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Abstract. In this paper, we give a new class of unique range sets for
meromorphic functions ignoring multiplicity with 15 elements.

1. Introduction. Main results

In this paper, by a meromorphic function we mean a meromorphic function
on the complex plane C.

Let f be a non-constant meromorphic function on C. For every a ∈ C, we
define the function νaf : C→ N by

νaf (z) =

{
0 if f(z) 6= a

d if f(z) = a with multiplicity d,

and set ν∞f = ν01
f

, and define the function νaf : C→ N by νaf (z) = min {νaf (z), 1},
and set ν∞f = ν01

f
. For f ∈M(C) and a non-empty set S ⊂ C∪{∞}, we define

Ef (S) =
⋃
a∈S
{(z, νaf (z)) : z ∈ C}, Ef (S) =

⋃
a∈S
{(z, νaf (z)) : z ∈ C}.

Let F be a nonempty subset of M(C). Two functions f, g of F are said to
share S, counting multiplicity (share S CM) if Ef (S) = Eg(S), and to share S,
ignoring multiplicity (share S IM) if Ef (S) = Eg(S).
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If the condition Ef (S) = Eg(S) implies f = g for any two non-constant
meromorphic (entire) functions f, g, then S is called a unique range set for
meromorphic (entire) functions counting multiplicity, or in brief, URSM (URSE).
A set S ⊂ C ∪ {∞} is called a unique range set for meromorphic (entire) func-
tions ignoring multiplicity, or in brief, URSM-IM (URSE-IM), if the condition
Ef (S) = Eg(S) implies f = g for any pair of non-constant meromorphic (en-
tire) functions.

In 1976 Gross ([8]) proved that there exist three finite sets Sj (j = 1, 2, 3)
such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj), j =
1, 2, 3 must be identical. In the same paper Gross posed the following question:

Question A. Can one find two (or possible even one) finite set Sj (j =
1, 2) such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj)
(j = 1, 2) must be identical.

Yi [16]-[18], [20] first gave an affirmative answer to Question A. Since then,
many results have been obtained for this and related topics (see [1]-[13], [15]-
[21]).

Concerning to Question A, a natural question is the following.

Question B. What is the smallest cardinality for such a finite set S such
that any two meromorphic functions f and g satisfying either Ef (S) = Eg(S)
or Ef (S) = Eg(S) must be identical.

So far, the best answer to Question B for case URSM was obtained by Frank
and Reinders [5]. They proved the following result.

Theorem C. The set {z ∈ C| PFR(z) = (n−1)(n−2)
2 zn + n(n − 2)zn−1 +

(n−1)n
2 zn−2 − c = 0}, where n ≥ 11 and c 6= 0, 1, is a unique range set for

meromorphic functions counting multiplicity.

In 1997, H. X. Yi [19] first gave an answer to question B for the case URSM-
IM with 19 elements. Since then, many results have been obtained for this topic
(see [2], [3]). So far, the best answer to Question B for the case URSM-IM was
obtained by B. Chakraborty [3]. He proved the following result.

Theorem D. Let S = {z ∈ C| PFR(z) = 0}. If n ≥ 15, then S is a
URSM-IM.

In this paper, we give a new class of unique range sets for meromorphic
functions ignoring multiplicity with 15 elements. Note that this class is different
from B. Chakraborty’s in[3].

Now let us describe main results of the paper.

Let n ∈ N∗, n ≥ 3.

Consider polynomial P (z) as follows:

P (z) = zn − 2na

n− 1
zn−1 +

na2

n− 2
zn−2 + 1 = Q(z) + 1, (1.1)
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where a ∈ C a 6= 0. Suppose that

Q(1) 6= −1, (1.2)

Q(1) 6= −2. (1.3)

Note that P (z), defined by (1.1) with condition (1.2), has no multiple zeros.
Clearly, P

′
(z) = nzn−3(z−a)2, and P (z) is different from PFR. Moreover P

′
(z)

has a zero at 0 of order n− 3, and a zero at a of order 2.

The polynomials of the form (1.1) were investigated in [1] and [11].

We shall prove the following theorem.

Theorem 1. Let P (z) be defined by (1.1) with conditions (1.2) and (1.3),
and let S = {z ∈ C| P (z) = 0}. If n ≥ 15, then S is a URSM-IM.

2. Lemmas, Definitions

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, [4], [14]).

We need some lemmas.

Lemma 2.1. [14] Let f be a non-constant meromorphic function on C and let
a1, a2, ..., aq be distinct points of C ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑

i=1

N(r,
1

f − ai
) + S(r, f),

where S(r, f) = o(T (r, f)) for all r, except for a set of finite Lebesgue measure.

Lemma 2.2. [4]

For any non-constant meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).

Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N (k(r, f) the counting function of the poles of order ≥ k
of f , where each pole is counted only once, and by N1)(r, f) the counting
function of the simple poles of f .
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Lemma 2.3. Let f, g be two non-constant meromorphic functions and let
f−1(0) = g−1(0). Set

F =
1

f
, G =

1

g
, L =

F
′′

F ′ −
G

′′

G′ .

Suppose that L 6≡ 0. Then

1)[11− 13] N(r, L) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f
; ν1 > ν2 ≥ 1)+

N(r,
1

g
; ν2 > ν1 ≥ 1) +N(r,

1

f ′ ; f 6= 0) +N(r,
1

g′ ; g 6= 0).

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

2) N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1)

≤ N(r, L) +
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2) +N(r,

1

g
); ν2 ≥ 2).

Proof. 2) By using properties of the Stieltjes integral (see [4, p. 5, p. 14]),
we get:

N(r,
1

f
)− n(0,

1

f
) =

∑
0<|am|<r

ln
r

|am|
,

where am are zeros of f , counting multiplicity; and

N(r,
1

f
)− n(0,

1

f
)

is the same sum, where each zero am is counted only once.

Similarly, we obtain equalities for N(r,
1

f
; ν1 ≥ 2), N(r,

1

g
) +N(r,

1

f
; ν1 >

ν2 ≥ 1), N(r,
1

g
); ν2 ≥ 2), N(r,

1

g
; ν2 > ν1 ≥ 1).

We are going to prove 2) by using these inequalities and the arguments in
(Lemma 2.2 [12]), (Lemma 2.4 [13]) and (Lemma 2.6 [3])).

Set

M = N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
; ν1 > ν2 ≥ 1) +N(r,

1

g
; ν2 > ν1 ≥ 1),

T = N(r, L) +
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2) +N(r,

1

g
); ν2 ≥ 2).
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Let a be a zero of f with multiplicity p. From f−1(0) = g−1(0) it follows
that a is a zero of f with multiplicity q. We consider the following cases:

Case 1. Assume that p = q.

If p = q = 1, then a is counted with 1+1+0+0 = 2 times in M . From this
and the proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13]) it follows that a
is a zero of L. Then it is counted with 1 + 1

2 (1 + 1) = 2 times in T .

If p = q ≥ 2, then a is counted with 1 + 1 + 0 + 0 = 2 times on M . By the
proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13]) it follows that a is not a
pole of L. Then it is counted with 0 + 1

2 (p+ p) + p+ p = 3p times in T .

Case 2. Assume that p > q.

If p > q and q = 1, then p ≥ 2 and a is counted with 1 + 1 + 1 + 0 = 3
times in M . By the proof of Part 1) (Lemma 2.2[12]), (Lemma 2.4 [13]) it
follows that a is a pole of L, and by p ≥ 2 we see that a is counted with
1 + 1

2 (p+ 1) + p+ 0 = p+ 1 + p+1
2 > 3 times in T .

If p > q and q ≥ 2, then p ≥ 2 and a is counted with 1 + 1 + 1 + 0 = 3 times
in M . From this and the proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13])
it follows that a is a pole of L, and by p ≥ 2, q ≥ 2 we see that a is counted

with 1 + 1
2 (p+ q) + p+ q = 1 + 3(p+q)

2 > 3 times in T .

Case 3. Assume that q > p.

The proof is completed by using the arguments similar to ones in Case 2.

A polynomial R(z) is called a strong uniqueness polynomial for meromor-
phic (entire) functions if for arbitrary two non-constant meromorphic (entire)
functions f and g, and a nonzero constant c, the condition R(f) = cR(g) im-
plies f = g (see [1], [7], [11]). In this case we say that, R(z) is a SUPM (SUPE).
A polynomial R(z) is called a uniqueness polynomial for meromorphic (entire)
functions if for arbitrary two non-constant meromorphic (entire) functions f
and g, the condition R(f) = R(g) implies f = g (see[1], [7], [11]). In this
case we say R(z) is a UPM (UPE). Let R(z) be a polynomial of the degree q.
Assume that the derivative of R(z) has mutually distinct k zeros d1, d2, ..., dk
with multiplicities q1, q2, ..., qk, respectively. We often consider polynomials
satisfying the following condition introduced by Fujimoto ([6]):

R(di) 6= R(dj), 1 ≤ i < j ≤ q. (2.1)

The number k is called the derivative index of R.

Lemma 2.4. (Fujimoto [7]).

Let R(z) be a polynomial of the degree q satisfying the condition (2.1). Then
R(z) is a uniqueness polynomial if and only if

∑
1≤l<m≤k

qlqm >

k∑
i=1

ql.
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In particular, the above inequality is always satisfied whenever k ≥ 4. When
k = 3 and max{q1, q2, q3} ≥ 2 or when k = 2,min{q1, q2} ≥ 2 and q1 + q2 ≥ 5,
then also the above inequality holds.

H. Fujimoto [6] proved the following:

Lemma 2.5. Let R(z) be a polynomial of the degree q satisfying the condi-
tion (2.1), we assume furthermore that q ≥ 5 and there are two non-constant
meromorphic functions f and g such that

1

R(f)
=

c0
R(g)

+ c1

for two constants c0 (6= 0) and c1. If k ≥ 3 or if k = 2,min{q1, q2} ≥ 2, then
c1 = 0.

Lemma 2.6. [1]
∑m

i=0

(m
i

) (−1)i
n+m+1−i is not an integer, where n,m ≥ 1 are

integers.

In [1], Banerjee proved the Lemma for n,m ≥ 3, but it is clear that the
Lemma is valid for n,m ≥ 1.

Lemma 2.7. Let P (z) be dened by (1.1) with conditions (1.2) and (1.3), and
let n ≥ 6. Then P (z) is a strong uniqueness polynomial for meromorphic
functions

Proof.

By Lemma 2.6, we see that
1

n
− 2

n− 1
+

1

n− 2
is not an integer. Set

A =
1

n
− 2

n− 1
+

1

n− 2
. Then A 6= 0. We have P (0) = Q(0) + 1 = 1,

P (a) = Q(a) + 1 = nAan + 1. From this and a 6= 0, we get P (a) 6= P (0). Set
F = P (f), G = P (g). From P (f) = cP (g), c 6= 0, it implies

F = cG, T (r, f) + S(r, f) = T (r, g) + S(r, g), S(r, f) = S(r, g). (2.2)

Now we consider the following possible cases:

Case 1. c 6= 1.

If c = P (a), from (2.2) and P (0) = 1 we have

F − 1 = P (a)(G− 1

P (a)
). (2.3)

We consider P (z) − 1
P (a) . By P (0) = 1 and P (a) = c 6= 1 we obtain P (0) −

1
P (a) 6= 0. Moreover, since P (a) = nAan + 1 6= −1 and P (a) = c 6= 1 we obtain
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P (a) − 1
P (a) 6= 0. Therefore, P (z) − 1

P (a) has only simple zeros, let they be

given by b
′

i, i = 1, 2, ..., n. Note that P (z)−1 has a zero at 0 of order n−2, and

two distinct simple zeros. Let c
′

i, i = 1, 2, be distinct simple zeros of P (z)− 1.

Applying Lemma 2.1 to the function g and the values b
′

1, b
′

2, ..., b
′

n, ∞, and by
(2.2), (2.3) we get

(n− 1)T (r, g) ≤ N(r, g) +

n∑
i=1

N(r,
1

g − b′i
) + S(r, g)

≤ T (r, g) +N(r,
1

f
) +

2∑
i=1

N(r,
1

f − c′i
) + S(r, g)

≤ T (r, g) + T (r, f) + 2T (r, f) + S(r, g)

= 4T (r, g) + S(r, g)

(n− 5)T (r, g) ≤ S(r, g).

This is a contradiction to the assumption that n ≥ 6.

If c 6= P (a), then from (2.2) we have

F − c = c(G− 1). (2.4)

We consider P (z) − c. By P (0) = 1 and c 6= 1 we have P (0) − c = 1 − c 6= 0.
Moreover c 6= P (a). So P (a)− c 6= 0, P (0)− c 6= 0. Therefore P (z)− c has only
simple zeros, let they be given by ei, i = 1, 2, ..., n. Now we consider P (z)− 1.
We see that P (0) = 1, P (z)− P (0) = P (z)− 1 has a zero at 0 of order n− 2,
and 2 distinct simple zeros. Let ti, i = 1, 2, be distinct simple zeros of P (z)−1.
Applying Lemma 2.1 to the function f and the values e1, e2, ..., en, ∞, and by
(2.4) we get

(n− 1)T (r, f) ≤ N(r, f) +

n∑
i=1

N(r,
1

g − ei
) + S(r, f)

≤ T (r, f) +N(r,
1

g
) +

2∑
i=1

N(r,
1

f − ti
) + S(r, f)

≤ T (r, f) + T (r, g) + 2T (r, g) + S(r, f)

= 4T (r, f) + S(r, f)

(n− 5)T (r, f) ≤ S(r, f).

This is a contradiction to the assumption that n ≥ 6.

Case 2. c = 1. Then
P (f) = P (g) (2.5)

Applying Lemma 2.4 to (2.5) we obtain f = g.
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3. Proof of Theorem 1

Now we use the above Lemmas to prove the main result of the paper.

Recall that P (z) = (z − a1)...(z − an), P
′
(z) = nzn−3(z − a)2.

Suppose n ≥ 15 and Ef (S) = Eg(S), where S = {z ∈ C| P (z) = 0}.
Set

F =
1

P (f)
, G =

1

P (g)
, L =

F
′′

F ′ −
G

′′

G′ ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) + S(r, g).

Then T (r, P (f)) = nT (r, f) + S(r, f) and T (r, P (g)) = nT (r, g) + S(r, g), and
hence S(r, P (f)) = S(r, f) and S(r, P (g)) = S(r, g), since P (f) and f , and
P (g) and g have the same growth estimates, respectively.

We consider two following cases:

Case 1 L ≡ 0. Then, we have
1

P (f)
=

c

P (g)
+c1 for some constants c (6= 0)

and c1. By Lemma 2.5 we obtain c1 = 0.

Therefore, there is a constant C 6= 0 such that P (f) = CP (g). Then,
applying Lemma 2.7 we obtain f = g.

Case 2 L 6≡ 0.

Claim 1 We have

(n− 2)T (r) ≤ N(r,
1

P (f)
) +N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) +S(r), (3.1),

where N0(r, 1
f ′ ) (N0(r, 1

g′ )) is the counting function of those zeros of f ′,

which are not zeros of function (f − a1)...(f − an)f(f − a)((g − a1)...(g −
an)g(g − a)).

Then, applying the Lemma 2.1 to the functions f, g and the values a1, a2, ...,
an, 0, a,∞ , and noting that

q∑
i=1

N(r,
1

f − ai
) = N(r,

1

P (f)
),

q∑
i=1

N(r,
1

g − ai
) = N(r,

1

P (g)
),

we obtain

(n+1)T (r) ≤ N(r, f)+N(r, g)+N(r,
1

P (f)
)+N(r,

1

P (g)
)+N(r,

1

f
)+N(r,

1

g
)+
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N(r,
1

f − a
) +N(r,

1

g − a
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r). (3.2)

On the other hand,

N(r, f) +N(r, g) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f
) +N(r,

1

g
) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f − a
) +N(r,

1

g − a
) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r).

From this and (3.2) we obtain (3.1)

Claim 2 We have

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
n

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) 6= 0) +N(r,

1

[P (g)]′
;P (g) 6= 0) + S(r).

By Ef (S) = Eg(S) we get (P (f))−1(0) = (P (g))−1(0), and note that

N (2(r, P (f)) = N(r, f), N (2(r, P (g)) = N(r, g).

Then applying the Lemma 2.3 to the functions P (f), P (g) we obtain

N(r, L) ≤ N(r, f) +N(r, g)+

N(r,
1

P (f)
; ν1 > ν2 ≥ 1) +N(r,

1

P (g)
; ν2 > ν1 ≥ 1)+

N(r,
1

[P (f)]′
;P (f) 6= 0) +N(r,

1

[P (g)]′
;P (g) 6= 0);((3.3))

N(r,
1

P (f)
)+N(r,

1

P (g)
)+N(r,

1

P (f)
; ν1 > ν2 ≥ 1)+N(r,

1

P (g)
; ν2 > ν1 ≥ 1) ≤

N(r, L)+
1

2
(N(r,

1

P (f)
)+N(r,

1

P (g)
))+N(r,

1

P (f)
; ν1 ≥ 2)+N(r,

1

P (g)
; ν2 ≥ 2)).

(3.4)

Moreover,
N(r, f) +N(r, g) ≤ T (r) + S(r). (3.5)

Obviously,

N(r,
1

P (f)
) ≤ nT (r, f) + S(r, f);N(r,

1

P (g)
) ≤ nT (r, g) + S(r, g),
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N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤ nT (r) + S(r). (3.6)

On the other hand, from P (f) = (f − a1)...(f − an) it follows that every
zero with multiplicity ≥ 2 of P (f) is a zero of f − ai with multiplicity ≥ 2,
i = 1, 2, ..., n, and therefore, it is a zero of f

′
, so we have

N(2(r,
1

P (f)
) ≤ N(r, f

′
).

From this and Lemma 2.2 we obtain

N(2(r,
1

P (f)
) ≤ N(r,

1

f
) +N(r, f) ≤ 2T (r, f) + S(r, f).

Similarly, we have

N (2(r,
1

P (g)
) ≤ N(r,

1

g
) +N(r, g) ≤ 2T (r, g) + S(r, g).

Therefore,

N(2(r,
1

P (f)
) +N(2(r,

1

P (g)
) ≤ 2T (r) + S(r). (3.7)

Combining (3.1)-(3.7) we get

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤

(
n

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) 6= 0) +N(r,

1

[P (g)]′
;P (g) 6= 0) + S(r).

Claim 2 is proved.

Claim 3 We have

N(r,
1

[P (f)]′
;P (f) 6= 0) +N(r,

1

[P (g)]′
;P (g) 6= 0) ≤

2T (r) +N0(r,
1

f ′ ) +N0(r,
1

g′ ) + S(r).

We have

N(r,
1

[P (f)]′
;P (f) 6= 0)

= N(r,
1

fn−3(f − a)2f ′ ;P (f) 6= 0)

≤ N(r,
1

f
) +N(r,

1

f − a
) +No(r,

1

f ′ )

≤ 2T (r, f) +No(r,
1

f ′ ) + S(r, f).(3.8)
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Similarly,

N(r,
1

[P (g)]′
;P (g) 6= 0) ≤ 2T (r, g) +No(r,

1

g′ ) + S(r, g). (3.9)

Inequalities (3.8) and (3.9) give us

N(r,
1

[P (f)]′
;P (f) 6= 0) +N(r,

1

[P (g)]′
;P (g) 6= 0) ≤

2T (r) +No(r,
1

f ′
) +No(r,

1

g′ ) + S(r).(3.10)

Claim 3 is proved.

Claim 1, 2, 3 give us:

(n− 2)T (r) ≤ (
n

2
+ 5)T (r) + S(r), (n− 14)T (r) ≤ S(r)

This is a contradiction to the assumption that n ≥ 15. So L ≡ 0. Therefore
f = g. Theorem 1 is proved.
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