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Abstract. We give all solutions of the equation
F(n® +m?+k) = H(n)+ H(m)+ K (Yn,m €N),

where k € N is the sum of two fixed squares, K € C and F, H are completely
multiplicative functions.

1. Introduction.

Let P,Ny,N,Z and C be the set of primes, non-negative integers, positive
integers, integers and complex numbers, respectively. Let M (M*) be the
set of all multiplicative (completely multiplicative) functions, respectively. For
D € N,D > 2 we denote by x},(n) the principal Dirichlet character and by
Xp(n) the non-principal Dirichlet character (mod D). For numbers x,y € Z
we denote by (z,y) the greatest common divisor of x and y. For each n € N
let @ € {0,1,2,3} be such that @ =n (mod 4).

Furthermore, we define the sets B and £ as follows:

B={n®>+m? n,meN}={25810,13,17,18,20,25,---}
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and
E={n*+m?>>0| n,meNy}=1{1,2,4,528,9,10,13,16,17,18,20,25, - - }.

It is obvious that
BCE.

In 1996 P. V. Chung [2] characterized all multiplicative functions f satisfy-
ing the equation

f(m? 4+ n?) = f(n?) + f(m?®) for every n,m € N.

P. V. Chung proved that there are only two possible categories of solutions, the
first of which contains the identity function

In 2014 B. Bojan [1] determined all f : N — C for which
f(n?+m?) = f2(n) + f2(m) for every n,meN

holds.

Poo-Sung Park in [14] and [15] proved that if f € M and k € N, k > 3
satisfy one of following two conditions

flai+-+xg) = fla)? 4+ + f(ap)?

or
f@ai+-+ai)=f@})+- -+ f(=7)

for all positive integers x1,--- ,xg, then f is the identity function.
I. Kétai and B. M. Phong proved in [5] that if the sets

A={a1<ay<---}CN, S:={m?|meN}

and the arithmetical functions f : A+S - C,g: A — Cand h: S — C satisfy
the equation

fla4+n?) = g(a) + h(n?) forevery ac AnécN,

then the assumption 8N C A — A implies that there is a complex number A
such that

g(a) = Aa+g(a), h(n®)=An*+h(n) and f(a+n’) = A(a+n®)+g(a)+h(n)
hold for every a € A,n € N. Furthermore

g g(b) if a=b (mod 120), (a,b€ A),
h(n) = h(m) if n=m (mod 60), (n,m € N)
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are true.
B.M.M.Khanh [12] determined all solutions of the equation

f24+m?+k)=f(n)?+ fm)>* + K (vn,m € N),

where k € Ny and K € C. In [10] and [11] she gave all functions f : N — C
which satisfy the equation

f(n* 4+ Dm? + k)= f(n)> + Df(m)® +k for every n,m € N.

The conjecture of I. Katai and B. M. Phong formulated in [6] was proved by
B. M. M. Khanh in [10].

In [7] and [8] I. Kdtai and B. M. Phong gave all arithmetical functions
fyh: N = C, which satisfy the relations

f(@®>+ b+ 2+ d? + k) = h(a) + h(b) + h(c) + h(d) + K

for every a,b,c,d € N, where k € Ny and K € C.

Recently, in [9] I. Kdtai and B. M. Phong gave all functions f,h : N — C
which satisfy the relation

fla® + %>+ + k) = h(a) + h(b) + h(c) + K
for every a,b,c € N, where k € Ny and K € C.

In this paper we prove the following result.

Theorem 1. The numbers k € £, K € C and the functions F,H € M*
satisfy the equation

(1.1) F(n*+m?+k)=H(n)+ H(m)+ K for every n,m e N

if and only if one of the following assertions holds:

(T1) K=k, H(m)=m? F(n)=n,

(T2) K=-1, H(m)=1,F(n)=1,

(T3) K=-2, Hm)=1, F(n>+m?+k) =0,

(T4) K=-1, k=2 (mod3), H(m)=x3(m), F(n)=xs(n)

for every n,m € N, where x%(m) (mod 3) is the principal Dirichlet character
and x3(m) (mod 3) is the non-principal Dirichlet character, i.e x5(0) = 0,

By Theorem 1, we have
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Corollary 1. If the numbers k € £,K € C\ {—1,-2} and the functions
F,H € M* satisfy the equation

F(n?>4+m?+k)=H(n)+ H(m)+ K for every n,m €N,

then
K=k, H(m)=m? and F(n)=n for every n,m € N.

2. Lemmas.

Assume that the functions F, H € M™* and the numbers k£ € Ng, K € C
satisfy the equation (1.1). Since H € M*, we have H(1) =1, H(4) = H(2)?
and H(6) = H(2)H(3).

We shall use the following results due to the second author:

Lemma 1. ( B. M. M. Khanh [13], Lemma 6). We have

H(T) 2H(5) — 1

H@®) = 2H(5)+ H(2)*>-2

H9) =H(2)H(3)+2H(5) - H(2) -1

H(10) = H(2)H(3)+3H(5) — H(3) — 2

H(11) = H(2)H(3) +4H(5) — H(3) — H(2) — 2
H(12) =H((2)H(3)+4H(5)+ H(2)> — H(2) —4

and
H{+12m)=H(({+9m)+ H({+8m) + H({ + Tm)—
—H({+5m)— H({+4m)— H({ +3m)+ H({)
holds for every ¢,m € N.

Lemma 2. ( B. M. M. Khanh [13], Lemma 7). Let

A = ﬁ(H@)H(?)) +4H(5) — H(3) — H(2) — 3)

Ty ==L (H(2H(3)—4H(5) +4H(2)? — H(3) + 3H(2) — 3),
Ty = S (HRHE) - 2H(5) + 2H(3) - H(2)),

Ty =1(HQHE) -2H(2)? - H3)+ H(2) + 1),

Is = $(H(2H3) - H(5) - H(3) - H(2) +2),

I =1(HQ)H®3) - 4H(5) + 2H(2)> + 3H(3) + H(2) + 1),
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S() = Tax5(f) + Tax3(f) + Taxa(d — 1) + Tsxs5(4) + T,

where x5(¢) (mod 2), x5(¢) (mod 3) are the principal Dirichlet characters and
x4(¢) (mod 4), x5(¢) (mod 5) are the real, non-principal Dirichlet characters.

Then we have
(2.1) H(n) = An* + S(n) for every n € N.
Lemma 3. Assume that the numbers k € £ and the function G € M*
satisfy the equation
G*+m?*+k)=1 for every n,m € N.

Then G(n) =1 for every n € N.

Proof. This lemma follows from Theorem 1.1 of Fehér J., K.-H. Indlekofer
and N. M. Timofeev [4] (see also Fehér J. and I. Kétai [3]).

Lemma 4. If the numbers k € £, K € C and the functions F,H € M*
satisfy the equations

H(m)=1 for every meN

and
(2.2) Fn>4+m?+k)=Hn)+Hm)+K=2+K (¥ n,m¢eN),
then one of the assertions (T2), (T'3) of Theorem 1 holds.
Proof. Assume that F, H € M* satisfy (2.2). Since
(k+25)2 +254+k = (k+25)(k+26) and 25=5% =32 +4% 26=1%4 5%
by using the facts F' € M*, we infer from (2.2) that

2+K:F((k:+25)2+52+k:> — P32+ 42+ k)F(12 452 + k) =

=(2+K)%

which implies that K € {-1, — 2}.
If K = —1, then we infer from (2.2) that

Fn>4+m?+k)=2+K=1 forevery n,m¢€N,

and so Lemma 3 with G = F' € M* proves that F(n) =1 for every n € N.
Thus the case (T2) holds.
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If K = —2, then we infer from (2.2) that
Fn?+m?+k)=2+K=0 forevery n,méeN,

and so the case (T3) holds.

Lemma 4 is thus proved.

Lemma 5. Let p € {2,3}. Assume that the numbers k € £, K € C and the
functions F, H € M* satisfy the equations

(2.3) F(n*+m®+k)=H(n)+H(m)+ K and H(m)= x}(m),

where x;, (mod p) is the principal Dirichlet character. Then p = 3 and the
assertion (T4) of Theorem 1 holds.

Proof. Since
(k+25)24254+k = (k+25)(k+26) and (k+900)%+900+k = (k+900)(k+901),
we infer from F' € M* and (2.3) that

F((k+25)2+5%+k)=F(3* +4% + k)F(1* + 5 + k)

and
F((k+900)2 +30% + k) = F(18% + 242 + k) F(1% 4 30 + k),

which with (2.3) imply that

Hk+1) =-x;(5)— K+ (;03)+x;(4) + K)(1+x;(5) + K) =
=-1-K+(1+K)2+K)=(K+1)?
H(k) = —x;(30) — K + (x;(18) + x;(24) + K)(1 + x;(30) + K) =
=-K+K(1+K)=K-=
In the above steps we use the fact Xp( )+ Xp( )= ;( y=1 if pe{2,3}.
Since H(m) = x;(m) € {0,1}, we have H(k) = K #(K+1)2=H(k+1),
consequently

<H(k),H(k + 1)) - <K2, (K + 1)2> € {(1,0), (0, 1)}.
These imply that either
k=-1 (modp) and K =-1

or

k=0 (modp) and K =0.



On the equation F(n? +m? +k) = H(n) + H(m) + K 141

We distinguish the proof for four cases according to p € {2, 3}.
The case I: p=2, K =-1, k=1 (mod 2), H(m) = x5(m).

We shall prove that this case does not occur.

In this case, we have
F(n? +m? +k) = x5(n) + x3(m) —1 for every n,m € N.
It is clear to check that
X5(n) + x5(m) =n2 +m? for every n,m €N,
consequently
(2.4) Fin+k)=n—1 forevery nebB,

where 77 € {0, 1, 2,3} such that n =7 (mod 4).
Since k € £ and k =1 (mod 2), we have kn € B for every n € B, and so
it follows from (2.4) that

(2.5) F(k)F(n+1)=F(kn+k)=kn—1=7—1 for every n € B.

In the last relation we use k = 1 (mod 4), because k = 1 (mod 2) and k € £.
Since 2 = 1% 4+ 12 € B and 8 = 2% + 22 € B, we obtain from (2.5) that

F(k)F(3)=2—-1=1 and F(k)F(3)2 =F(k)F(8+1)=8—-1= —1.

These imply that

(2.6) F3)=F(k)=-1
and
(2.7) Fin+1)=1-7 forevery nehB.

In the next part we deduce from (2.7) that
(2.8) F(n) = xa(n) for every n €N,
where x4(n) denotes the non-principal Dirichlet character (mod 4). This re-
lation with £ =1 (mod 4) implies that F'(k) = 1, which contradicts to (2.6).
Since F'(3) = —1, it follows from (2.7) that
F(2)=-F(2)F(3)=—-F(6)=-F(1?>+2>4+1)=—(1-5) =0,
F(7)=—-F@B)F(7) = —F(21) = —F(2* + 4° + 1) = —(1 - 20) = —1,
— _F(35) =

(35) = —F(32+5>+1)=—(1-34) =
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Thus we have proved that F(n) = x4(n) for n € {1,2,3,4,5,6,7,8,9,10}.
Now assume that F(n) = x4(n) for all n < P, where P > 11. We will prove

that F(P) = x4(P). Since F' € M*, we may assume that P = p € P. One can
check that there are n,m € N such that

n? 4+ m? 4+ 1=pQ, where Q <p, (Q,2)=1.
Then n = m (mod 2), x4(pQ) = (—1)" and
F(n® +m® +1)=1-n%+m? = (-1)" = xa(pQ),
consequently we infer from our assumptions and from (2.7) that

CF(pQ)  Fn*+m?+1)  xa(pQ)
FO=7Q = F@ @ ~e®

This relation shows that F(n) = x4(n) for alln € N

Thus the case I does not occur.

The case II: p=3, K =-1, k=2 (mod 3), H(m) = x5(m).

In this case, we have
F(n?>4+m? +k)=x5(n)+x5(m) —1 for every n,m € N.
It is clear to check that
X5(n) +xi5(m) —1 = x3(n® +m? +2) for every n,m €N,
consequently
(2.9) Fn+k)=x3(n+2)=x3(n+k) forevery neb,

where x3(n) is the non-principal character (mod 3), i. e. x3(0) =0, x3(1) =
1,x3(2) = —1.

Let us note that for o € B and n € £ the condition an ¢ B may hold only
in the case a = 2u? and 1 = 2v2. Thus, we have

(2.10) n(n*+m?) € B forevery n €& and n,m € N,n # m.

Consequently, we have 13k = (22 + 3%)k € B, 25k = (42 +5%)k € B, 90k =
(32 +9%)k € B and 97k = (4% + 9%)k € B. Thus, we infer from (2.9) that

F(RF2)F(7) = F(k)F(14) = F(13k + k) = x3(13k + k) =
= x3(k)x3(14) = x3(2)x3(2)x3(7) = 1,
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F(k)F(2)F(13) = F(k)F(26) = F(25k + k) = x3(25k + k) =
= x3(k)x3(26) = x3(2)*x3(13) = 1,

F(kE)F(T)F(13) = F(k)F(91) = F(90k + k) = x3(90k + k) =
= x3(k)x3(91) = x3(2)x3(1) = —1
and
F(K)F(2)F(7)? = F(k)F(98) = F(97Tk + k) = x3(97k + k) =
= x3(k)x3(98) = x3(2)x3(2) = 1.
We infer from these relations that
F(ny=1, F(2)=-1, F(13) =1 and F(k)= -1,
which with (2.9) and (2.10) implies
(2.11)
Fn?+m?+1)=-Fk)Fn*>+m?>+1) = —F(k(n2+m2)+k> =
= —xa (b %) + k) = “xa(W)xa(n® +m? +1) =

= x3(n* +m? +1) for every n,m € N,n # m.
Since F'(2) = —1 and F(7) =1, it follows from (2.11) that
F(3)=—-F(2)F(3)=—-F(6) = —F(1> +2> 4+ 1) = —x3(6) =0

and
F(5) = F(5)F(7) = F(35) = F(3* + 5 + 1) = x3(35) = —1.
Thus we have proved that F(n) = x3(n) for n € {1,2,3,4,5,6,7,8,9,10}.

Now assume that F(n) = x3(n) for all n < P, where P > 11. We will prove
that F(P) = x3(P). Since F € M*, we may assume that P = p € P. One can
check that there are n,m € N,n # m such that

n?+m?+1=pQ, where Q <p, (Q,3) =1.

Then we infer from our assumptions and from (2.11) that

_F(pQ) Fn*+m?+1) x3(pQ)
PO =Fgy = FQ ~ @) ¢
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This relation shows that F(n) = x3(n) for all n € N, therefore (T4) is thus
proved.

The case III: p=2, K =0, k=0 (mod 2), H(m) = x5(m).

We prove that this case does not occur. Indeed, we have
F8+k)=F(22+22+k) = x5(2) +x5(2) + K =0,
which implies that F'(2) = 0 or F(Q) = 0, where Q|k + 8, (Q,2) = 1. The case
F(2) = 0 is not occur, because
0= F(2)F<1 + g) = F<12 r12 k) =)+ 1)+ K =2
If F(Q) =0,(Q,2) =1, then there are n,m € N such that
n2+m?+k=0 (mod Q@) and (n,2) = (m,2)=1.
Then

n24+m2+k

0=F(QF( 0

):F(n2+m2+k) =x3(n) + x5(m) + K =2,

which is impossible.

The case IV: p=3, K =0, k=0 (mod 3), H(m) = x5(m).
We prove that this case does not occur.

Indeed, we have
(k+3)2%+1+k=(k+2)(k+5),
which implies that

0=x3(k+3)+x3(1) + K — (x5(1) + x5(1) + K)(x5(1) + x3(2) + K) =
=1-22="_3.

This is impossible.

Lemma 5 is proved.

Lemma 6. Assume thatk € N, K € C. Then there isn’t a function F € M*
such

(2.12) F(n*>4+m?+k)=xs5(n) +xs(m)+ K for every n,m €N,

where xs(n) is the Dirichlet non-principal character (mod 5).



On the equation F(n? +m? +k) = H(n) + H(m) + K 145

Proof. Assume in the contradiction that there is ' € M™* such that (2.12) is
true.

We infer from the following relations

(k+25)2 + 254k = (k + 25)(k + 26),
(k 4+ 169)? + 169 + k = (k + 169)(k + 170),
(k+676)% + 676 + k = (k + 676)(k + 677)

that
F((k +25)2 + 25 + k) — F(k +25)F(k + 26) =
= X5(k) + x5(5) + K — (x5(3) + x5(4) + K)(x5(1) + x5(5) + K) =
=xs(k) + K — K(1+ K) = xs(k) - K* =0,
F((k +169) + 169 + k:) ~ F(k +169)F(k + 170) =
= x5(k +4) + x5(13) + K — (x5(5) + x5(12) + K)(x5(1) + x5(13) + K) =
=xs(k+4) -1+ K —(-1+K)K = xs5(k+4) — (K —1)> =0
and
F((k: +676)2 + 676 + k) — F(k + 676)F(k + 677) =

= xs(k +1) + x5(26) + K — (x5(10) + x5(24) + K)(x5(1) + x5(26) + K) =
=xs(k+1)+14+K—(1+K)2+K)=ys(k+1)—(K+1)%=

[ V)
o

These imply that
(), x5+ 1), x5k o+ 4)) = (K2, (K +1)2, (K = 1)%).
Since xs5(n) € {1,-1,—1,1,0} for every n € N, we have
(k) x5+ 1), x5k o+ 4)) = (K2 (K + 1), (K = 1)%) €
e {(1, ~1,0),(~1,-1,1), (=1,1, -1), (1,0, —1), (0, 1,1)}.
This relation is true in the following case:
(2.13) k=0 (mod5), K =0, xs5(k) =0, xs5(k+1) =xs5(k+4) =1.

Since
(k+10)? +4+k=(k+13)(k +8),
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and so from (2.12) and (2.13) we have
0= F((k+ 10)2 + 22 +k) P2+ R+ R)F(22+ 22+ k) =
= (xsk +10) + x5(2) + K ) = (6:(2) +x5(3) + K)(2x5(2) + K) =
=1 (=5

which is impossible.

Lemma 6 is proved.
3. Proof of Theorem 1.

It is easy to check that the functions defined in (T1), (T2), (T3) and (T4)
satisfy the functional equation (1.1). Now we prove the ”only if 7 part.

Assume that k € &, K € C and F, H € M* satisfy (1.1). Since H € M*,
using (2.1), we have

0 = H(nm) — Hm)H <m>
= A(nm)? + S(n ( (An? + S(n))(Am? —|—S(m))) =
= (A — A%)n*m? — AS(m)n® — AS(n)m? + S(nm) — S(n)S(m)

holds for every n, m € N. Since S(n) is an bounded function, the above equation
shows that

A? =A
(3.1) AS(n) =0 forevery neN
S(nm) =S8n)S(m) for every n,m €N, (n,m)=1.

The first equation implies A € {0, 1}.

a) Assume that A = 0. Then (2.1) implies that H(n) = S(n). It follows
from A = 0 and from the definitions of A, we have
1
H(5) = Z(_H(Z)H(S) +H(3)+ H(2)+3).
Since H € M*, we have H(1) =1, H(4) = H(2)?, H(6) = H(2)H(3), H(8) =
H(2)3, H(9) = H(3)?, H(10) = H(2)H(5) and H(12) = H(2)?*H(3). It can
check from Lemma 1 that
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H(7) = X(-H(H(3)+H(3)+ H(2)+1),
H®8) =3(-HQ2)H3)+H(3)+ H(2) —1+2H(2)?),
(3.2) H9) =3L1H@H®GB)+H@B)—H((2)+1),
' H(10) =1(H(2)H3) - H(3)+3H(2)+1),
H(11) =1,
H(12) =H(3) -1+ H(2)%

Furthermore, we infer from Lemma 2 that

Iy =X-H(@2)HB)+H(3)— H(2)+3—2H(2)?),
Iy =3(-H(2H@B) - H3)+H(2)+1),

(3.3) Ty = L(H(2)H(3) - 2H(2)? — H(3) + H(2) + 1)
I's =XH@2)H3)—H(3)—H(2)+1),
I =1HE2H®B) +H@B)—1+H(2)?)

and
(34)  H(0)=S8(0) :=Tax5(0) + Tax5(6) + Taxa(l — 1) + Tsx5(€) + T

These imply that

H(8) — H(2)® =—-1(H(2)-1)(2H(2)*+H3)-1)=0
H(9) — H(3)? = L(H(3) = 1)(~2H(3) + H(2) = 1) =0
H(10) — H(2)F(5) = 1(H(2)—1)(H(?2)+1)(H(3)—1) =0.

This system has four solutions

(H(2)7 H(3)) € {(11 1)7 (Oa 1)7 (17 O)a (_17 _1)}
In order to prove Theorem 1, we distinguish the proof for four cases.

Case (I): Assume that H(2) = 1, H(3) = 1. Then we infer from (3.2)
and (3.3) that

A:F2:F3:F4:F5:0 and Fil,
therefore it follows from (3.4) that H(m) =1 for every m € N.

Thus, Lemma 4 implies the proof of (T2) and (T3) of Theorem 1.
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Case (II): Assume that H(2) = 0,H(3) = 1. Then we infer from (3.2)
and (3.3) that

A:F3:F4:F5:F:0 and F2:1,

therefore it follows from (3.4) that H(m) = x5(m) for every m € N.

Lemma 5 implies that this case does not occur.

Case (III): Assume that H(2) = 1, H(3) = 0. Then we infer from (3.2)
and (3.3) that

A:F2:F4:F5:F:0 and ngl,

therefore it follows from (3.4) that H(m) = x5(m) for every m € N.
Thus, Lemma 5 implies the proof of (T4) of Theorem 1.

Case (IV): Assume that H(2) = —1, H(3) = —1. Then we infer from
(3.2) and (3.3) that

A:F2:F3:F4:F:0 and F5:1,

therefore it follows from (3.4) that H(m) = xs(m) for every m € N

Thus, Lemma 6 implies that this case does not occur.

b) Assume now that A = 1. Then (3.1) implies that S(n) = 0 for every
n € N and so H(m) =m? for every m € N. We obtain from (1.1) that

(3.5) F(n®>+m?+k)=n?>+m?+ K forevery n,méeN.
We shall prove that k = K. Since
(k+25)2 +254+ k= (k+25)(k+26) and 25 =52 =32 +43 26 = 1% 4 5%,
we infer from (3.5), using the fact F' € M* that

) O F((k +25)2 + 52 + k:) ~ F(k +25)F(k + 26) =
' =(k+25)2+52+ K — (25 + K)(26 + K) = —(K 4+ 50 + k)(K — k).
We also have

(k+100)%4+100+k = (k4+100)(k+101) and 100 = 10* = 62482, 101 = 1 +10?,

which with (3.5) implies
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0= F((k+100)* + 100 + k) — F ((k + 100)(k +101) ) =

(3.7) = (k4 100)% + 100 + K — (100 + K)(101 + K) =
= —(K +200 + k)(K — k).

It is obvious from (3.6) and (3.7) that k = K.
Now let ”
G(n) := ﬂ, G e M* for every n €N.
n

Then we infer from (3.5) and k = K that G(n>+m?+1) =1 for every n,m €
N, therefore Lemma 3 implies that G(n) =1 and F(n) =n for every n € N.
The proof of (T1) is finished.

Theorem 1 is proved.
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