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Abstract. In [4] M. Farber defined the topological complexity TC(X) of
a path-connected space X. Generalizing this notion, ten years later, Yu.
Rudyak introduced a sequence of invariants, called the higher topological
complexities TCn(X), for any path-connected space X in [7]. These in-
variants have their origin in the notion of the Schwarz genus of a fibration
defined in [8]. One of the tools used to calculate these invariants is the
product inequality for the Schwarz genus. In this paper, we will give a
generalization of the product inequality of the higher topological complex-
ity.

1. Introduction

LetX be a path-connected topological space, PX the space of all continuous
paths γ : I = [0, 1] → X with the usual compact-open topology.

Let’s consider the map

π : PX −→ X ×X .
γ 7−→ (γ(0), γ(1))
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In [4], M. Farber defined the topological complexity TC(X) ofX as the smallest
number k such that there exists an open covering {Ui, i = 1, ..., k} of X × X
with a continuous section si : Ui → PX of π on each Ui, i.e. π ◦ si = idUi .

In 2010 Yu. Rudyak (see [7]) introduced a series of invariants, denoted
by TCn(X), n ≥ 2, for any path-connected space X. TCn(X) is called the
higher topological complexity ofX. It coincides with the topological complexity
TC(X) defined by M. Farber when n = 2.

Since then, the higher topological complexity has been computed for many
topological spaces like spheres in [7] and product of spheres in [1], wedge sum
of spheres of different dimensions in [3], configuration spaces on Euclidean
spaces in [5], configuration space of distinct ordered points on compact Riemann
surfaces of genus g in [6], the complement of some classes of complex hyperplane
arrangements in [2].

Being closely related to the notion of the Schwarz genus and the Lusternik-
Shnirelman category, the higher topological complexity inherited many inter-
esting properties of these invariants. Some of these properties such as some
evaluations from above or from below are used in computing the higher topo-
logical complexity TCn.

One of the important evaluations of higher topological complexity is the
product inequality saying that if X and Y are path-connected spaces, then

TCn(X × Y ) ≤ TCn(X) + TCn(Y )− 1.

In this paper, we give a generalization of this inequality. The paper is orga-
nized as follows. In section 2 we investigate the higher topological complexity
and some of its properties. We formulate and prove our main result in section
3.

2. Higher topological complexity

For n = 2, 3, . . . let Jn denote the wedge sum of n closed unit intervals [0, 1]i,
i = 1, . . . , n with 0 as attached point. Suppose that XJn denotes the space of
all continuous maps γ : Jn → X with compact-open topology. Consider the
map

eXn : XJn −→ Xn ,
γ 7−→ (γ(11), . . . , γ(1n))

where 1i is the unit in [0, 1]i respectively.
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Definition 2.1 (see [7]). The higher topological complexity TCn(X) of the
space X is the smallest number k such that there is an open covering {Ui, i =
1, . . . , k} of Xn and there exists a continuous section si : Ui → XJn of eXn , on
each Ui, i.e., e

X
n ◦ si = idUi .

Obviously, when n = 2, TC2(X) coincides the topological complexity TC(X)
defined by M.Faber.

Remark 2.1. It is known that the map eXn is a fibration in the sense of
Serre. By definition, the higher topological complexity TCn(X) of the space X
is exactly the Schwarz genus of the fibration eXn (see [8]). Moreover, as it is
indicated in [7], eXn is a fibrational substitute of the diagonal map dn, i.e. there
exists a homotopy equivalence h : X → XJn such that dn = eXn ◦ h. Therefore,
TCn(X) is also called the Schwarz genus of dn.

Similar to the topological complexity, the higher topological complexity
TCn(X) is a homotopy invariant. This property has been proved for the topo-
logical complexity TC(X) in [4]. We present here proof of this important
property for the TCn(X).

Proposition 2.1. Suppose that X is homotopic to Y . Then TCn(X) =
TCn(Y ).

Proof. Assume that there exist continuous maps f : X → Y and g : Y → X
such that f ◦ g ≃ idY . We will prove that TCn(Y ) ≤ TCn(X).

Let U be a open set in Xn such that there exists a continuous section
s : U → XJn of eXn .

For (B1, . . . , Bn) ∈ U , we have s(B1, . . . , Bn) is a map γ : Jn → X. For
any i = 1, . . . , n, let γi be the path in X defined by γi(t) = γ|[0,1]i(t), where
[0, 1]i denotes the ith unit interval in the wedge Jn = [0, 1] ∨ . . . ∨ [0, 1].

Let’s consider the set

V = (g × . . .× g)−1(U) = {(A1, ..., An) ∈ Y n|(g(A1), ..., g(An)) ∈ U}.

We are going to construct a continuous section σ : V → Y Jn of eYn on this open
set V of Y n.

Suppose that Ht : Y → Y is the homotopy idY ≃ f ◦ g with H0 = idY ,
H1 = f ◦ g. For (A1, A2, ..., An) ∈ V we have (g(A1), ..., g(An)) ∈ U and
therefore there exists a continuous section s of eXn . As mentioned above,
s(g(A1), ..., g(An)) is a path γ : Jn → Xn. Now, we define [A1, Ai] to be
the path in Y connecting A1 to Ai , i = 1, . . . , n, by

[A1, Ai](t) =


H3t(A1), if 0 ≤ t < 1

3

f(s(g(A1),g(Ai))(3t− 1)), if 1
3 ≤ t < 2

3

H3(1−t)(Ai), if 2
3 ≤ t ≤ 1

.
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Here s(g(A1),g(Ai)) denotes the path in X, connecting g(A1) to g(Ai), defined
from s by

s(g(A1),g(Ai))(t) =


γ1(1− 2t), if 0 ≤ t <

1

2

γi(2t− 1), if
1

2
≤ t ≤ 1

.

The section σ of eYn on V is defined by putting

σ(A1, ..., An) = ([A1, A1], [A1, A2], ..., [A1, An]).

Here the right hand side denotes a map from Jn to Xn having its restriction
on the ith summand [0, 1]i of J

n to be the path [A1, Ai]. It is easy to see that
σ defined above is continuous and eYn ◦ σ = idV . Thus, TCn(Y ) ≤ TCn(X).

Similar arguments will prove TCn(X) ≤ TCn(Y ). And these imply the
Proposition.

The following property shows the relation between the higher topological
complexity TCn(X) of a space X and homotopy properties of X.

Proposition 2.2. If X is a finite r-connected polyhedron, then

TCn(X) <
ndimX + 1

r + 1
+ 1.

In particular r = 0 (i.e. X is path-connected) then

TCn(X) ≤ n dimX + 1.

Proof. As it is mentioned in the Remark after Definition 2.1, the higher topo-
logical complexity TCn(X) is nothing but the Schwarz genus of the fibration
eXn . The proposition is a consequence of the similar property of the Schwarz
genus (see [8, Theorem 5]).

A lower bound for the higher topological complexity of the space X is given
in terms of its cohomology with coefficient in any field K.

Definition 2.2. Let X be a finite path-connected polyhedron. Suppose that n
is an integer, dn is the diagonal map dn : X −→ Xn and K is a field.

1. The kernel of the homomorphism d∗n : H∗(Xn;K) −→ H∗(X;K) is called
the n-zero divisor of X.

2. dn-zero divisor cup length of X, denoted by cl(X,n) (see[1]), is the max-
imal number k such that there exists k elements of the n-zero divisor of
X satisfying u1 ∪ u2 . . . ∪ uk ̸= 0.
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Then cl(X,n) will be a lower bound of TCn(X). Precisely, we have the
following proposition, which follows from [8, Theorem 4]. Detailed proofs can
be found in [7] and [1].

Proposition 2.3. Suppose that n is an integer, n ≥ 2.

i) Let X be a path-connected topology space. Then

TCn(X) ≥ cl(X,n) + 1.

ii) For finite path-connected polyhedra X and Y we have

cl(X × Y, n) ≥ cl(X,n) + cl(Y, n).

The next property, usually called product inequality, gives us an estimate of
the higher topological complexity of the product space by those of its factors.
This inequality is very useful in computing the higher topological complexity
of many spaces.

Proposition 2.4. For path-connected spaces X and Y . If (X×Y )n is normal,
then we have

TCn(X × Y ) ≤ TCn(X) + TCn(Y )− 1.(2.1)

Similar property for the Schwarz genus is known in [8, proposition 22] and
for the topological complexity TC(X) in [4]. A detailed proof for the case of
the higher topological complexity can be found in [1].

3. A generalization of inequality product

In this section, we will generalize the inequality product for the higher
topological complexity.

Theorem 3.1. Suppose that E,X are finite path-connected CW -complexes,
(Y, y0) is a pointed space and p : E → X is a continuous map such that the
following conditions hold

i) For all x ∈ X, the fiber p−1(x) is homotopic to Y .

ii) The map p accepts a section s : X → E, i.e., p ◦ s = idX .

iii) There exists a family of homotopy equivalences hx : p−1(x) → Y depend-
ing continuously on x ∈ X such that hx(s(x)) = y0.
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Then,

TCn(E) ≤ TCn(X) + TCn(Y )− 1.

To prove our main result, we first need some technical lemmas.

Lemma 3.1. Let Y be a finite path-connected CW -complex, U an open set in
Y n on which there is a continuous section sU : U → Y Jn of eYn . Then, for any
y0 ∈ Y there exists always a continuous section s′U : U → Y Jn of eYn such that
s′U (A1, ..., An)(0) = y0 for any (A1, ..., An) ∈ U .

Proof. We first consider the case when y0 ∈ U .

For (A1, ..., An) ∈ U we have sU (A1, ..., An) is a map γ : Jn −→ Y n. Denote
γ(0) = P ∈ Y . Define γi to be the restriction of γ on the ith unit interval of
Jn. That is, γi is a path connecting P and Ai.

By means of the section sU , it implies that for any point P ∈ U , there
exists a path connecting y0 to P and this path depends continuously on P . Let
denote this path by ℓP .

Now the section s′U is defined by putting s′U (A1, ..., An) to be a map γ′ :
Jn −→ Y n, where γ′ has its restriction on the ith unit interval of Jn as ℓP ∗
γi. It is easy to see that s′U (A1, ..., An) is a continuous section of eYn and
s′U (A1, ..., An)(0) = y0.

Now suppose that y0 /∈ U . Let fix a point y1 ∈ U . By the above arguments,
we can construct a continuous section s̃U of eYn such that s̃U (A1, ..., An)(0) = y1.
Suppose that s̃U (A1, ..., An) is a map γ̃ : Jn −→ Y n. Then its restriction γ̃i
on the ith unit interval of Jn is a path connecting y1 to Ai. Fix a path ℓ in Y
connecting y0 and y1. Now we define the section s′ by putting s′U (A1, ..., An) to
be a map Jn −→ Y n having its restriction on the ith unit interval of Jn to be ℓ∗
γ̃i . Obviously, the defined map σ′ is a section of eYn having s′U (A1, ..., An)(0) =
y0.

The following lemma is implied from Proposition 20 of [8] and the fact that
TCn(X) coincides with the Schwarz genus of the fibration enX .

Lemma 3.2. Given the topological space X, let C = {C1, ..., Cp} and D =
{D1, ..., Dq} be open covering of Xn such that on each Ci∩Dj there exists local
section of en. Then

TCn(X) ≤ p+ q − 1.

Proof. [Proof of Theorem 3.1] Suppose that TCn(X) = p. By definition, there
is an open covering U = {U1, . . . , Up} of Xn such that there exists a section of
eXn on each Ui. Put Ci = {(A1, . . . , An) ∈ En|(p(A1), . . . , p(An)) ∈ Ui}. Then
C = {C1, . . . , Cp} is an open covering of En
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Suppose that TCn(Y ) = q, and V = {V1, . . . , Vq} is an open covering of Y n

such that there exists a section of eYn on each Vj . Let

Dj = {(A1, . . . , An) ∈ En|(hp(A1)(A1), . . . , hp(An)(An)) ∈ Vj}.

Then D = {D1, . . . , Dq} is an open covering of En. Let we fix a section of eYn
on each Vj as that in the Lemma 3.1.

We will now construct a section of eEn on each Ci ∩ Dj , i = 1, . . . , p, j =
1, . . . , q. Suppose that (A1, . . . , An) ∈ Ci ∩Dj ⊂ En.

By definition (A1, . . . , An) ∈ Ci means that (p(A1), . . . , p(An)) ∈ Ui. Since
there exists a continuous section s1 of eXn on Ui, there is a path going from
p(A1) to p(Ai) defined by this section s1. Let denote γ2 the image of this path
by the section s of p.

Since (A1, . . . , An) ∈ Dj it implies that (hp(A1)(A1), . . . , hp(An)(An)) ∈ Vj .
By assumption, there exists a section s2 of eYn on this Vj . Let’s choose s2 to
be the one defined in the Lemma 3.1. This section s2 defines a path in Y
connecting hp(A1)(A1) to the point y0. We denote by γ1 the inverse image of
this path by the homotopy equivalence hp(A1).

Similarly, the section s2 defines a path in Y connecting y0 to the point
hp(Ai)(Ai), i = 1, . . . , n. We denote by γ3 the inverse image of this path by the
homotopy equivalence hp(Ai).

We denote by [A1, Ai] the path γ1 ∗ γ2 ∗ γ3.
Now we can define a map σ : Ci ∩ Dj −→ En by putting σ(A1, ..., An) =

([A1, A1], ..., [A1, An]) for any (A1, ..., An) ∈ Ci ∩Dj .

This map σ is obviously a continuous section of eEn . Applying the Lemma
3.2 we have TCn(E) ≤ p+ q − 1 = TCn(X) + TCn(Y )− 1.

Remark 3.1. Suppose that X,Y are path-connected CW -complexes. Put
E = X×Y and the map p : E → X to be the projection in the first component.
The map s : X → E defined by s(x) = (x, y0) is obviously a section of p
and hx : p−1(x) → Y , hx(x, y) = y is a homotopy equivalence. Then, all
the assumptions of Theorem 3.1 are satisfied. And we get again the product
inequality (2.1) as stated in Proposition 2.4.

Theorem 3.1 has been used to compute the higher topological complexity
of configuration spaces on some topological manifolds in [3]. We briefly recall
the case of configuration space F (T, k) on the two-dimensional torus.

The configuration space of k distinct ordered points in T is a subset of Tk,
defined by

F (T, k) = {(x1, · · · , xk) ∈ Tk| xi ̸= xj with 1 ≤ i ̸= j ≤ k}.
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Proposition 3.2. Let k be an integer with k ≥ 2. The higher topological
complexity of the configuration space of k instinct ordered points on the 2-
dimensional torus T is

TCn(F (T, k)) = n(k + 1)− 1.

Observe that the projection on the first k − 1 coordinates πk : F (T, k) −→
F (T, k − 1) is a fibration with the fiber homotopic to the bouquet of k circles
Yk = S1 ∨ . . . ∨ S1︸ ︷︷ ︸

k

. It is proved in [3] that this fibration πk admits a section

σk for any k = 1, . . . and satisfies all assumptions of Theorem 3.1. Combin-
ing properties of the higher topological complexity mentioned in the previous
section and Theorem 3.1 we get

TCn(F (T, k)) ≤ TCn(F (T, k − 1)) + TCn(Yk)− 1.

Moreover, it follows from [3, Theorem 3] that TCn(Yk) ≤ n + 1 for k ≥ 2.
So,

TCn(F (T, k)) ≤ TCn(F (T, k − 1)) + n for all k ≥ 2.

By induction on k, we get

TCn(Fn(T, k)) ≤ TCn(F (T, 1)) + n(k− 1) = 2n− 1 + n(k− 1) = n(k+ 1)− 1.

To prove that n(k + 1)− 1 is the lower bound of TCn(F (T, k)) we need to
use the lower bound stated in Proposition 2.3 and spectral sequence arguments.
We will skip it here. A detailed proof can be found in [3]
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