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Abstract. We provide a brief survey on basic solution approaches for solving
the equilibirum problem defined by the Nikaido-Isoda-Fan inequality. Namely,
first we state the problem and consider its most important special cases including
the optimization, inverse optimization, Kakutani fixed point, variational inequal-
ity, Nash equilibrium problems. Next, we present some basic solution approaches
for the problem. Finally, as an application, we consider the famous Cournot-Nash
oligopolistic equilibrium model and discuss algorithms for solving it.

1. Introduction

Thoughout the paper let H be a real Hilbert space. In what follows we mainly
work on the weak topology of H. Let C ⊆H be a closed convex set and f : H×H→
R∪{+∞}. We suppose that f (x,y) ∈ R for every x,y ∈ C. As usual, we call f an
equilibirum bifunction if f (x,x) = 0 for every x ∈C. The problem to be considered in
this paper is formulated as follows.

(EP) Find x∗ ∈C such that f (x∗,y)≥ 0 for all y ∈C.

The inequality appeared in problem (EP) was first used by Nikaido and Isoda in 1955
[37] in a non-cooperative convex game. In the seminal paper [19] in 1972, Fan called
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problem (EP) a minimax inequality and established solution existence results for it
when C is convex, compact and f is quasiconvex on C. To our best knowledge, up to
now there does not exist an algorithm for finding a solution of the problem considered
in [19]. This result by Fan was extended by Brezis, Nirenberg, and Stampachia in
[11]. In 1984, Muu [29] called (EP) a variational inequality and studied its some
stability properties. In 1992, Muu and Oettli [32] called problem (EP) an equilibrium
one, and a penalty algorithm was proposed for finding a solution of (EP) when f
possesses certain monotonicity properties. After the appearance of the paper [10] by
Blum and Oettli in 1994, problem (EP) attracted much attention of many authors, see
e.g. the interesting monographs by Bigi et al. [8], mainly for solution technique issues
in Hilbert spaces, and by Kassay et al. [24], mainly for theoretical aspects in vector
topological spaces.

It worth mentioning that when f (x, ·) is convex and subdifferentiable on C, the
equilibrium problem (EP) can be reformulated as the following multivalued varia-
tional inequality.

(MultiV I) Find x∗ ∈C,v∗ ∈ F(x∗) such that ⟨v∗,x− x∗⟩ ≥ 0 for all x ∈C,

where F(x∗) = ∂2 f (x∗,x∗) with ∂2 f (x∗,x∗) being the diagonal subdifferential of f
at x∗, that is the subdifferential of the convex function f (x∗, ·) at x∗. In the case
f (x, ·) is semi-strictly quasiconvex rather than convex, problem (EP) can take the
form of (MultiV I) with F(x) := Na f (x,x) \ {0}, where Na f (x,x) is the normal cone of
the adjusted sublevel set of the function f (x, ·) at the level f (x,x), see [5]. More
details about the links between equilibrium problems and variational inequalities can
be found in [6].

In this paper we provide a brief survey on solution approaches for problem (EP)
in real Hilbert spaces. Namely, in the next section we present some important special
cases of problem (EP) such as optimization, reverse optimization, multivalued varia-
tional inequality, the Kakutani fixed point, the Walras and Nash equilibrium problems.
The third section is devoted to the discussion of some basic solution approaches for
problem (EP) involving bifunctions having certain monotonicity properties. We close
the paper by showing a formulation of the Cournot-Nash oligopolistic equilibrium
model in the form of equilibrium problem (EP) and discuss algorithms for solving
the model for the convex and quasiconcave cost functions.

2. Special cases

Although the formulation of problem (EP) is very simple, it contains a lot number
of important problems as special cases. In [32] it has been shown that the opimization,
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Kakutani fixed point and multivalued variational inequality problems can be formu-
lated in the form of (EP). In [10] the Nash equilibrium problem has been formulated
equivalently as a problem of the form (EP). Some other problems such as inverse
optimization, vector optimization have been converted equivalently into problems of
the form (EP), see e.g. [8]. For more detail, below we present the form (EP) for the
Kakutani fixed point, multivalued variational inequality, Nash equilibrium and inverse
optimization problems. The other ones can be found in e.g. [8, 10, 24].

• Optimization. Consider the minimization problem

(OP) min
x∈C

g(x)

in which g : H → R is a single-valued function and C ⊂ R is a closed convex
set. Let f (x,y) := g(y)−g(x) and consider the equilibrium problem

(EP1) Find x∗ ∈C such that f (x∗,y)≥ 0 for all y ∈C.

It is clear that x∗ ∈C a global minimizer of (OP) if and only if

g(x∗)≤ g(y) ∀y ∈C,

or equivalently,
f (x∗,y) = g(y)−g(x∗)≥ 0 ∀y ∈C,

i.e., x∗ is a solution to (EP1). It means that the minimization problem (OP) is
equivalent to the equilibrium problem (EP1) in the sense that their solution sets
coincide.

• Kakutani fixed point. Let C ⊂ Rn be a compact convex set, F : C ⇒ C an up-
per semicontinuous multi-valued mapping with convex, compact values. The
Kakutani fixed point problem asks:

(KP) Find x∗ ∈C such that x∗ ∈ F(x∗).

The Kakutani fixed point theorem, which is one of famous fixed point ones,
states that such a point x∗ exists. In a special case, when F is single valued,
this theorem becomes the Brouwer theorem that was proved in 1910. Up to
now there does not exist an efficient algorithm for finding a fixed point for the
Brouwer mapping. In 1967 Scarf, an economist, first developed an algorithm
for finding a Brouwer fixed point in Rn (see [43]), but many computational
experiments show that this algorithm and its modifications can only solve the
problem with moderate dimension n. In order to formulate the Kakutani fixed
point problem in the form of problem (EP), we define the bifunction f :C×C →
R by taking

f2(x,y) := max
u∈F(x)

⟨x−u,y− x⟩
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for each x,y ∈C. It is shown in [32] that a point x∗ solves the problem (KP), i.e.
x∗ ∈ F(x∗), if and only if it is a solution to the following equilibrium problem

(EP2) Find x∗ ∈C such that f2(x∗,y)≥ 0 for all y ∈C.

In other words, the Kakutani fixed point problem (KP) is equivalent to the equi-
librium problem (EP2) in the sense that their solution sets coincide.

• Variational inequality problem. Let F : C ⇒H be a (multivalued) operator with
convex, (weakly) compact values and ϕ :H→R∪{+∞} such that ϕ(x) is finite
on C. The mixed variational inequality problem stated in [18] is formulated as
(MixedV I)

Find x∗ ∈C such that ∃u∗ ∈ F(x∗) : ⟨u∗,y− x∗⟩+ϕ(y)−ϕ(x∗)≥ 0 ∀y ∈C.

Clearly, when F is single valued, this problem is reduced to the following one:

Find x∗ ∈C such that ⟨F(x∗),y− x∗⟩+ϕ(y)−ϕ(x∗)≥ 0 ∀y ∈C.

It is worth noting that, when C is a convex cone and ϕ is a constant, problem
(MixedV I) becomes the following complementarity one.

(MC) Find x∗ ∈C such that ∃u∗ ∈ F(x∗) : ⟨u∗,x∗⟩= 0.

Let
f3(x,y) := max

u∈F(x)
⟨u,y− x⟩+ϕ(y)−ϕ(x)

and consider the following equilibrium problem

(EP3) Find x∗ ∈C such that f3(x∗,y)≥ 0 for all y ∈C.

It was proved in [32] that a point x∗ is a solution of problem (MixedV I) if and
only if it is also a solution to (EP3). Therefore, (MixedV I) is equivalent to the
equilibrium problem (EP3) in the sense that they share the same solution set.

• Nash equilibria. In a noncooperative game with N players, each player i has
a set of possible strategies Ci ⊆ Rni and aims at minimizing a cost function
gi : C → R with C := C1 × . . .×CN . By definition, a Nash equilibrium point
is any point in C such that no player can reduce her/his cost by unilaterally
changing her/his strategy. The Nash equilibrium problem is to find such a Nash
equilibrium point, i.e. a point x∗ ∈C such that

gi(x∗)≤ gi(x∗[yi]) ∀yi ∈Ci, i = 1, . . . ,N,

where x∗[yi] stands for the vector obtained from x∗ by replacing the component
x∗i with yi. If we take f4 : C×C → R defined as

f4(x,y) :=
N

∑
i=1

[
gi(x[yi])−gi(x)

]
,
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and consider the following equilibrium problem

(EP4) Find x∗ ∈C such that f4(x∗,y)≥ 0 for all y ∈C,

then it is not hard to see that x∗ is a solution to the Nash equilibrium problem if
and only if it is a solution to (EP4).

• An inverse optimization. Let C1 ⊆ Rn and C2,C3 ⊆ Rm be convex sets and
g j : C2 → R( j = 1, . . . ,m). Let

h2(p,q) :=
m

∑
j=1

p jg j(q).

The inverse problem reads as
(InvP)
Find p∗ = (p∗1, . . . , p∗n)

T ∈C1 such that argmin{h2(p∗,q) | q ∈C2}∩C3 ̸= /0.

In some economics models p∗ plays the role of a price that is required to be
found such that the latter inclusion is satisfied. Clearly, this inverse problem
can be formulated as a noncooperative game with three players. The first player
controls p by choosing a point p∗ ∈ C1, the second one solves the problem
minq∈C2 f2(p∗,q), while the third player controls her/his strategy in C3. Of
course one can extend this model by assuming that the first and third players
have more general lost functions, say, h1(p,q,r) and h3(p,q,r). Following the
equivalent of the Nash equilibrium problem in noncooperative game with (EP4)
as discussed above, the inverse optimization problem (InvP) in turn can take the
form of an equilibrium problem (EP).

3. Solution approaches

3.1. Basic solution existence

Under the condition f (x,x) = 0 for every x ∈ C, it follows immediately that x∗ is
a solution to problem (EP) if and only if x∗ ∈ argmin{ f (x∗,y) | y ∈ C}, i.e. x∗ is a
fixed point of the mapping S(·) with S(x) = argmin{ f (x,y) | y ∈ C}. The first result
for solution existence of the equilibrium problem (EP) is due to Fan [19] in 1972.
There, Fan called (EP) a minimax inequality and established the following theorem.
His proof was based upon the KKM Lemma (a variant of a fixed point theorem).

Theorem 3.1. (see [19]). Let C be a compact, convex set in a Hausdorff topological
vector space. Let f : C×C → R be a continuous bifunction such that for every x ∈C
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we have f (x,x) = 0 and f (x, ·) is quasiconvex on C. Then, the equilibrium problem
(EP) is solvable, i.e., there exists x∗ ∈C such that f (x∗,y)≥ 0 for every y ∈C.

To our best knowledge, up to now there does not exist an efficient algorithm for
approximating the solution mentioned in this theorem.

3.2. Some solution approaches

A key assumption for equilibrium problem (EP), that we assume in what follows,
is that the bifunction f is convex with respect to its second variable on the feasible con-
vex set C, i.e., f (x, ·) is convex on C for any fixed x ∈C. Under this main assumption,
we have the following auxiliary problem principle.

3.2.1. Auxiliary problem principle and fixed point

The auxiliary problem principle first was introduced by Cohen [12] for the opti-
mization and variational inequality problems and extended to the equilibrium problem
[28].

Theorem 3.2. (Auxiliary problem principle). Suppose that f (x, ·) is subdifferentiable
on C for every x ∈C. Then a point x∗ is a solution of problem (EP) if and only if it is
also a solution to the following regularized equilibrium one

(REP) Find x∗ ∈C such that fρ(x∗,y) := f (x∗,y)+
1

2ρ
∥y− x∗∥2 ≥ 0 ∀y ∈C,

where ρ > 0.

A main advantage of the regularized problem is that the bifunction fρ(x, ·) is
strongly convex on C, which implies that the mathematical program min{ fρ(x,y) |
y ∈ C} always admits a unique solution. Thus x∗ is a solution of (EP) if and only
if x∗ = s(x∗), where s(x∗) is the unique solution of the strongly convex mathematical
programming problem min{ fρ(x∗,y) | y ∈C}, that means x∗ is a fixed point of s(·).

It is worth noting that, under some continuity property of the bifunction f , the
solution-map s : C →C is continuous, and therefore, by the Brouwer fixed point theo-
rem, it has a fixed point whenever C is compact. In order to find a fixed point of this
mapping, one needs additional assumptions to ensure that the mapping has a certain
Lipschitz property such as contractive or nonexpansive. Under the properties, one can
derive iterative scheme for approximating a fixed point of the map s.

For this purpose the following monotonicity concepts for a bifunction are com-
monly used [10], see also [7] Section 20.

Definition 3.1. Let f : H×H→R∪{+∞} and D ⊆H such that f is finite on D. The
bifunction f is said to be
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(i) strongly monotone on D with modulus µ > 0 (shortly µ-strongly monotone) if

f (x,y)+ f (y,x)≤−µ∥x− y∥2 ∀x,y ∈ D;

(ii) µ-strongly pseudomonotone on C if

f (x,y)≥ 0 ⇒ f (y,x)≤−µ∥x− y∥2;

(iii) monotone on D if

f (x,y)+ f (y,x)≤ 0 ∀x,y ∈ D;

(iv) pseudomonotone on D if for all x,y ∈ D we have

f (x,y)≥ 0 ⇒ f (y,x)≤ 0.

More types of monotonicity can be found in e.g. [9].
The monotonicity notions of a bifunction are generalizations of those for a (multi-

valued) operator. We recall from [7, 42] that a (multi-valued) operator F with compact
values is said to be

(i) strongly monotone on C with modulus µ > 0 (shortly µ-strongly monotone) if

⟨u− v,x− y⟩ ≥ µ∥x− y∥2 ∀x,y ∈C,u ∈ F(x),v ∈ F(y);

(ii) µ-strongly pseudomonotone on C if for all x,y ∈C,u ∈ F(x),v ∈ F(y) we have

⟨u,y− x⟩ ≥ 0 ⇒ ⟨v,y− x⟩ ≤ µ∥x− y∥2;

(iii) monotone on C if

⟨u− v,x− y⟩ ≥ 0 ∀x,y ∈C,u ∈ F(x),v ∈ F(y);

(iv) pseudomonotone on C if for all x,y ∈C,u ∈ F(x),v ∈ F(y) we have

⟨u,y− x⟩ ≥ 0 ⇒ ⟨v,y− x⟩ ≥ 0.

Clearly the strongly monotonicity implies the monotonicity, which in turn implies
the pseudomonotonicity.

The following Lipschitz-type for a bifunction, which is an extension of the Lips-
chitz property of a map, is often used.

Definition 3.2. (see [27]) The bifunction f is said to be Lipschitz-type on D with the
constants L1,L2 if

f (x,y)+ f (y,z)≥ f (z,x)−L1∥x− y∥2 −L2∥y− z∥2 ∀x,y,z ∈ D.
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Clearly, in the optimization case, when f (x,y) = g(y)−g(x), then f is monotone
and Lipschitz-type for any function g.

For the statement of the next lemma, we need the following definition.

Definition 3.3. We say that a multi-valued mapping F : H ⇒ H is Lipschitz with
Hausdorff distance on a closed convex set C ⊂ H if there exists a so-called Lipschitz
constant L > 0 such that

dH(F(x),F(y))≤ L∥x− y∥ ∀x,y ∈C,

in which

dH(F(x),F(y)) = max{ sup
u∈F(x)

inf
v∈F(y)

∥u− v∥, sup
v∈F(y)

inf
u∈F(x)

∥u− v∥}

is the Hausdorff distance between two sets F(x) and F(y).

For the multi-valued mixed variational inequality problem (MixedV I), by taking

f (x,y) := max
u∈F(x)

⟨u,y− x⟩+ϕ(y)−ϕ(x)

we have the following relationships.

Lemma 3.1. (see [41]) (i) If F is Lipschitz with Hausdorff distance on C with Lipschitz
constant L, then f is Lipschitz-type on C with constants L1 = Lξ

2 ,L2 = L
2ξ

with any
ξ > 0.

(ii) If F is monotone (resp., strongly monotone, pseudomonotone), then f is strongly
monotone (resp., monotone, pseudomonotone) on C.

The following problem is called Minty (or dual) problem for (EP).

(DEP) Find y∗ ∈C such that f (x,y∗)≤ 0 ∀x ∈C.

The following theorem provides a relationship between (EP) and (DEP).

Theorem 3.3. (see [29]). (i) If f is pseudomonotone on C, then every solution (if
exists) of problem (EP) is also a solution of problem (DEP).

(ii) Conversely, if f (x, ·) is lower semicontinuous and for any y ∈ C the function
f (·,y) is hemicontinuous at zero (i.e., for any x′ ∈ C one has limt→0+ f (tx + (1 −
t)x′,y)= f (x′,y) for all y∈C), then every solution of problem (DEP) is also a solution
of (EP).

Note that, since f (x, ·) is convex, the solution set of the Minty problem is a convex
set as it is the intersection of a family of convex sets of the type {y ∈C | f (x,y)≤ 0}.
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3.2.2. Contraction fixed point method

This method is based upon the Banach contraction fixed point theorem. Namely,
we have the following theorem.

Theorem 3.4. (see [33]). Suppose that
(i) for each x ∈C, the function f (x, ·) is convex, subdifferentiable on C;
(ii) f is µ-strongly monotone and Lipschitz type with constants L1,L2 on C.

Then one can choose regularization ρ > 0 (depending on µ and the Lipschitz constants
L1,L2) such that the mapping s(·) : C →C defined by s(x) = argmin{ fρ(x,y) | y ∈C}
is contractive on C. Consequently, for any starting point x0 ∈C, the sequence {xk} is
defined by xk+1 = s(xk) satisfying

∥xk+1 − x∗∥ ≤ α∥xk − x∗∥ ∀k ≥ 0,

provided that 0 < ρ < 1/(2L2) and α = 1−2ρ(µ −L1), where x∗ is the unique solu-
tion of problem (EP).

Note that we can replace the regularization function ∥·∥2 in (REP) by any strongly
differentiable convex one (Bregman function, for instance). This contraction method
can be extended to the case f is strongly pseudomonotone in e.g. [16]. Note further-
more that, under the assumption of the above theorem, problem (EP) always admits
a unique solution even the feasible set C may not be compact (see [10]). Some other
results for solution existence of problem (EP) can be found in e.g. [10] and the mono-
graphs [8, 24, 25].

For the variational inequality problem concerning single-valued mapping F :

(V I) Find x∗ ∈C such that ⟨F(x∗),y− x∗⟩ ≥ 0 ∀y ∈C,

we have s(x) = PC(x− 1
2ρ

F(x)), where PC stands for the metric projection onto the
closed convex set C. In this case we have xk+1 = PC(xk − 1

2ρ
F(xk)). It is well known

that if F is merely monotone (not strongly monotone or not strongly pseudomono-
tone), the sequence of the iterates {xk} may not be convergent. For multivalued
monotone variational inequality problems, an algorithm by coupling the Banach it-
erative scheme and the proximal point method was developed in [2].

3.2.3. Extragradient method

The extragradient method was introduced by Korpelevich [26] for optimization
and saddle point problems. Then it has been extended to the equilibrium problem see
e.g. [41]. Namely, we have the following results.

Theorem 3.5. (see [41]). Suppose that the bifunction f is subdifferentiable, pseu-
domonotone, and Lipschitz-type on C with constants L1,L2, while f (·,y) is upper
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semicontinuous for each y ∈C. The sequence {xk} of iterates defined by

yk = argmin{ fρ(xk,y) := f (xk,y)+
1

2ρ
∥y− xk∥2 | y ∈C},

xk+1 = argmin{ fρ(yk,y) := f (yk,y)+
1

2ρ
∥y− xk∥2 | y ∈C}

converges to a solution of (EP) provided 0 < ρ < min{1/(2L1),1/(2L2)}.

Note that, as before, we can replace the regularization function ∥ ·∥2 by any Breg-
man one.

In order to avoid the Lipschitz-type condition, a linesearch extragradient algorithm
has been described in [41] and its convergence has been proved. Recently, in [21], an
algorithm, where the stepsize is updated at each iteration (without linesearch), for
solving pseudomonotone equilibrium problem has been developed.

As we have seen, equilibrium problem (EP) can be formulated equivalently as
a fixed point problem. When the bifunction is strongly monotone, the fixed point
map is contractive. The following results in [4] show that when f posseses certain
monotonicity property, problem (EP) can be formulated as a fixed point problem with
the map having certain nonexpansive or generalized nonexpansive property. For this
purpose, let us define two mappings, the proximal mapping and the composited map-
ping. The proximal mapping is denoted by Tρ and defined as the solution set of the
regularized strongly monotone equilibrium problem

Find z ∈C such that f (z,y)+
1

2ρ
⟨y− z,z− x⟩ ≥ 0 ∀y ∈C.

For this mapping we have the following theorem

Theorem 3.6. (see [7]) Suppose that
(i) the solution set S(EP) of problem (EP) is not empty;
(ii) f (·,y) is upper semicontinuous and f (x, ·) is lower semicontinuous, convex on

C for every x,y ∈C.
Then for any ρ > 0, the mapping Tρ is defined everywhere, single valued, and firmly
nonexpansive, i.e.,

∥Tρ(x)−Tρ(y)∥2 ≤ ⟨Tρ(x)−Tρ(y),y− x⟩ ∀x,y ∈C.

Moreover the solution set of (EP) coincides with the fixed point set of Tρ .

The composited mapping is defined for each x ∈C by taking

Cρ(x) := argmin{ f (Bρ(x),y)+
1

2ρ
∥y− z∥2 | y ∈C},

where
Bρ(x) := argmin{ f (x,y)+

1
2ρ

∥y− x∥2}.
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Theorem 3.7. (see [4]). Assume that
(i) The solution set S(EP) ̸= /0;
(ii) f is subdifferentiable and satisfies the Lipschitz-type with constants L1,L2.
(iii) f is jointly continuous on an open set containing C×C.

Then Cρ is quasinonexpansive and demiclosed at 0 provided that

0 < ρ < min{1/(2L1),1/(2L2)}.

A survey on the relationship between the fixed point and the equilibrium problem
(EP) can be found in [30].

3.2.4. The proximal and Tikhonov regularization methods

The equilibrium problem (EP), in general, has many solutions, so it is a ill-posed
one. The two main regularization methods commonly used to handle ill-posedness
are the Tikhonov and proximal ones. The Tikhonov and proximal point regularization
methods have been used to various problems in different fields of applied mathematics.
These methods have been extended by Moudafi in [28]. The key idea of these methods
is of the use of a suitable regularization bifunction to define regularized equilibrium
problems depending on regularization parameters, thereby to obtain a trajector that
converges to a solution of the original problem whenever the parameter tends to a
suitable value.

In a regularization method a sequence of regularized equilibrium problems is de-
fined, at each iteration k, as

(3.1) Find xρk ∈C such that fρk(x
ρk ,y) := f (xρk ,y)+

1
2ρk

gk(xρk ,y)≥ 0 ∀y ∈C,

where ρk > 0 (regularization parameter) and gk is a strongly monotone bifunction.
First we consider the Tikhonov regularization method, where the regularized prob-

lem is defined with 1
2ρk

= ck and gk := ⟨x− xg,y− x⟩ (does not depend on k) and xg is
a guessed solution. Then the regularized problem takes the form

(T REPk) Find xk ∈C such that fck(x
k,y) := f (xk,y)+ck⟨xk −xg,y−xk⟩ ≥ 0 ∀y ∈C.

We make use the following assumptions.
(A1) f (·,y) is (weakly) upper semicontinuous for each y ∈C;
(A2) f (x, ·) is lower semicontinuous and convex for each x ∈C.

Then we have the following result.

Theorem 3.8. (see [23]) Suppose that f is monotone on C. Then problem (T REPk)
is strongly monotone (hence always admits a unique solution xk) and xk converges
strongly to some x∗ with ck ↘ 0 as k →+∞.
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Unlike the Tikhonov regularization, in the proximal regularization the regularized
bifunction at each iteration k depends on the previous iterate, such a bifunction often
used is

fk(x,y) := f (x,y)+ ck⟨x− xk−1,y− x⟩, where ck > 0.

For the proximal regularization method we have the following convergence result.

Theorem 3.9. ([23]) Suppose that f is monotone on C and Assumptions (A1), (A2)
are satisfied. Then, for each k, the regularized problem

(PREPk) Find xk ∈C such that fk(xk,y) := f (xk,y)+ck⟨xk−xk−1,y−xk⟩≥ 0 ∀y∈C

is strongly monotone (hence always admits a unique solution). Furthermore, xk con-
verges weakly to some x∗ as k →+∞ and ck → c <+∞.

In the case f is pseudomonotone, but not monotone, since the sum of a pseu-
domonotone and a strongly monotone bifunctions may not be monotone, even not
pseudomonotone, the regularized problems for both Tikhonov and proximal regular-
ization methods may have many solutions. However, any trajector converges to the
same solution as shown in the following theorem.

Theorem 3.10. (see [22]). Suppose that f is pseudomonotone on C and satisfies As-
sumptions (A1), (A2). Suppose furthermore that the solution sets of the original prob-
lem (EP) and each regularized problem (T REPk) are nonempty. Let xk be any solution
of the regularized problem (T REPk). Then the sequence {xk} converges strongly to
the unique solution of the strongly monotone equilibrium problem

(BEP) Find x ∈ S such that g(x,y)≥ 0 ∀y ∈ S

that is nearest to xg, where S denotes the solution set of the original problem (EP) and
g(x,y) := ⟨x− xg,y− x⟩.

This result allows the bilevel level methods can be applied to the regularized pseu-
domonotone problem (EP) by solving the strongly monotone equilibrium problem
(BEP). Since S is closed convex and g is strongly monotone, problem (BEP) always
admits a unique solution. An algorithm for solving (BEP) was developed in [14].

For the proximal regularization method, we have a similar result, namely as fol-
lows.

Theorem 3.11. (see [22]). Under the assumptions of Theorem 3.10, the sequence
{xk} with xk being any solution of the regularized problem (PREPk) converges weakly
to a solution of problem (EP) provided 0 < ck → c <+∞.
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3.2.5. The gap function method

An important solution approach to equilibrium problem is based upon formula-
tions of it in the form of a mathematical programming problem by using a gap func-
tion. We recall that g : C →R is called a gap function for problem (EP) if g(x)≥ 0 for
every x ∈C and g(x) = 0 if and only if x solves (EP). The first gap function is called
the Auslender gap function which is defined as g(x) :=−min{ f (x,y) | y∈C}. Clearly
it is a gap function thanks to the condition g(x,x) = 0 for every x ∈C. The main dis-
advantage of this gap function is that the problem defining it may not be solvable,
and if yes, its solutions may not be unique. In order to overcome this disadvantage,
Fukushima in [20] defined the following gap function that is called regularization gap
function by taking for x ∈C,ρ > 0, the function

g(x) :=−min{ f (x,y)+
1

2ρ
∥y− x∥2 | y ∈C}.

Since the objective function of this optimization problem is strongly convex, it is al-
ways uniquely solvable. It is easy to see that it indeed is a gap function for (EP). The
gap functions allow that methods of mathematical programming could be applied to
solve equilibrium problems. However, since the gap function is not convex in general,
finding its global minimum is a difficult task. Algorithms using a gap function for
Minty equilibrium problem were proposed in [39, 40]. Other algorithms for Minty
equilibrium problem can be found e.g. [15]. Some algorithms by coupling the extra-
gradient method with the bundle, inertial (ball heavy), interior, ergodic and splitting
techniques have been proposed in [1, 3, 17, 36, 38, 44] for solving pseudomonotone
problem (EP).

4. Cournot-Nash oligopolistic equilibrium model

An important model for the Nash equilibria in economics is the Cournot-Nash
oligopolistic model. This model was first introduced in [13] in 1838 by Cournot, a
French economist, then it has been extended by using the famous Nash equilibrium
concept.

An oligopolistic market model concerns with n firms (producers) that produce
a common homogeneous commodity. Each firm has a profit function which is the
difference between the income defined by the price and the cost. Each firm attempts
to maximize its profit by choosing the corresponding production level on its strategy
set.

In the classical model the price for all firms and the cost for each firm are given
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respectively as

p(x) := α −β

n

∑
j=1

x j and c j(x j) = ξ jx j +η j,

where α > 0 (in general is large) and β > 0 (often is small), ξ j > 0,η j > 0). So the
price depends on the sum of the commodity, while the cost for each firm depends only
on the amount of the commodity that it produces. Then the profit of each firm j is

(4.1) f j(x) := p(x)x j − c j(x j) ( j = 1, . . . ,n).

Actually, each firm seeks to maximize its profit by choosing the corresponding pro-
duction level under the presumption that the production of the other firms are paramet-
ric input. A commonly used approach to this model is based upon the famous Nash
equilibrium concept. A point (strategy) x∗ = (x∗1, . . . ,x

∗
n)

T ∈ C is said to be a Nash
equilibrium point of this Cournot-Nash oligopolistic market model if

(4.2) f j(x∗)≥ f j(x∗[x j]) ∀ j = 1, . . . ,n, ∀x j ∈C j.

It has been shown [31] that, mathematically, the problem of finding a Nash equilibrium
strategy for an oligopolistic market model with the profit function of each firm being
given by (4.1) can be formulated in the following mixed equilibrium problem.

(MEP) Find x∗ ∈C such that f (x,y) := ⟨B1x−α,y−x⟩+β

[ n

∑
j=1

y2
j −x2

j

]
≥ 0 ∀y∈C,

where B1 is the (n× n)-matrix whose every diagonal entry is zero and the others are
all β . It is well known (see [31]) that for this classical model, problem (MEP) can
be formulated equivalently in the form of a strongly convex quadratic program. In the
case there is a convex cost function rather than all are affine, the model can be formu-
lated as a monotone equilibrium problem (see e.g. [33]). In practice, since the cost
for producing a unit commodity does decrease as the amount of the commodity gets
larger, the cost is a concave increasingly function, the model then can be formulated
as the mixed equilibrium problem
(MEP1)

Find x∗ ∈C such that f (x,y) := ⟨B1x−α,y−x⟩+β

[ n

∑
j=1

c j(y j)−c j(x j)
]
≥ 0 ∀y ∈C.

When c j is concave even for only one j, the function f (x, ·), in general, is neither con-
vex nor quasiconvex, and therefore a local equilibrium point may not be a global one.
An algorithm for finding a stationary point of this nonconvex equilibrium problem was
developed in [34], whereas a branch-and-bound algorithm using global optimization
techniques for approximating the equilibrium problem (MEP1) was proposed in [35].
Recently in [45] an algorithm for solving problem (MEP1) with the bifunction f is
quasiconvex and pseudo-paramonotone.
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5. Conclusion

We have outlined some basic solution methods for solving equilibrium problems
under the two main assumptions that the bifunction involved possesses certain mono-
tonicity property and is convex in its second variable. Namely, we have shown how to
formulate the problem in the form of a fixed point one that satisfies a suitable contrac-
tion property or its generalized nonexpansiveness. We have also presented the auxil-
iary problem principle, the regularization techniques as well as extragradient and gap
function methods. Unfortunately, these solution methods may fail to apply directly to
the problems, where the bifunction involved is quasiconvex rather than convex. In our
opinion, research on efficient algorithms for finding a solution of the equilibrium prob-
lem whose solution existence has been proved by Ky Fan would be very interesting.
Further research for the following subjects might be of interest.

• Development of new more efficient algorithms for problem (EP);

• Solution algorithms for convex split feasibility problem of finding x∗ ∈C,F(x∗)∈
Q with C and/or Q being given implicitly as the solution sets of certain equilib-
rium problems;

• Extensions of the above mentioned methods to vector and set-valued equilib-
rium problems;

• Applications of problem (EP) to study models in game theory and in optimal
control;

• Solution algorithms for practical equilibrium models encounted in economics,
environments, and other fields by using the form of problem (EP);

• Solution methods for equilibrium problems where the bifunction is monotone
(not paramonotone) and quasiconvex with respect to its second variable.
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