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Abstract. We explain a new idea of how to use the high probability
interval thresholds for neurons in quantum neural networks. Some basic
quantum neural networks were analyzed and constructed in a recent work
of the author. In particular the Least Square Error Problem (LSEP) and
the Linear Regression Problem (LRP) was discussed. In this paper we an-
alyze a new look on the threshold rules for neurons, taking the intervals of
high probability in place of classical sigmoid half-line threshold and then we
construct the least-square quantum neural network (LS-QNN), the poly-
nomial interpolation quantum neural network (PI-QNN), the polynomial
regression quantum neural network (PR-QNN) and chi-squared quantum
neural network (χ2-QNN). We use the corresponding solutions or statistical
tests as the threshold for the corresponding training rules.

1. Introduction

The classical machine learning (ML) [9],[5] theory was created in 1950, but
only 9 years later in 1959 Arthur Samuel gave a definition of ML being “....
computers learning without being explicitly programmed”. It should under-
stand that the unknown functions (inputs-outputs) are deduced from a set of
training data. The classical ML is characterized by the types: 1) supervised
learning, i.e. classes of inputs corresponds to different classes, (2) unsuper-
vised learning, i.e. the large data are summarized into a few stereotypes, and
(3) reinforcement learning, i.e. one rewards, reinforces the current strategy.
Normally the classical MLs are working with big data, see [7],[3],[8].
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The quantum Machine Learning (QML) are characterized by using quantum
computing into the ML theory. One uses the ordinary interpretation of qubits,
1-qubit quantum gates, such as the Pauli matrices,

1 = − Id − ∼
(

1 0
0 1

)
,

X = − X − ∼
(

0 1
1 0

)
,

Y = − Y − ∼
(

0 −i
i 0

)
,

Z = − Z − ∼
(

1 0
0 −1

)
,

then the 2-qubit gates like

XOR = − XOR − ∼


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

SWAP = − SWAP − ∼


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

and finally, Measurements

M = − M −,

etc.

One uses the quantum algorithms to solve the ML problems with use of
quantum computing. The most important ingredients in QML are: - choices
of training sets, i.e. finite sets of given vectors in order to then find some
value corresponding to another input, - pattern completion, i.e. adding missing
informations to incomplete inputs, and - associative memory, i.e. retrieving
stored memory vectors upon an input.

This paper is the second part of the paper [2], in which we continue to treat
the cases of polynomial regression with the high probability region bounds used
as the corresponding thresholds. In Section 2, we analyze the comceptions
of classical aritificial neural networks (ANN) and quantum neural networks
(QNN). We explain also how to introduce some approxiamtion of sigmoid func-
tions by normal probability distributions. This let us to use a lot of test and
confidential intervals and criteria from statistics. The next Section 3 is devoted



Statistical Quantum Neural Networks 59

to the problem of training the least square quantum neural networks (LS-QNN),
like the least square interpolation, the general polynomial regression quantum
neural network (PR-QNN) and the chi-squared test training (χ2-QNN) in the
next Section 4. We look at the problem of least square problem (LSP) so-
lution of the general polynomial regression and propose to use the quantum
Gauss-Jordan Elemination (GJE) Code to solve the LSP equation. This let us
to make the network works outperform the classical approaches. The paper is
finished with a conclusion in Section 5.

2. Quantum Neural Networks

2.1. Thresholds

Following the model of Deutsch, a quantum neural network QNN(s, d) is a
set of all quantum circuits of size s and depth d with thresholds bounded by
w. Quantum gates are interconnected by wires, preserve the sources and sink
gates (measured the qubits and removed the entanglements with the maining
qubits. Examples of QNNs are the implementation of NAND gate, dissipative
D(m, δ) and sink gates [4].

A threshold circuit is a boolean function Thn,∆ : Zn2 → Z2 of n integral
variables x1, . . . , xn such that Thn,∆(x1, . . . , xn) = 1 if and only if

∑
xi ≥ ∆.

The class TC(s(n), d(n)) of threshold circuits of size s(n) and depth d(n),
weighted by weight bound w can be approximated by elementary functions.

An equality threshold circuit is a boolean function Etnw1,...,wn
: Zn2 → Z2

of n integral variables x1, . . . , xn such that Etnw1,...,wn
(x1, . . . , xn) = 0 if and

only if
∑
xi = 0. The class EC(s(n), d(n)) of equality threshold circuits of

size s(n) and depth d(n), weighted by weight bound w can be approximated
by elementary functions.

It was proven that TC(s(n), d(n)) ⊆ EC(O(s2(n), 2d(n)) of weight bound
O(s(n)) and TC(s(n), d(n)) ⊆ EC(O(s2(n), d(n)+1) of weight boundO(s2(n)).
And finally, EC(s(n), d(n)) ⊆ QNN(O)d(n). log s(n)), 2d(n)) of precisionO(logw+
d(n) log s(n)). (Theorem 4.6 from [4]).

The question is whether a QNN can be implemented on Quantum Tur-
ing Machine (QTM) (Church-Turing Thesis) is difficult to answer: Quantum
computing showed that the answer is No, but physicists speculate that it is
Yes.
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2.2. High Probability Thresholds for Neurons

Let us remind that the standard neuron thresholds are defined by some
sigmoid function

f(x) =
1

1 + e−cx
,

for some constant c > 0. The sigmoid function has the value 1/2 at x = 0,
monotonicaly increasing behaviour, the horizontal asympltotes y = 0 for x →
−∞ and y = +1 for x → +∞ Often using this function to define a threshold
of type

Thδf (x) : Z2 → Z2, Thδf (x) =

{
1 if f(x) ≥ δ,
0 if f(x) < δ

sor some 0 ≤ δ ≤ 1.

Similarly, for functions of several variables, one uses some multivariable
x = (x1, . . . , xn) sigmoid functions, namely

f(x) =

n∏
i=1

1

1 + e−cix
,

for some constants ci > 0 which has the value 1/2 at x = 0, monotonicaly
increasing behaviour, with horizontal asympltotes y = 0 for xi → −∞ and
y = +1 for xi → +∞. Often, one uses this function to define a threshold of
type

Thn,δf (x) : Zn2 → Z2, Thn,δf (x) =

{
1 if f(x) ≥ δ,
0 if f(x) < δ

for some threshold 0 ≤ δ ≤ 1.

We therefore have the following observation.

Proposition 2.1. The one variable sigmoid function f(x) has the normal
curve (x,N (0, 1)(x)) of the standard normal distribution

N (0, 1)(x) =
1√
2π

∫ x

−∞
e−

1
2 t

2

dt

as some curved asymptote and f(0) = N (0, 1)(0) = 1
2 .

Remark that following these sigmoid functions the thresholds are defined
by the accessible intervals [δ,+∞). We can then approximate the sigmoid func-
tions by normal distribution functions. For normal distributions we have many
tests, namely z-test, t-tests, F -tests, and corresponding confidential intervals
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and criteria to define the high probability region. We use the tests and confi-
dential intervals to make thresholds in form of high probability regions in place
of the half-line intervals [δ,+∞) for sigmoid functions. The difference error
between two monotonically increasing funtions: the sigmoid functions and the
normal distribution functions are rather small. We have therefore the following
new idea, that didn’t have been introduced before.

Corollary 2.1. We can use the normal distributions in place of sigmoid func-
tions to define the thresholds of neurons by using the tests and confidential
intervals to find the high probability region.

3. Least Square QNN and Polynomial Regression QNN

First we remind that many problem, including the least squared problem
and polynomial interpolation problems are reduced to solving systems of linear
equations. In the previous work [1] we had showed that the Gauss-Jordan
elimination procedure is consisting of an application of searching the pivot
columns, which is reduced to use the Grover’s Search Algorithm and by the
way necessary arithmetic operations over rows. The following lemma [2] is
fundamental in many problems of namely the least square or the polynomial
interpolation quantum neural networks.

Lemma 3.1. The quantum Gauss-Jordan Elimination Code can be imple-
mented in QNN.

Let us consider the polynomial f(x) =
∑N
|α|=0 aαx

α of degree N on n
variables, with unkown coefficients aα, those we want to inpterpolate, and let
({xα(j)}}

N
|α|=0, yj), α = (α1, . . . , αn), |α| = α1 + · · · + αn ≤ N be the N + 1

interpolating points of the polynomial, x = (x1, . . . xn) be the unkown variables,
xα(j) = Πn

i=1xi,(j)
αi , j = 0, . . . , N . The system of interpolating equations is a

system of N + 1 equation on N + 1 unknown variables aα, |α| = 0, . . . , N :

f(x(j)) =

N∑
|α|=0

aαx
α
(j) = yj ; j = 0, . . . , N.

The determinant of the system is of the Vandermonde type and of size (N +
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1)× (N + 1)

|A| =

∣∣∣∣∣∣∣∣∣
1 x

(1,...,0)
(0) . . . x

(0,...,N)
(0)

1 x
(1,...,0)
(1) . . . x

(0,...,N)
(1)

. . . . . . . . . . . . . . . . . . .

1 x
(1,...,0)
N . . . x

(0,...,N)
N

∣∣∣∣∣∣∣∣∣ ,
then the system can be written as

A†A[aα] = A†[yj ]. (3.1)

The matrix of the system is nondegenerate if the interpolating points are
in a generic position. In that case the solution of the system is [aα]N|α=0 =

(A†A)−1A†b, where b = [yj ]
N
j=0.

In general case the matrix can not be invertible, but the system is consistent.
Based on Lemma 3.1, we can use the Gauss-Jordan elimination procedure on
quantum neural networks to find out a basis of the null-space of the augmented
matrix of the system (3.1). If the sytem satisfies the consistency conditions,
then there exists at least one solution. Let (A†A)−1

psi be the Moore-Penrose

pseudoinverse of A†A, then the solution to the interpolation problem is [aα] =
(A†A)−1

psiA
†b., where b = projcol(A†A)A

†[yj ] is the projection on the column

space of the matrix A†A.

The general interpolated solution is

f̂(x(j)) =

N∑
|α|=0

aαx
α
(j) = ŷj ; j = 0, . . . , N. (3.2)

Let us now dicuss about the implementation method on quantum neural
networks. The XOR gate is implementedf in neural network (see [7]), and
then the Fourier transform is implemented on neural networks ([2], Figs 2.3).
Recently we used those to implement the quantum Gauss-Jordan elemination
on neural networks. The algorithms are applied to our situation and we have
an implementation of our least square quantum neural neworks.

We have therefore the following result

Theorem 3.1. The Least Square Quantum Neural Network (LS-QNN) and
Polynomial Interpolation Quantum Neural Networks(PI-QNN) are implementable
on QNN, with complexity O(

√
N).

We now apply the Least Square Method to the problem of (general) regres-
sion (GRP). Let us remind that the Grover’s Searh Code can be implemented
in QNN because the basic step is to repeatedly use the XOR quantum network
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gate [2]. The method of QGJE [1], [6] is based on use of the Quantum Grover’s
Search to find the pivot columns in the matirx A†A.

We have therefore the following result

Theorem 3.2. The Polynomial Regression Quantum Neural Network (PR-
QNN) is implementable, i.e. the general regression problem GRP can be solved
by a QNN, with complexity O(

√
N).

Let us analyze how to train the GRP code in QNN. With the above interpo-
lating quantum code, we can divide the data yj into to treatments: regression
treatment Yregr = [ŷj ] and residual treatment Yresid = [yj − ŷj ], where

ŷj = fregr(x(i)) = f̂(x(j)). (3.3)

Let us denote by

F =
MSregr
MSresid

=
(r2SSY

1
(1−r2)SSresid

N−2

=
(N − 2)r2

1− r2
, (3.4)

where r is the Pearson correlation, r = Cor(X,Y ). We may fix a level α of
explained proportion of variance and define the F -ratio F(1,N−2),α. Therefore
we define the training threshold as if the F -ratio is in the high probability 1−α
region

F < F(1,N−2),α. (3.5)

�

4. Chi-Squared QNN

In the nonparametric statistics, the χ2-test plays important roles in many
problems like contingency tables, homogeneity, ....... Let use conside the cor-
responding quantum code in QNN. Denote by e = [eij ]n×r be a contingency
matrix of expected values eij . The random distribution X = [xij ] is a matrix
of size n× r. The degree of freedom is

dfX =

{
(n− 1)× (r − 1), if r > 1

(n− 1), if r = 1

. The chi-squared statistic is of form

χ2
X =

n∑
i=1

r∑
j=1

(xij − eij)2

eij
. (4.1)
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Our aim is to implement the χ2-test in a QNN and use the chi-sqaured test as
the rule of training.

Theorem 4.1. The Chi-Squared Quantum Neural Network (χ2-QNN) is im-
plementable, , i.e. the χ2-tests can be solved by a QNN, with complexity
O(
√

(n− 1)× (r − 1)).

Indeed, the high probability 1− α region is

χ2
X < χdf,α (4.2)

for a fixed α-level of confidence and
the training rule is to sink the network if the constraint is faile to be satisfied.
If the constraint holds, it passes to the next layer of QNN. �

5. Conclusion

We implemented the quantum neural networks: the least square quantum
Neural Network (LS-QNN) and the polynomial interpolation quantum neural
networks (PI-QNN), the Polynomial Regression Quantum Network (PR-QNN)
and the Chi-Squared Quantum Neural Network (χ2-QNN). The training rules
are provided with the corresponding tests from Statistics.
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