J. Math. Math. Sci. (2022) 103-115

A NEW CLASS OF UNIQUE RANGE SETS FOR
MEROMORPHIC FUNCTIONS IGNORING
MULTIPLICITY WITH 15 ELEMENTS

Vu Hoai An (Hai Duong, Vietnam)
(Received 8 January 2022; accepted 10 May 2022)

Abstract. In this paper, we give a new class of unique range sets for
meromorphic functions ignoring multiplicity with 15 elements.

1. Introduction. Main results

In this paper, by a meromorphic function we mean a meromorphic function
on the complex plane C.

Let f be a non-constant meromorphic function on C. For every a € C, we
define the function vy : C — N by

“ 0 if f(2)#a
vy (2) = . B . T
d if f(z) = a with multiplicity d,
and set v3° = 1/(;, and define the function 7} : C — Nby 7}(z) = min {v§(2), 1},
and set 73° = 79 . For f € M(C) and a non-empty set S C CU{co}, we define
i

Ep(S) = J{(z.v(2) 1 z€C}, Ep(S) = [J{(2.7}(2)) : z € C}.

a€esS a€s

Let F be a nonempty subset of M(C). Two functions f, g of F are said to
share S, counting multiplicity (share S CM) if E¢(S) = E4(S), and to share S,
ignoring multiplicity (share S IM) if E¢(S) = E4(S5).
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If the condition Ef(S) = E4(S) implies f = ¢ for any two non-constant
meromorphic (entire) functions f,g, then S is called a unique range set for
meromorphic (entire) functions counting multiplicity, or in brief, URSM (URSE).
A set S C CU {oo} is called a unique range set for meromorphic (entire) func-
tions ignoring multiplicity, or in brief, URSM-IM (URSE-IM), if the condition
E;(S) = E,(S) implies f = g for any pair of non-constant meromorphic (en-
tire) functions.

In 1976 Gross ([8]) proved that there exist three finite sets S; (j = 1,2, 3)
such that any two entire functions f and g satisfying Ef(S;) = E4(S;), j =
1,2, 3 must be identical. In the same paper Gross posed the following question:

Question A. Can one find two (or possible even one) finite set S; (j =
1,2) such that any two entire functions f and g satisfying E¢(S;) = E4(S;)
(5 =1,2) must be identical.

Yi [16]-[18], [20] first gave an affirmative answer to Question A. Since then,
many results have been obtained for this and related topics (see [1]-[13], [15]-
[21]).

Concerning to Question A, a natural question is the following.

Question B. What is the smallest cardinality for such a finite set S such
that any two meromorphic functions f and g satisfying either E;(S) = E,4(S)
or E¢(S) = E4(S) must be identical.

So far, the best answer to Question B for case URSM was obtained by Frank
and Reinders [5]. They proved the following result.

Theorem C. The set {z € C| Prr(z) = Wz" +n(n—2)""1 +
Wz"” —c¢ =0}, wheren > 11 and ¢ # 0,1, is a unique range set for
meromorphic functions counting multiplicity.

In 1997, H. X. Yi [19] first gave an answer to question B for the case URSM-
IM with 19 elements. Since then, many results have been obtained for this topic
(see [2], [3]). So far, the best answer to Question B for the case URSM-IM was
obtained by B. Chakraborty [3]. He proved the following result.

Theorem D. Let S = {z € C| Ppr(z) = 0}. Ifn > 15, then S is a
URSM-IM.

In this paper, we give a new class of unique range sets for meromorphic
functions ignoring multiplicity with 15 elements. Note that this class is different
from B. Chakraborty’s in[3].

Now let us describe main results of the paper.

Let n € N*,n > 3.

Consider polynomial P(z) as follows:

2na na?
P)=2"— —" 14 — "2 1= 1 1.1
(2) = 2" = —2" 4+ 52" +1=0Q(x) + 1, (1.1)
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where a € C a # 0. Suppose that
Q) # -1, (1.2)
Q) # -2, (1.3)

Note that P(z), defined by (1.1) with condition (1.2), has no multiple zeros.
Clearly, P'(z) = nz""3(z—a)?, and P(z) is different from Ppp. Moreover P’ (z)
has a zero at 0 of order n — 3, and a zero at a of order 2.

The polynomials of the form (1.1) were investigated in [1] and [11].
We shall prove the following theorem.

Theorem 1. Let P(z) be defined by (1.1) with conditions (1.2) and (1.8),
and let S = {z € C| P(z) =0}. If n > 15, then S is a URSM-IM.

2. Lemmas, Definitions

We assume that the reader is familiar with the notations of Nevanlinna
theory (see, for example, [4], [14]).

We need some lemmas.

Lemma 2.1. [14] Let f be a non-constant meromorphic function on C and let
ai,as, ..., aq be distinct points of CU {oo}. Then

(4= 2T 1) < 3Nl =) + 502 5),

where S(r, f) = o(T(r, f)) for all v, except for a set of finite Lebesgue measure.

Lemma 2.2. [4]

For any non-constant meromorphic function f,

1 1 —
N(’I‘,?) < N(Ta?) +N(’f‘,f)+5(’l",f)
Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. We denote by N (4(r, f) the counting function of the poles of order > &
of f, where each pole is counted only once, and by Nyy(r, f) the counting
function of the simple poles of f.
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Lemma 2.3. Let f,g be two non-constant meromorphic functions and let
f7H0) = g71(0). Set

Suppose that L # 0. Then

1)[11 = 13] N(r,L) < No(r, ) + Na(r, g) + N(r, %QVI >y > 1)+

1 —, 1
77f7é0)+N(7‘,;,g750)

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

1 _
N(r,—;va >17 > 1)+ N(r,
g

_ — 1 — 1 — 1
2) N(r, )+N(T,§)+N(T,?;V1 > vy > 1)+N(r,§;1/2 > > 1)

| =

r, L)+ %(N(r,%)—l—N(r,é)) —l—N(r,%;yl >2) +N(r,$);1/2 > 2).

Proof. 2) By using properties of the Stieltjes integral (see [4, p. 5, p. 14]),
we get:

IN

N

—~

N2 = n(0, 1) = 3 1n|L,

0<|am|<r

where a,, are zeros of f, counting multiplicity; and

N(Tv 7) ﬁ(07 7)
f f
is the same sum, where each zero a,, is counted only once.
1 — 1. = 1
Similarly, we obtain equalities for N(r, ?; vy >2), N(r,=)+ N(r, ?; v >
g

1 — 1
vy 2 1); N(’/‘, 7);1/2 > 2)7 N(T,*§V2 > > 1)

g g

We are going to prove 2) by using these inequalities and the arguments in
(Lemma 2.2 [12]), (Lemma 2.4 [13]) and (Lemma 2.6 [3])).

Set

1 — 1
)+N(r,};1/1 > vy > 1)+N(r,§;1/2 > > 1),

= Q|-
—

)+ N 2) N<r,§;u1 > 2) + N(r, gm > 9).
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Let a be a zero of f with multiplicity p. From f~(0) = ¢g~1(0) it follows
that a is a zero of f with multiplicity q. We consider the following cases:

Case 1. Assume that p = q.

If p=q =1, then a is counted with 1+1+4+040 = 2 times in M. From this
and the proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13]) it follows that a
is a zero of L. Then it is counted with 1+ (1 + 1) = 2 times in 7.

If p=¢q > 2, then a is counted with 1 + 1+ 0+ 0 = 2 times on M. By the
proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13]) it follows that @ is not a
pole of L. Then it is counted with 0 + %(p +p)+p+p=3ptimesin T.

Case 2. Assume that p > q.

If p>qand g =1, then p > 2 and a is counted with 1 +1+1+0 =3
times in M. By the proof of Part 1) (Lemma 2.2[12]), (Lemma 2.4 [13]) it
follows that a is a pole of L, and by p > 2 we see that a is counted with
1+3ip+1)+p+0=p+1+ 2 >3 times in T

If p>qgand g > 2, then p > 2 and a is counted with 1+ 1+ 140 = 3 times
in M. From this and the proof of Part 1) (Lemma 2.2 [12]), (Lemma 2.4 [13])
it follows that a is a pole of L, and by p > 2, ¢ > 2 we see that a is counted
with 14+ 2(p+q) +p+q=1+ 222 > 3 times in T.

Case 3. Assume that ¢ > p.

The proof is completed by using the arguments similar to ones in Case 2.

A polynomial R(z) is called a strong uniqueness polynomial for meromor-
phic (entire) functions if for arbitrary two non-constant meromorphic (entire)
functions f and g, and a nonzero constant ¢, the condition R(f) = cR(g) im-
plies f = g (see [1], [7], [11]). In this case we say that, R(z) is a SUPM (SUPE).
A polynomial R(z) is called a uniqueness polynomial for meromorphic (entire)
functions if for arbitrary two non-constant meromorphic (entire) functions f
and g, the condition R(f) = R(g) implies f = g (see[l], [7], [11]). In this
case we say R(z) is a UPM (UPE). Let R(z) be a polynomial of the degree gq.
Assume that the derivative of R(z) has mutually distinct k zeros di, da, ..., dg
with multiplicities ¢1,q2, ..., gk, respectively. We often consider polynomials
satisfying the following condition introduced by Fujimoto ([6]):

R(d;) # R(d;j),1<i<j<q. (2.1)
The number k is called the derivative index of R.

Lemma 2.4. (Fujimoto [7]).

Let R(z) be a polynomial of the degree q satisfying the condition (2.1). Then
R(2) is a uniqueness polynomial if and only if

k
> agm >
=1

1<l<m<k
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In particular, the above inequality is always satisfied whenever k > 4. When
k =3 and maz{q1,q2,q3} > 2 or when k =2, min{q1,q2} > 2 and ¢1 + g2 > 5,
then also the above inequality holds.

H. Fujimoto [6] proved the following:

Lemma 2.5. Let R(z) be a polynomial of the degree q satisfying the condi-
tion (2.1), we assume furthermore that ¢ > 5 and there are two non-constant
meromorphic functions f and g such that
1 Co +

— =9 4

R(f)  R(g)
for two constants co (#£ 0) and ¢y. If k > 3 or if k = 2, min{q1,q2} > 2, then
C1 = 0.

Lemma 2.6. [1] >, (Zn)% is not an integer, where n,m > 1 are
integers.

In [1], Banerjee proved the Lemma for n,m > 3, but it is clear that the
Lemma is valid for n,m > 1.

Lemma 2.7. Let P(z) be dened by (1.1) with conditions (1.2) and (1.3), and
let n > 6. Then P(z) is a strong uniqueness polynomial for meromorphic
functions

Proof.
1 2
By Lemma 2.6, we see that — — —— + is not an integer. Set
) 5 . n -1 n-2
A:E — T3 ThenA;IEO.VVehaveP(O):Q(O)—|—1:17
( ) =Qa ) +1=nAa" 4 1. From this and a # 0, we get P(a) # P(0). Set
P(f),G = P(g). From P(f) = cP(g),c # 0, it implies

F=cG, T(r, )+ S(r, f) =T(r,9) + S(r,9), S(r, ) = 5(r,9). (2.2)

Now we consider the following possible cases:
Case 1. ¢ # 1.
If ¢ = P(a), from (2.2) and P(0) =1 we have

1
Pla)”

F—1=P(a)(G - (2.3)

We consider P(z) — %. By P(0) =1 and P(a) = ¢ # 1 we obtain P(0) —

ﬁ # 0. Moreover, since P(a) = nAa™ +1 # —1 and P(a) = ¢ # 1 we obtain
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P(a) — % # 0. Therefore, P(z) — % has only simple zeros, let they be

given by b;,i =1,2,...,n. Note that P(z)—1 has a zero at 0 of order n —2, and
two distinct simple zeros. Let c;7i = 1,2, be distinct simple zeros of P(z) — 1.

Applying Lemma 2.1 to the function g and the values bll, b;, . b;l, 0o, and by
(2.2), (2.3) we get

(n=1)T(r.0) < N(rig) + 3N - )+ 8(r.9)
i=1 T

<T(r,g)+T(r,f)+2T(r, )+ S(r,9)
=4T(r,g) + S(r,g)
(n - 5)T(T’ g) < S(rv g)-

This is a contradiction to the assumption that n > 6.
If ¢ # P(a), then from (2.2) we have

F—c=cG-1). (2.4)

We consider P(z) —c. By P(0) =1 and ¢ # 1 we have P(0) —c=1—c # 0.
Moreover ¢ # P(a). So P(a) —c¢ # 0, P(0) — ¢ # 0. Therefore P(z) — ¢ has only
simple zeros, let they be given by e;,i = 1,2,...,n. Now we consider P(z) — 1.
We see that P(0) =1, P(z) — P(0) = P(z) — 1 has a zero at 0 of order n — 2,
and 2 distinct simple zeros. Let ¢;,7 = 1,2, be distinct simple zeros of P(z)— 1.
Applying Lemma 2.1 to the function f and the values ey, es, ..., €,, 00, and by
(2.4) we get

<T(r, f)+T(r,g)+2T(r,g) + S(r, f)
=4T(r, )+ S(r, f)
(n=35)T(r, ) < S(r, f).
This is a contradiction to the assumption that n > 6.

Case 2. ¢ = 1. Then
P(f)=P(g) (2.5)

Applying Lemma 2.4 to (2.5) we obtain f = g.
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3. Proof of Theorem 1

Now we use the above Lemmas to prove the main result of the paper.
Recall that P(z) = (z — a1)...(z — an), P'(2) = nz""3(z — a)2.
Suppose n > 15 and Ef(S) = E4(S), where S = {z € C| P(z) = 0}.
Set

1" 1"

1 1 F G
F: 5 G: ,L 7 ]
P(f) P(g) oG

T(r)=T(r,f) +T(r,9),S(r) = S(r, f) + 5(r, 9)-

Then T(r, P(f)) = nT(r, f) + S(r, f) and T(r, P(g)) = nT(r,g) + S(r,g), and
hence S(r, P(f)) = S(r, f) and S(r, P(g)) = S(r,9), since P(f) and f, and
P(g) and g have the same growth estimates, respectively.

We consider two following cases:

1
Case 1 L =0. Then, we have —— = L+c1 for some constants ¢ (# 0)

P(f) — P(g)

and c;. By Lemma 2.5 we obtain ¢; = 0.

Therefore, there is a constant C' # 0 such that P(f) = CP(g). Then,
applying Lemma 2.7 we obtain f = g.

Case 2 L #0.
Claim 1 We have

1 — 1

(n — Q)T(T') S N(T, —_— %) - NO(T; %) - No(T, %) + S(?”), (31)7

where Ny(r, %) (No(r, g%)) is the counting function of those zeros of f’,
which are not zeros of function (f — a1)...(f — an)f(f — a)((9 — a1)...(g —
an)g(g — a)).

Then, applying the Lemma 2.1 to the functions f, g and the values a1, as, ...,
an, 0,a,00 , and noting that

' . B 1 . 1 _ 1
.ZN(“ 7=a) =N ) ;N(T’ g—a) =N B
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1 — 1

N
)+ N
On the other hand,

N(r,

) — No(r, %) Nl §> L850 (32)

N(r, f)+N(r,g) < (T(r, f) + T(r,9)) + S(r) = T(r) + S(r),
N(r, l) + N(r, é) <(T(r,f)+T(r,9))+S(r)=T(r)+ S(r),
)+ N ) < (T 1)+ T0.9)) + S() = T() + S(0).
From this and (3.2) we obtain (3.1)

Claim 2 We have

N(r, 5

(% +3)T(r) + N(r, [P(lf)], ; P(f) #0) + N(r, ﬁ; P(g) #0)+ S(r).

By E;(S) = E,(S) we get (P(f))~1(0) = (P(g9))~*(0), and note that
N(2(T’ P(f)) = N(T’ f)a N(Q(Tvp(g)) = N(T’ g)'

Then applying the Lemma 2.3 to the functions P(f), P(g) we obtain

N(r,L) < N(r, f) + N(r,g)+
1 _

_ 1
N(T,W,I/l > vy > 1)+N(r,%,yg > > 1)+
((33)) N g P # 0+ N i Plo) #0)
N(r P(lf))—i-ﬁ(r ng))—i—ﬁ(r ng);l/l > vy > 1)+N(r, ﬁ;ug >y >1)<
N(r,L)+=(N(r, P(lf))—i-N(r, gg>))—+-]\7(r7 P(lf);yl > 2)+N(r, Pzg) vy > 2)).
(3.4)
Moreover,
N(r, f) + N(r,g) <T(r) + S(r). (3.5)
Obviously,
N(r 1 )< nT(r, f)+ S(r, f); N(r ! ) <nT(r,g)+ S(r,g),
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1 1
%)4»]\](7",%) <nT(r)+S(r). (3.6)

On the other hand, from P(f) = (f — a1)...(f — an) it follows that every
zero with multiplicity > 2 of P(f) is a zero of f — a; with multiplicity > 2,
1=1,2,...,n, and therefore, it is a zero of f , so we have

N(r,

Ne(r, %) <N( f).

From this and Lemma 2.2 we obtain

Ly N, %) L N(r. f) < 2T(r f) + S(r. f).

el By

Similarly, we have

1 1 —

N, prgy) € N ) +N(rg) < 2T(r,g) + 5(r.9).

Therefore,
—) + Nea(r, —g) <2T(r) + S(r). (3.7)

n — 1
—+3)T(r)+ N(r, —=—=
Claim 2 is proved.
Claim 3 We have
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Similarly,

— 1
N BT

Inequalities (3.8) and (3.9) give us

. Pg) #0) < 2T(r, ) + No(r. §> +5(rg).  (39)

_ 1 — 1
N<T7W7P(f) 750)—1—]\7(7“, [P(g)]mp(g) 7&0) <
(3.10) 2T(r) + No(r, %) W, ;) +S(r)

Claim 3 is proved.
Claim 1, 2, 3 give us:

(n—2)T(r) < (5 +5)T(r) +S(r), (n— 4)T(r) < S(r)

This is a contradiction to the assumption that n > 15. So L = 0. Therefore
f =g. Theorem 1 is proved.
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