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Abstract. We prove the existence of the pullback attractor of the gen-
erated flow by a dissipative nonautonomous differential equations driven
by unbounded variation paths under the condition of smallness of nonlin-
ear term. In case perturbed term is linear we prove that the attractor is
singleton and also is forward one.

1. Introduction

This work extends the study on the long term behavior of the solution of the
dissipative Young equations driven by Hölder paths in [10], [11] to the general
case where coefficient functions now depend on time. Namely, we consider
system

(1.1) dxt = [A(t)x+ f(t, xt)]dt+ g(t, xt)dωt,

in which A, f, g are continuous functions, the driving path ω is of bounded
p−variation for some p ∈ (1, 2). This equation is understood in the form

(1.2) xt = x0 +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)dωs,

Key words and phrases: stochastic differential equations (SDE), Young integral, rough path
theory, rough differential equations, exponential stability.
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where the first integral is of Riemann type, meanwhile the second one is defined
in the Young sense.

The existence and uniqueness of the solution of (1.1) is proved in e.g. [17],
[2] and the references there in. It is proved in [2] that (1.1) generates a two-
parameter flow of homeomorphism on Rd. This allow to study the asymptotic
behaviour of the solution of system in the frame work of dynamical system
theory. One interesting topic is pull back and forward attractors. They are
invariant sets those attract all the trajectories of the system. In this paper we
develop techniques from [11] which deal with autonomous equation, to prove
the existence of a nonautonomous attractor for the generated flow from (1.1).
In case g is linear the attractor is singleton and is also forward one. Since
the notation of nonautonomous attractor is understood as ω−wise we keep the
presentation simple by deal with the problem for a deterministic system. The
results in this paper can be applied to a stochastic equation with Hölder noises
where a random attractor is established.

2. Preliminaries and main results

Young integral

Let us first briefly make a survey on Young integrals. Let C([a, b],Rr),
r ≥ 1, denote the space of all continuous paths x : [a, b] → Rr equipped with
supremum norm ‖ · ‖∞,[a,b] given by ‖x‖∞,[a,b] = supt∈[a,b] |xt|, where | · | is the
Euclidean norm of a vector in Rr. For p ≥ 1 and [a, b] ⊂ R, Cp([a, b],Rr) ⊂
C([a, b],Rr) denotes the space of all continuous paths x : [a, b] → Rr which is
of finite p−variation, i.e.

|||x|||p,[a,b] :=

(
sup

Π(a,b)

n∑
i=1

‖xti+1
− xti‖p

)1/p

<∞,(2.1)

where the supremum is taken over the whole class of finite partitions of [a, b]
(see e.g. [12]). Cp([a, b],Rr) with the p−var norm

‖x‖p,[a,b] := |xa|+ |||x|||p,[a,b] ,

is a nonseparable Banach space [12, Theorem 5.25, p. 92]. Also for each 0 <
α < 1, we denote by Cα−Hol([a, b],Rr) the space of Hölder continuous functions
with exponent α on [a, b] equipped with the norm

‖x‖α−Hol,[a,b] := ‖xa‖+ sup
a≤s<t≤b

|xt − xs|
(t− s)α

.
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It is known that Cα−Hol([a, b],Rr) ⊂ C
1
p ([a, b],Rr).

Now, consider y ∈ Cq([a, b],Rd×m) and x ∈ Cp([a, b],Rm) with 1
p + 1

q > 1,

the Young integral
∫ b
a
ytdxt can be defined as∫ b

a

ysdxs := lim
|Π|→0

∑
[u,v]∈Π

yu(xv − xu),

where the limit is taken over all the finite partitions Π of [a, b] with |Π| :=
max

[u,v]∈Π
|v − u| (see [19]). This integral satisfies the additive property by con-

struction, and the so-called Young-Loeve estimate [12, Theorem 6.8, p. 116]∣∣∣ ∫ t

s

yudxu − ys[xt − xs]
∣∣∣ ≤ K |||y|||q,[s,t] |||x|||p,[s,t] , ∀[s, t] ⊂ [a, b],

where

(2.2) K := (1− 21− 1
p−

1
q )−1.

This implies ∣∣∣ ∫ t

s

yudxu

∣∣∣ ≤ |||x|||p,[s,t] (|ys|+ (K + 1) |||y|||q,[s,t]
)
.

Assumptions
Now we introduce conditions on driving path ω and coefficient functions A, f, g.

(H0) For p ∈ (1, 2)

lim
n→∞

1

n

n−1∑
k=−n

|||ω|||pp−var,[k,k+1] < +∞

(H1) A is continuous and bounded on R by ‖A‖. Moreover A satisfies the
uniform contraction condition, i.e. there exists CA ≥ 1, λA > 0 such that for
all s < t

(2.3) ‖Φ(t, s)‖ ≤ CAe−λA(t−s),

where Φ(t, s) is the Cauchy matrix of the equation dzt = A(t)ztdt.

(H2) f(t, x) is continuous and locally Lipchitz continuity w.r.t. x uniformly
on t and there exists Cf > 0 and and b ∈ L1(∆,Rd), for all closed interval
∆ ⊂ R such that the following properties hold:{

(i) |f(t, x)| ≤ Cf |x|+ b(t), ∀x ∈ Rd, ∀t ∈ R,
(ii) supk∈Z ‖b‖L1(k,k+1) <∞.
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(H3) g(t, x) is differentiable in x with ∂xg is locally δ - Holder continuous
w.r.t. x uniformly in t for some δ > p − 1, and there exist some constants

0 < Cg, 1− 1

p
< β ≤ 1, an increasing convex function k : R+ → R+ vanish at

0 
(i) |g(t, x)− g(t, y)| ≤ Cg|x− y|, ∀x, y ∈ Rd, ∀t ∈ R,
(ii) |g(t, x)− g(s, x)|+ ‖∂xg(t, x)− ∂xg(s, x)‖ ≤ k(|t− s|)β =: h∗(|t− s|)
∀x ∈ Rd, ∀s, t ∈ R.

(iii) limt→∞
log h∗(t)
|t| = 0

Remark 2.1. (i) (H0) is satisfied for almost all realizations of fractional
Brownian motion with Hurst index H > 1/2 ([15]). We introduce the notation

(2.4) Γp := max

{
lim
n→∞

1

n

n−1∑
k=0

|||ω|||pp−var,[k,k+1] , lim
n→∞

1

n

−1∑
k=−n

|||ω|||pp−var,[k,k+1]

}

which is finite under assumption (H0).

(ii) Assumption (H1) ensures that the semigroup Φ(t) = eAt, t ∈ R gener-
ated by A satisfies the following properties: for all a < b ≤ t

‖Φ(t, ·)‖∞,[a,b] ≤ CAe
−λA(t−b),(2.5)

|||Φ(t, ·)|||p,[a,b] ≤ C2
A‖A‖e−λA(t−b)(b− a).(2.6)

We recall here the theorem on existence and unqueness of solution from [2].
Under these conditions, system (1.1) possesses a unique solution on whole R
which starts at an arbitrary time t0 and generates a stochastic two-parameter
flow of homeomorphismΨ(t, s), t ≥ s in which Ψ(t, s)x0 is the solution to (1.1)
at time t with initial value x0 at time s. Moreover, we have the following
estimate for the growth of the solution.

Proposition 2.1. The solution x of (1.1) is of bounded p−variation on each
[u, v] ⊂ R and satisfies

‖x‖p,[u,v] ≤
[
|xu|+D[1 + h∗(|u| ∨ |v| ∨ |u− v|)](1 + |||ω|||p,[u,v])N[u,v]

]
×

×e2L(v−u)+κN[u,v]N
p−1
p

[u,v],

where κ = log K+2
K+1 , L = ‖A‖ + Cf , and D is a generic constant and N[u,v] is

estimated as

(2.7) N[u,v] ≤ 1 + [2(K + 1)Cg]
p |||ω|||pp,[u,v] .
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Proof. By computation we have for s, t ∈ [u, v], s < t

|xt − xs| ≤ Â1/p
s,t + Cf

∫ t

s

|xr|dr + Cg |||ω|||p,[s,t]
(
|xs|+K |||x|||p,[s,t]

)
,

where

Âs,t :=

[∫ t

s

b(r)dr + |||ω|||p,[s,t]
(
|g(0, 0)|+ h∗(|u| ∨ |v|) +Kh∗(|u− v|)

)]p
.

The rest follows step by step in [11, Theorem 2.4].

From now on, we always denote by D a generic constant.

3. Nonautonomous attractors

In what follows we recall the notion of the (global) pullback attractor of a
two-parameter flow (see more for instance in [8], [14], [9]).

Definition 3.1. ([7]) For a given two-parameter flow Ψ(t, s), a family of sets
At of Rd, t ∈ R is called the pullback (forward) attractor of Ψ if

(i) is compact set for t ∈ R,

(ii) is invariant, i.e Ψ(t, s)As = At for all s ≤ t in R,

(iii) globally pullback (forward) attracting, i.e for every t ∈ R and every D̃
bounded

lim
s→−∞

d(Ψ(t, s)D̃|At) = 0, ( lim
t→+∞

d(Ψ(t, s)D̃|At) = 0),

in which d is Hausdorff semi-distance between nonempty closed subsets E,F of
Rd is defined as d(E|F ) = sup{inf{d(x, y)|y ∈ F}|x ∈ E}.

In general, one may consider the attracting on a family of nonempty sets
(D̃t) instead of a single set as in Definition 3.1. Below, we consider the family
D̃ of tempered set D̃t, i.e. D̃t is a subset of the closed ball B̄(0, rt) where the
radius rt is tempered, i.e.

lim
t→±∞

1

t
max{log rt, 0} = 0.

The pullback attracting property now can be written as

lim
s→−∞

d(Ψ(t, s)D̃s|At) = 0,
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It is known that the existence of a nonautonomous pullback attractor is
ensured by the existence of the pullback absorbing set. A family of set Bt is
said to be nonautonomous pullback absorbing if for almost all ω, for each t
there exists T = T (t, D̃) such that

Ψ(t, s)D̃s ⊂ Bt

fot all s < t− T (t, D̃). Assume that there exists a family of compact pullback
absorbing sets Bt. Then there is a pullback attractor At given by ([7])

(3.1) At =
⋂
τ≤t

⋃
s≤τ

Ψ(t, s)Bs.

3.1. Existence

We consider

xt = x0 +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)dωs,

with (H0)− (H4). Thanks to the ”variation of constants” formula for Young
differential equations (see e.g. [20] or [10]), xt satisfies

(3.2) xt = Φ(t, t0)xt0 +

∫ t

t0

Φ(t, s)f(s, xs)ds+

∫ t

t0

Φ(t, s)g(s, xs)dωs, t ≥ t0.

In the Lemma below we are going to estimate the solution base on (3.2).

Lemma 3.1. The following estimate holds for any a < b ≤ t

∣∣∣ ∫ b

a

Φ(t, s)g(s, xs)dωs

∣∣∣ ≤ KCA

(
1 + CA‖A‖(b− a)

)
|||ω|||p,[a,b] e

−λA(t−b) ×

×
[
Cg‖x‖p,[a,b] + (h∗(|a| ∨ |b|) + h∗(|b− a|)) + |g(0, 0)|

]
.

Proof. Firstly by assumption, we choose 2 > q ≤ p such that qβ ≤ 1, then

|g(t, x)| ≤ Cg|x|+ h∗(|t|) + |g(0, 0)|, ∀t,
|||g(·, x·)|||q,[s,t] ≤ Cg |||x|||p,[s,t] + h∗(|t− s|), ∀ s ≤ t.
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Using (2.5) and (2.6) we have

∣∣∣ ∫ b

a

Φ(t, s)g(s, xs)dωs

∣∣∣
≤ |||ω|||p−var,[a,b]

(
|Φ(t, a)g(a, xa)|+K |||Φ(t, ·)g(·, x·)|||q,[a,b]

)
≤ |||ω|||p,[a,b]

[
‖Φ(t, a)‖.|g(a, xa)|+K |||Φ(t, ·)|||p,[a,b] ‖g(·, x·)‖∞,[a,b].

+K‖Φ(t, ·)‖∞,[a,b] |||g(·, x·)|||q,[a,b]
]

≤ |||ω|||p,[a,b]
[
CAe

−λA(t−a)(Cg|xa|+ h∗(|a|) + |g(0, 0)|)

+KC2
A‖A‖e−λA(t−b)(b− a)

(
Cg‖x‖∞,[a,b] + (h∗(|a| ∨ h∗(|b|)) + |g(0, 0)|

)
+

KCAe
−λA(t−b)

(
Cg |||x|||p,[a,b] + h∗(|b− a|)

)]
≤ KCA

[
1 + CA‖A‖(b− a)

]
|||ω|||p,[a,b] e

−λA(t−b) ×

×
[
Cg‖x‖p,[a,b] + (h∗(|a| ∨ |b|) + h∗(|b− a|)) + |g(0, 0)|

]
.

�

Next we denote by ∆k the inteval [k, k+1], k ∈ Z and prove that the solution
at time t can be estimates via its norm on consecutive ∆k that cover [t0, t].

Lemma 3.2. Assume that λ := λA − CACf > 0. The following estimate hold

eλ(t−t0)|xt| ≤ CA|xt0 |+
∫ t

t0

CAe
λ(s−t0)b(s)ds

+M

n∑
k=bt0c

|||ω|||p,∆k
eλ(k−t0)

[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
,∀t ∈ ∆n,(3.3)

where M := KCAe
λA(1 + CA‖A‖).

Proof. Firstly note that λ > 0 by (H4). Using (H1) and (H2) we have

|xt| ≤ |Φ(t, t0)xt0 |+
∫ t

t0

|Φ(t, s)f(s, xs)|ds+
∣∣∣ ∫ t

t0

Φ(t, s)g(s, xs)dωs

∣∣∣
≤ CAe−λA(t−t0)|xt0 |+

∫ t

t0

CAe
−λA(t−s)

(
Cf |xs|+ b(s)

)
ds+∣∣∣ ∫ t

t0

Φ(t, s)g(s, ys)dωs

∣∣∣
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≤ CAe−λA(t−t0)|xt0 |+
∫ t

t0

CAe
−λA(t−s)b(s)ds+ βt + Lf

∫ t

t0

e−λA(t−s)|xs|ds

where βt :=
∣∣∣ ∫ tt0 Φ(t, s)g(s, xs)dωs

∣∣∣, Lf := CACf . This implies,

eλA(t−t0)|xt| ≤ CA|xt0 |+
∫ t

t0

CAe
λA(s−t0)b(s)ds+ eλA(t−t0)βt+

Lf

∫ t

t0

eλA(s−t0)|xs|ds.

By applying the continuous Gronwall Lemma we obtain

eλA(t−t0)|xt| ≤ CA|xt0 |+
∫ t

t0

CAe
λA(s−t0)b(s)ds+ eλA(t−t0)βt+∫ t

t0

Lfe
Lf (t−s)

[
CA|xt0 |+

∫ s

t0

CAe
λA(u−t0)b(u)du+ eλA(s−t0)βs

]
ds

≤ CAeLf (t−t0)|xt0 |+
∫ t

t0

CAe
Lf (t−s)+λA(s−t0)b(s)ds+ eλA(t−t0)βt+

+

∫ t

t0

Lfe
Lf (t−s)+λA(s−t0)βsds

and then
(3.4)

eλ(t−t0)|xt| ≤ CA|xt0 |+
∫ t

t0

CAe
λ(s−t0)b(s)ds+ eλ(t−t0)βt +

∫ t

t0

Lfe
λ(s−t0)βsds.

Now we use Lemma 3.1 to estimate βs. Assume t0 = n0 ∈ Z,

eλ(s−t0)βs

= eλ(s−t0)
∣∣∣ ∫ s

n0

Φ(s, u)g(u, xu)dωu

∣∣∣
≤ eλ(s−t0)

bsc−1∑
k=n0

∣∣∣ ∫
∆k

Φ(s, u)g(u, xu)dωu

∣∣∣+
∣∣∣ ∫ s

bsc
Φ(s, u)g(u, xu)dωu

∣∣∣
≤ eλ(s−t0)

bsc∑
k=n0

KCA(1 + CA‖A‖) |||ω|||p,∆k
e−λA(s−k−1) ×

×
[
Cg‖x‖p,∆k

+ h∗(|k|+ 1) + |g(0, 0)|
]

≤ M

bsc∑
k=n0

|||ω|||p,∆k
eλ(k−n0)e−Lf (s−k)

[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
.(3.5)
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Replacing (3.5) into (3.4) and considering t ∈ [n, n+ 1) we obtain

eλ(t−t0)|xt|

≤ CA|xt0 |+
∫ t

t0

CAe
λ(s−t0)b(s)ds

+M

n∑
k=n0

|||ω|||p,∆k
eλ(k−n0)−Lf (t−k)

[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]

+LfM

∫ t

t0

bsc∑
k=n0

|||ω|||p,∆k
eλ(k−n0)−Lf (s−k) ×

×
[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
ds

≤ CA|xt0 |+
∫ t

t0

CAe
λ(s−t0)b(s)ds+M

n∑
k=n0

|||ω|||p,∆k
eλ(k−n0) ×

×
[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
.(3.6)

The continuity of x at t = (n+ 1) implies that (3.6) holds for all t ∈ [n, n+ 1].
Now for t0 ∈ (n0 − 1, n0), similar to (3.5) and (3.6) we have

eλ(s−t0)βs ≤M
bsc∑

k=n0−1

|||ω|||p,∆k
eλ(k−t0)e−Lf (s−k)

[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
,

and by replacing t0 in the final term of (3.4) by (n0 − 1) then

eλ(t−t0)|xt| ≤ CA|xt0 |+
∫ t

t0

CAe
λ(s−t0)b(s)ds

+M

n∑
k=n0−1

|||ω|||p,∆k
eλ(k−t0)

[
Cg‖x‖p,∆k

+Dh∗(|k|+ 1)
]
.

This proves (3.3). �

Proposition 3.1. Define

Λk := [2(K + 1)Cg] |||ω|||p,∆k
,(3.7)

Gk := |||ω|||p,∆k

(
1 + Λp−1

k

)
eκ(1+Λp

k)+2L,(3.8)

Hk := (1 + |||ω|||p,∆k
)2
(

1 + Λ2p−1
k

)
eκ(1+Λp

k)+2L,(3.9)
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where κ, L in Proposition 2.1 and

(3.10) ζ :=

∞∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
(which can be infinity), where λ,M is defined in Lemma 3.2.

Assume further that

(3.11) λ > Ĝ := CAe
λA+2L(1+CA‖A‖)

{[
2(K+1)CgΓp

]p
+
[
2(K+1)CgΓp

]}
,

where Γp is defined in (2.4). Then ζ(ω) is finite.

Proof.

Due to the inequality log(1 + aeb) ≤ a+ b for a, b ≥ 0, we have

log
(

1 +MCgGk

)
≤
[
Me2L+κ + 2

]
[2(K + 1)]p−1Cpg |||ω|||

p
p,∆k

+

Me2L+κCg |||ω|||p,∆k
.

It follows that

lim
m→∞

1

m
log

m∏
k=1

(
1 +MCgG−k

)
= lim
m→∞

1

m

m∑
k=1

log
(

1 +MCgG−k

)
≤

[
Me2L K + 2

2(K + 1)2
+

1

K + 1

]{[
2(K + 1)CgΓp

]p
+
[
2(K + 1)CgΓp

]}
≤ CAe

λA+2L(1 + CA‖A‖)
{[

2(K + 1)CgΓp

]p
+
[
2(K + 1)CgΓp

]}
= Ĝ.

Meanwhile, (3.7) and (3.9) yield

logHk ≤ D
[
1 + |||ω|||p,∆k

+ |||ω|||pp,∆k

]
,

where we use the inequalities log(1 + a+ b) ≤ log(1 + a) + log(1 + b),∀a, b ≥ 0
and log(1 + ab) ≤ log(1 + a) + log b,∀a ≥ 0, b ≥ 1. As a result,

lim
m→∞

logH−m
m

= 0

and then by assumption on h∗

lim
m→∞

log h∗(|m|+ 1)H−m
m

= 0.
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Hence, there exists for each 0 < 2δ < λ− Ĝ an m0 = m0(δ, ω) such that for
all m ≥ m0,

e(−δ+Ĝ)m ≤
m∏
k=1

[
1 +G−k

]
≤ e(δ+Ĝ)m

and

e−δm ≤ h∗(|m|+ 1)H−m ≤ eδm.

Consequently,

ζ ≤
m0−1∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
+

∞∑
k=n0

e−(λ−2δ−Ĝ)k

which is finite. �

We are now in position to state the first main result of this paper.

Theorem 3.2. Assume that (H0)− (H4) are satisfied. Then under the con-
dition (3.11) the flow generated by system (1.1) possesses a pullback attractor
At.

Proof. We first consider t0 = n0 ∈ Z−, n0 ≤ t = n ∈ Z. From Lemma 3.2 we
have

|xn|eλ(n−n0) ≤ CA|xn0
|+
∫ n

n0

CAe
λ(s−t0)|b(s)|ds+M

n−1∑
k=n0

eλ(k−n0) |||ω|||p,∆k
×

× [Cg‖x‖p,∆k
+Dh∗(|k|+ 1)]

Using (H2)(iii),
∫ n
n0
CAe

λ(s−t0)|b(s)|ds ≤ D
∑n−1
k=n0

eλ(k−n0). Then dominating

each ‖x‖p,∆k
by estimation in Proppsition 2.1 with the observation that

N
p−1
p

∆k
≤ 1 + Λp−1

k , N
2p−1

p

∆k
≤ 2[1 + Λ2p−1

k ]

we obtain

|xn|eλ(n−n0) ≤ CA|xn0
|+MCg

n−1∑
k=n0

eλ(k−n0)Gk|xk|+D
n−1∑
k=n0

eλ(k−n0)h∗(|k|+1)Hk.

Fix n0, put m = n− n0 and zk = eλk|xk+n0
|. We have

zm ≤ CAz0 +MCg

m−1∑
k=0

Gk+n0
zk +D

m−1∑
k=0

eλkh∗(|k + n0|+ 1)Hk+n0
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holds for all m ∈ Z+. Thank to Lemma 4.1

zm ≤ CAz0

m−1∏
k=0

(
1 +MCgGk+n0

)
+D

m−1∑
k=0

eλkh∗(|k + n0|+ 1)Hk+n0 ×

×
m−1∏
j=k+1

(
1 +MCgGj+n0

)
or

|x(n, n0, xn0)|

≤ CA|xn0
|e−λ(n−n0)

n−n0−1∏
k=0

(
1 +MCgGk+n0

)
+D

n−n0−1∑
k=0

e−λ(n−n0−k)h∗(|k + n0|+ 1)Hk+n0

n−n0−1∏
j=k+1

(
1 +MCgGj+n0

)

≤ CA|xn0 |e−λ(n−n0)
−n0∏

k=1−n

(
1 +MCgG−k

)
+

+De−λn
−n0∑

k=1−n

e−λkh∗(|k|+ 1)H−k

k∏
j=1−n

(
1 +MCgG−j

)
.

We consider two cases:
If n ≥ 1,

|x(n,n0, xn0)| ≤

CAe
−λn

0∏
k=1−n

(
1 +MCgG−k

)
|xn0
|eλn0

−n0∏
k=1

(
1 +MCgG−k

)
+

De−λn
0∑

k=1−n

e−λkh∗(|k|+ 1)H−k

k∏
j=1−n

(
1 +MCgG−j

)
+

De−λn
0∏

j=1−n

(
1 +MCgG−j

)−n0∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
.

If n ≤ 0,

|x(n, n0,xn0
)| ≤ CAe

−λn

1−n∏
k=1

(
1 +MCgG−k

) |xn0
|eλn0

−n0∏
k=1

(
1 +MCgG−k

)
+
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De−λn

1−n∏
k=1

(
1 +MCgG−k

) −n0∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
.

Hence in both cases,

|x(n, n0, xn0
)| ≤ a1

n|xn0
|eλn0

−n0∏
k=1

(
1 +MCgG−k

)
+a1

n

−n0∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
+ a2

n

≤ a1
n|xn0

|eλn0

−n0∏
k=1

(
1 +MCgG−k

)
+a1

n

∞∑
k=1

e−λkh∗(|k|+ 1)H−k

k∏
j=1

(
1 +MCgG−j

)
+ a2

n

≤ a1
n|xn0

|eλn0

−n0∏
k=1

[
1 +MCgG−k

]
+ a1

nζ + a2
n

where ζ(ω) is given in (3.10)

a1
n := De−λn ×



0∏
k=1−n

[
1 +MCgG−k

]
, if n ≥ 1

( 1−n∏
k=1

[
1 +MCgG−k

])−1

, if n ≤ 0,

and

a2
n :=


D2

0∑
k=1−n

e−λ(n+k)h∗(|k|+ 1)H−k

k∏
j=1−n

[
1 +MCgG−j

]
, if n ≥ 1,

0, if n ≤ 0.

Hence, for fixed n, if xn0 lies in a tempered set,

|x(n, n0, xn0)| ≤ 1 + a1
nζ + a2

n =: ρn

when −n0 large enough. It is easy to see that limn→∞
log ρn
n = 0.

Using Proposition 2.1 again to estimate |x(t, t0, xt0)| with arbitrary t, t0 ∈
R, by computation we have a tempered function ρ̂t is tempered such that

(3.12) |x(t, t0, xt0)| ≤ ρ̂t
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when −t0 large enough.

Therefore, there exists a family of sets Bt = B̄(0, ρ̂t) which absorbs D̃. This
ensures the existence of the pullback attractor At for system (1.1) which is
given by (3.1). �

Remark 3.1. In [11] we prove that under (3.11) the RDS generated by the
autonomous equation possesses a random pullback attractor. Thus, the criteria
still holds for the nonautonomous case.

4. Special case: g linear

In this part, we consider (1.1) where g(t, x) is linear in x. For convenience we
assume path x valued in R instead of Rm. Then g has the form g(t, x) = C(t)x
where C is a Rd×d-valued, continuous functions. Then, (1.1) becomes

(4.1) dxt = [A(t)xt + f(t, xt)]dt+ C(t)xtdωt, t ∈ R, x(t0) = xt0 ∈ Rd.

We need the following assumption for C.

(HC) C is continuous and Ĉ := sup
k
‖C‖p,∆k

<∞.

Note that in this situation, (H3) is not fulfilled. However, as proved in [3],
(4.1) possesses a unique solution x(·, t0, x0) start at t0 from x0 ∈ Rd which is
of bounded p−variation on any compact subset of R. Using the estimate

|||Cx|||p,[s,t] ≤ ‖C‖∞,[s,t] |||x|||p,[s,t] + ‖x‖∞,[s,t] |||C|||p,[s,t] ,(4.2)

we can treat (4.1) as the general equation in previous section by considering
Cg = Ĉ and omitting (H3)(ii), (iii). Then one obtains the similar results that
the equation generates a two-parameter flow of homeomophism on Rd.

This case is treated in [4] using a kind of Lyapunov function. Here we revise
the problem on the existence of the random pullback attractor of the system
in such a case by using semi group method as in previous section.

Theorem 4.1. Assume that (H0), (H1), (H2), (HC) are satisfied. Then there
exists ε > 0 such that if Ĉ < ε the flow generated by the system (4.1) possesses
a pullback attractor At.

Proof. The proof is followed step by step of Theorem 3.2. �
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In what follow we impose a stronger condition on f to study the difference
between two solutions of the system which facilitates the proof of singleton
attractor.

(H5): f is global Lipchitz continuous with Lipchitz constant Cf (here we
use an abuse notation for simplicity).

We use the linearity of g to obtain a further result that the pullback attrac-
tor in Theorem 4.1 is singleton and moreover forward attractor.

Theorem 4.2. Under the assumption in Theorem 4.1 and (H5), the pullback
attractor At is singleton for each t and moreover is forward attractor.

Proof. We fix t̄ and consider At̄. Take a1(t̄), a2(t̄) ∈ At̄, by the invariance of
At̄, for each t0 < t̄ there exist b1 := b1(t0), b2 := b2(t0) ∈ At0 such that

ai(t̄) = x(t̄, t0, b
i), i = 1, 2.

Put xi· := xi(·, t0, bi) and z· := x1
· − x2

· then

dzt = d(x1
t − x2

t )

= [A(t)x1
t + f(t, x1

t )−A(t)x2
t − f(t, x2

t )]dt+ [C(t)x1
t − C(t)x2

t ]dωt

= [A(t)zt + f(t, x1
t )− f(t, x2

t )]dt+ C(t)ztdωt

=: [A(t)zt + F (t, zt)]dt+ C(t)ztdωt, t ≥ t0,
zt0 = b1 − b2,

in which by the definition |F (t, zt)| ≤ Cf |zt|, F (t, 0) ≡ 0.

Note that using the estimate in (4.2) one obtains a similar result to that
in Proposition 3.1. Then repeat the arguments in Lemma 3.2 with for short
t0 = n0 ∈ Z

|zt|eλ(t−n0) ≤ CA|zn0
|+DĈ

n∑
k=n0

|||ω|||p,∆k
eλ(k−n0)‖z‖p,∆k

, ∀t ∈ ∆n,

in which the norm ‖z‖p,∆k
can be estimated similar to x in Proposition 2.1,

namely

(4.3) ‖z‖p,∆k
≤ |zk|eD(1+Ĉp|||ω|||pp,∆k

)
.

Hence

|zt|eλ(t−n0) ≤ CA|zn0 |+DĈ

n∑
k=n0

|||ω|||p,∆k
e
D|||ω|||pp,∆k eλ(k−t0)|zk|, ∀t ∈ ∆n.
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This leads to

|zn| ≤ CA|zn0
|e−λ(n−n0)

n−1∏
k=n0

[
1 +DĈ |||ω|||p,∆k

e
D|||ω|||pp,∆k

]
.

Since b1, b2 ∈ An0 , |zn0 | ≤ 2ρ̂n0 . Note that

lim
n0→−∞

log ρ̂n0

n0
= 0.

For t̄ = n̄ ∈ Z, follow the arguments in Theorem 3.2 for Ĉ small enough,
|a1(t̄)− a2(t̄)| = |zt̄| → 0 as n0 →∞ or a1(t̄) = a2(t̄). Using (4.3) to estimate
zt via zn which [n, n + 1] contain t, this holds for arbitrary t̄ ∈ R. Therefore,
At is one point set.

Finally, the above arguments show that the difference of two solutions of
the system tends to zero in the forward direction, the attractor is then the
forward one. The proof is completed. �

Appendix

The proof of following Lemmas can be seen in [11]

Lemma 4.1 (Discrete Gronwall Lemma). Let a be a non negative constant
and un, αn, βn be nonnegative sequences satisfying

un ≤ a+

n−1∑
k=0

αkuk +

n−1∑
k=0

βk, ∀n ≥ 1

then

un ≤ max{a, u0}
n−1∏
k=0

(1 + αk) +

n−1∑
k=0

βk

n−1∏
j=k+1

(1 + αj)

for all n ≥ 1.

Lemma 4.2 (Gronwall-type Lemma). If y satisfies the following condition

(4.4) |yt − ys| ≤ Â1/q
s,t + a1

∫ t

s

|yu|du+ a2 |||ω|||p,[s,t] (|ys|+ a3 |||y|||q−var,[s,t])

for all s, t, where a1, a2, a3 are positive real constants, then

(4.5) ‖y‖p,[u,v] ≤
[
|yu|+ 2Â1/q

u,vN[u,v]

]
e2a1(v−u)+κN[u,v]N

p−1
p

[u,v](ω)
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with κ = log a3+2
a3+1 , and

N[u,v] ≤ 1 + [2a2(a3 + 1)]p |||ω|||pp,[s,t] .
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dissipative systems with a Hölder noise. Preprint. ArXiv: 1812.04556

[5] N. D. Cong, L. H. Duc, P. T. Hong. Pullback Attractors for Stochastic
Young Differential Delay Equations. J. Dyn. Diff. Equat., 34(2022), 605-
636.

[6] L. H. Duc, P. T. Hong, N. D. Cong. Asymptotic stability for stochastic
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