorem 5.7 [8] (A. Escassut, C.C. Yang): Let f, g € M(K) be tran-
scendental (resp. f, g € My(d(a,R™)) ) be distinct and share 7 distinct small
functions (other than the constant co) ILM. w; € M(K)NM,(K) (j=1,...,7)
(resp. wj € My(d(a, R™))NMgy(d(a, R7)), resp. w; € My(D)NMy(D) (j =
1,..,7), ). Then f =g.

Moreover, if f and g have finitely many poles and share 3 distinct small
functions (other than the constant co) L. M. then f = g.

Proof. We put M(r) = max(T(r, f),T(r,g)). Suppose that f and g are
distinct and share g small function ILM. w;, (1 <j < ¢). By Theorem 5.5, we
have

q
T(r.f)<3 Z r, [ —wj) +o(T(r, f)).
But thanks to Theorem 5.6, we can derive

qT'(r, f) < 3T(r, f — g) + o(T(r, f))
and similarly
qT'(r,g) <3T(r, f — g) + o(T(r, g))

hence
(1) qM(r) < 3T(r, f — g) + o(M(r)).
By Theorem C.4.8 in [7], we can derive that
gM(r) < 3(T(r, f) + T(r, g)) + o(M(r)))

and hence ¢M(r) < 6M (r) + o(M(r)). That applies to the situation when f
and g belong to M(K) as well as when when f and g belong to M, (d(0, R™)).
Consequently, it is impossible if ¢ > 7 and hence the first statement of Theorem
5.7 is proved.

Suppose now that f and g have finitely many poles. By Theorems C.4.8 in
[7], Relation (1) gives us

qM (r) < 2M(r) + o(M(r))

which is obviously absurd whenever ¢ > 3 and proves that f = g when f and
g belong to M(K) as well as when f and g belong to M, (d(0, R7)).

Corollary 5.D: Let f, g € A(K) be transcendental (resp. f, g € Ay(d(a, R7)))
be distinct and share 3 distinct small functions (other than the constant co) I.M.
w; € Ar(K)NA,(K) (j =1,2,3) (resp. w; € Ap(d(a, R7))NAy(d(a, R7)), (j =
1,2,3)). Then f=g.
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