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Abstract. In this paper, we survey the results on the Korenblum Max-
imum Principle for some weighted function spaces. Progress and results
discussed include the upper bounds and lower bounds of Korenblum con-
stants, as well as the failure of the principle for weighted Bergman spaces,
weighted Hardy spaces, weighted Bloch spaces, weighted Fock spaces, and
mixed norm spaces. Existing and new open questions are provided.

1. Introduction

The Korenblum Maximum Principle is an important open problem in com-
plex analysis as it acts as one of the fundamental properties of complex function
spaces that remains unsolved. First conjectured in 1991, the principle was in-
troduced [15] by Boris Korenblum for the classical Bergman space A2(D) in
the following way.

Conjecture 1.1. There exists a numerical constant c, 0 < c < 1, such that
if f and g are holomorphic in D and |f(z)| ≤ |g(z)| (c < |z| < 1), then
∥f∥A2 ≤ ∥g∥A2 .
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In [15], Korenblum defined c as the Korenblum constant and κ as the largest
possible value of c. The exact value of κ remains unknown. In the same paper,
Korenblum also proved that κA2 ≤ 1√

2
≈ 0.7071.

Initially, only a series of partial results were at first discovered by Koren-
blum, O’Neil, Richards and Zhu [17], Korenblum and Richards [16], Matero
[18], Schwick [22], and others. The existence of Korenblum constant for A2(D)
was first proved in 1999 by Hayman [11] with κA2 = 0.04. Thereafter, many
results were published by improving the lower bounds and upper bounds of κA2

(see [21, 24-28, 30]). As time progresses, many interesting results have been
obtained by several authors. The regained interest in this problem in the re-
cent years have contributed to many fascinating results for families of function
spaces as well as intersections of function spaces. Hence, this calls for a timely
review to summarize the key important results concerning the Korenblum Max-
imum Principle. There are certainly several partial results or results related
to modified versions of the Korenblum Maximum Principle, and we apologize
to those authors as their work are not explicitly mentioned. Ultimately, we
hope that this survey might be of interest to not just complex analysts but also
mathematicians from other related fields, and that it might inspire new readers
with the interesting results that have been obtained so far. At the same time,
we hope both existing and new researchers in this problem can take on existing
and new open questions from this survey.

We describe the outline of this survey. First of all, no proofs are provided
in this paper. Readers should refer to the original articles for detailed proofs.
References are provided for all the results. In next section, we recall all basic
definitions and notations for weighted Bergman spaces, weighted Hardy spaces,
weighted Bloch spaces and weighted Fock spaces. We also list down specific
weight functions that will be discussed in our survey. In fact, different weight
functions play an important role in many key results for later sections. The
results are organised into four sections, namely Sections 3 to 6. Tables sum-
marizing key results are presented at the end of the section where appropriate.
As the original Korenblum constant is defined for Bergman spaces, Section
3 discusses the key results for the Korenblum constants for Bergman spaces
first. The results are thus separated into two sections: upper bounds and lower
bounds. In Section 4, the Korenblum constants are discussed for other function
spaces, namely, weighted Hardy spaces and weighted Fock spaces. Following
this, Section 5 is solely dedicated to discuss the extension of results from classi-
cal weighted Fock spaces to intersections of weighted Fock spaces. In particular,
this section extends from the results for classical weighted Fock spaces in Sec-
tion 4 by leveraging some preliminaries in the well-known Ramanujan’s Master
Theorem. Hence, we first recall several key important preliminaries such as the
Gamma function, Mellin transform of Dirichlet series and Generalised Hyper-
geometric function in Section 5.1. Section 5.2 constructs new weighted Fock
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spaces and reviews the upper bounds of Korenblum constants in the finite and
infinite intersections of those spaces. After discussing all the main results in
Korenblum constants for the weighted function spaces, Section 6 discusses the
remaining results pertaining to the failure of Korenblum Maximum Principle.
As the failure of Korenblum Maximum Principle in most function spaces are
found using similar methods, we survey all of them together in Section 6. Our
final Section 7 describes a possible future direction for the Korenblum Maxi-
mum Principle and lists down all existing and new open questions.

2. Basic Notations for Weighted Function Spaces

Let D be the open unit disk in the complex plane C. We denote by O(D)
(resp. O(C)) the space of holomorphic functions (resp. entire functions) on D
(resp. C), endowed with the compact-open topology.

For a domain G, a continuous function φ : G → [0,∞) can be defined
as a weight function for weighted function spaces. In this paper, we are only
interested in radial weight functions defined on D or C, i.e. φ(z) = φ(|z|). To
be more precise, we list down the weights that will be used in this paper.

For G = D,

(i) φ(z) = (1− |z|)α, α ≥ 0, are the standard weights on the disc,

(ii) φ(z) = (α+ 1)(1− |z|2)α, α > −1, are the classical Bergman weights,

(iii) φ(z) = e−
pα
2 |z|2 , α > −1, are the exponential weights defined in [32].

For G = C,

(i) φ(z) = α
2 |z|

2, where α > 0, are the classical Fock space weights.

(ii) φ(z) = α
2 λ|z| −

1
p log |d|, where α > 0, 0 < p < ∞, d ∈ C\{0}, λ > 0, are

the generalised Fock space weights discussed in [33].

First, we recall the general weighted Hardy space Hp
φ(D) where φ : D →

[0,∞).

Definition 2.1. Let φ(z) = (1− |z|)α for α ≥ 0. For 0 < p < ∞, the general
weighted Hardy space Hp

φ(D) consists functions f(z) ∈ O(D), for which

∥f∥Hp
φ
= sup

0≤r<1

[
φ(r)

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

]
< ∞.
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If φ(z) = (1 − |z|)α where α ≥ 0, we obtain the weighted Hardy space
Hp

α(D). Further, if α = 0, we have the Hardy space Hp(D). In the case
p = ∞, we have the space H∞(D) of bounded holomorphic functions on D,
where ∥f∥H∞ = supz∈D |f(z)|.

Definition 2.2. Let 0 < p < ∞ and φ : D → [0,∞). Then the weighted
Bergman space Ap

φ(D) is the space consisting of analytic functions f(z) ∈ O(D)
for which

∥f∥Ap
φ
=

[
1

π

∫
D
|f(z)|pφ(z) dA(z)

] 1
p

< ∞.

Here dA(z) = dxdy = rdrdθ, z = x+ iy = reiθ, is the Lebesgue measure on C.

Let φ(z) = (α + 1)(1 − |z|2)α for α > −1. Then we have the classical
weighted Bergman space Ap

α(D) which is a Banach space. Further, if α = 0,
for 0 < p < ∞, the space becomes the standard Bergman space Ap(D). In
particular, for p = 2, we have the classical Bergman space A2(D).

Interestingly, a weighted Bergman space with exponential weights φ(z) =

e−
pγ
2 |z|2 (0 < p < ∞, γ > −1) is introduced in [32]. We shall denote this

weighted Bergman space with exponential weights as Ap
γ(D), that is, the space

of holomorphic functions f(z) ∈ O(D) for which

∥f∥Ap
γ
=

[
1

π

∫
D
|f(z)|pe

pγ
2 |z|2 dA(z)

] 1
p

< ∞.

Note that e
pγ
2 |z|2 → 1 as |z| → 0 and e

pγ
2 |z|2 approaches to the constant e

pγ
2 as

|z| approaches the boundary of D.
Next, we have the weighted Fock spaces.

Definition 2.3. Let φ(z) : C → [0,∞) be a weight function. For 0 < p < ∞,
the general weighted Fock space Fp

φ(C) with weight φ(z), consists of entire
functions f(z) ∈ O(C) for which

∥f∥pFp
φ
= η

∫
C
|f(z)|pe−pφ(z) dA(z) < ∞,

where the constant η is chosen so that ∥1∥Fp
φ
= 1.

If φ(z) = α
2 |z|

2, α > 0, then we have the classical weighted Fock space

Fp
α(C) with norm ∥f∥pFp

α
=

pα

2π

∫
C
|f(z)|pe−

pα
2 |z|2 dA(z). for the case p = ∞

and α > 0, we have the space F∞
α with norm ∥f∥F∞

α
= sup

z∈C
|f(z)|e−α

2 |z|2 .
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For 0 < p ≤ ∞ and α = 1, we have the Fock space Fp(C), which is a
Banach space if 1 ≤ p ≤ ∞ and is a complete metric space with distance
d(f, g) = ∥f − g∥pp if 0 < p < 1.

Lastly, we have the weighted Bloch spaces.

Definition 2.4. The weighted Bloch space Bφ with weight φ : D → [0,∞),
consists of holomorphic functions f(z) ∈ O(D) for which

∥f∥Bφ
= |f(0)|+ sup

z∈D
φ(z)(1− |z|2)|f ′(z)| < ∞.

Note that ∥f∥Bφ is the weighted Bloch norm and elements of Bφ are known
as weighted Bloch functions. If φ(z) ≡ 1, then we have the classical Bloch
space B.

3. Korenblum Constants for Bergman Spaces

In this section, we survey the main results for the Korenblum constants of
Bergman spaces. To avoid confusion and provide greater clarity, the results are
divided into two sections: Upper bounds and Lower bounds.

3.1. Development of Upper Bounds

Recall from the introduction that Korenblum first discovered the upper
bound for κA2 to be 1√

2
.

Theorem 3.1 ([15]). Let c > 1√
2
. There exist functions f and g in A2(D)

such that |f(z)| ≤ |g(z)| for all c < |z| < 1, but ∥f∥A2 > ∥g∥A2 . Therefore,
κA2 ≤ 1√

2
.

The next natural question is whether can κA2 be equal to 1√
2
. An example

by Martin [15] shows that κA2 < 1√
2
.

Theorem 3.2 ([15]). Suppose c = 1√
2
. Let

f(z) =
1 + (

√
2− 1)z20

1 + (
√
2− 1)z−20

, g(z) =
√
2z.

Then |f(z)| ≤ |g(z)| for all c < |z| < 1, but

∥f∥A2 =

√
1 + (

√
2− 1)2/21

1 + (
√
2− 1)2−10

> 1 = ∥g∥A2 .
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In a series of papers [24-28,30], Wang used different pairs of functions f
and g to improve the upper bounds for the Korenblum constant of A2(D). In
[24], Wang first used the singular inner function Sa(z) = exp(−a 1+z

1−z ) in A2(D),
a ∈ R+, to prove that the Korenblum constant must be less than 0.69472.

Theorem 3.3 ([24]). Let

f(z) = e−aSa(z
n) = e−a exp

(
− a

1 + zn

1− zn

)
= exp

(
− 2a

1− zn

)
,

where a is any positive constant and

g(z) = e−
2a

1+cn
z

c
,

where 0 < c < 1, a = − 1+cn

1−cn log c > 0, n ∈ N. Then |f(z)| ≤ |g(z)| in
c < |z| < 1. When n = 14 and c = 0.69472, we have ||f ||A2 > ||g||A2 .
Therefore, κA2 < 0.69472.

Following that, Wang managed to find sharper upper bounds for κA2 through
the results below.

Theorem 3.4 ([25]). Let 0 < c < 1, a = − 1+cn

1−cn log c > 0 and n ∈ N. Then
define

f(z) = Sa+b(z
n), g(z) = zSb(z

n)

and we have |f(z)| ≤ |g(z)| in c < |z| < 1. Moreover, when a = 0.3902,
b = 0.3395, n = 11 and c = 0.685086, we have ||f ||A2 > ||g||A2 . Therefore,
κA2 < 0.685086.

Theorem 3.5 ([26]). Let a = 3
√
6

11 and n = 10. Then we define

f(z) = a+ zn, g(z) = z(1 + azn)

and we have ||f ||A2 = ||g||A2 and |f(z)| ≤ |g(z)| in c < |z| < 1, where c =
0.679501 is the real root in (0, 1) of the equation

(3.1) a+ z10 =
3
√
6

11
+ z10 = z +

3
√
6

11
z11 = z(1 + az10).

Therefore, κA2 < 0.679501.

As a result of Theorem 3.5, the upper bound of Korenblum constant is now
0.679501 but ||f ||A2 = ||g||A2 for this upper bound. Hence, in [26], Wang noted
that this bound is not sharp and proceeded to obtain a better upper bound,
i.e. κA2 < 0.67795.
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Theorem 3.6 ([26]). Let 0 < a < 1, b ≥ 0, n ∈ N. Then we define

f(z) =
a+ zn

(1− azn)b
, g(z) =

z(1 + azn)

(1− azn)b
.

Hence, we have |f(z)| ≤ |g(z)| in c < |z| < 1, where c is the real root in (0, 1)
of the equation

a+ zn = z(1 + azn),

and when a = 0.666707, b = 0.4768 and n = 10, we have c = 0.67795 and
||f ||A2 > ||g||A2 . Therefore, κA2 < 0.67795.

In 2008, Shen [23] modified the above example to obtain a slightly better
upper bound κA2 < 0.677905.

Theorem 3.7 ([23]). Let 0 < a < 1 and n ∈ N. Then we define

f(z) =
a+ zn

2− azn
, g(z) =

z(1 + azn)

2− azn
.

Hence, we have |f(z)| ≤ |g(z)| in c < |z| < 1, where c is the real root in (0, 1)
of the equation

a+ zn = z(1 + azn),

and when a = 0.6666714 and n = 10, we have c = 0.677905 and ||f ||A2 >
||g||A2 . Therefore, κA2 < 0.677905.

A final improvement was made by Wang [29] where he obtained κA2 <
0.6778994 with the following counter example.

Theorem 3.8 ([29]). Let 0 < a < 1, b ≥ 0, n ∈ N. Then we define

f(z) =
a+ zn

(1− bzn)2
, g(z) =

z(1 + azn)

(1− bzn)2
.

Hence, we have |f(z)| ≤ |g(z)| in c < |z| < 1, where c is the real root in (0, 1)
of the equation

a+ zn = z(1 + azn),

and when a =
√

n−2
2n−2 , b =

√
2

(n−1)(n−2) and n = 10, we have c = 0.6778994

and ||f ||A2 > ||g||A2 . Therefore, κA2 < 0.6778994.

In summary, κA2 < 0.6778994 is the best upper bound of Korenblum con-
stant for A2(D) so far.

Note that the upper bounds by Wang were numerically sharper but it lacks
generalisations for the weighted Bergman spaces. In recent years, we obtained
explicit expression for the upper bounds in the weighted Bergman spaces with
exponential weights, Ap

γ(D), p ≥ 1, γ ≥ 0 [32].
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Theorem 3.9 ([32]). Let p ≥ 1, γ ≥ 0. Consider the Bergman space Ap
γ(D).

1) For γ = 0, suppose (
2

p+ 2

) 1
p

< c < 1.

2) For γ > 0, suppose

p

√√√√√(
2
pγ

) p
2

∫ pγ
2

0

u
p
2 e−udu

(1− e−
pγ
2 )

< c < 1.

There exist functions f and g in Ap
γ(D) such that |f(z)| < |g(z)| for all c <

|z| < 1, but ∥f∥Ap
γ
> ∥g∥Ap

γ
.

Remark 3.1. Clearly, in order to have the Korenblum Maximum Principle
for Ap

γ(D), p ≥ 1, γ ≥ 0, we must have

κAp
γ
≤



(
2

p+2

) 1
p

, γ = 0,

p

√√√√√(
2
pγ

) p
2

∫ pγ
2

0

u
p
2 e−udu

(1−e−
pγ
2 )

, γ > 0.

The above result acts as a generalization of the initial result κA2 ≤ 1√
2
by

Korenblum in Theorem 3.1. Nevertheless, this generalization obtains the upper
bounds for rest of the spaces Ap

γ(D), p ≥ 1.

3.2. Development in Lower Bounds

In this subsection, we survey the progress on lower bound of Korenblum con-
stant for Bergman spaces ever since Hinkkanen’s result in 1999 [12]. Hinkkanen
proved in 1999 that κAp ≥ 0.15724 (p ≥ 1), thereby showing that Korenblum
constants exist for all Bergman spaces Ap(D), p ≥ 1. After that, improve-
ments were made in 2006 when Schuster [21] showed that the Korenblum max-
imum principle holds for κA2 = 0.21, which progresses upon the works of both
Hayman and Hinkkanen. In that paper, Schuster made use of the following
identities.

Proposition 3.10. For any z, w ∈ C,

|z|2 − |w|2 ≤ 2|z2 − zw|.
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Proposition 3.11. For any subharmonic function h and 0 < r1 < r2 < 1,∫ 2π

0

h(r1e
iθ) dθ ≤

∫ 2π

0

h(r2e
iθ) dθ.

Using Propositions 3.10 and 3.11, Schuster proved Theorem 3.12.

Theorem 3.12 ([21]). Suppose that c = 0.21. Then for any functions f(z) and
g(z) holomorphic in D, if |f(z)| ≤ |g(z)| (c < |z| < 1), then ||f ||A2 ≤ ||g||A2 .
Therefore, κA2 ≥ 0.21.

Also in 2006, Wang [27] managed to improve the lower bounds of κA2 to
0.25018 and κAp to 0.1921. Wang used similar methods but a different in-
equality from Hinkkanen and Schuster. For instance, Wang used the following
proposition instead of Proposition 3.10 in proving κA2 ≥ 0.25018.

Proposition 3.13. For any a ∈ (−1, 1) and z, w ∈ C,

(3.2) |z|2 − |w|2 =
|z − aw|2 − |az − w|2

1− a2
≤ |z − aw|2

1− a2
.

Wang then made his final improvements to the lower bounds in 2011, where
he showed that κA2 ≥ 0.28185 and κAp ≥ 0.23917 for p ≥ 1.

Recently, the Korenblum maximum principle was extended to a large family
of function spaces that contains the classical weighted Bergman space Ap

φ(D)
[4]. In particular, a failure of the principle was proven for the mixed norm
space Hp,q,s where 0 < p, q, s < ∞ by Karapetrović [4]. The mixed norm space
Hp,q,s (0 < p, q, s < ∞) consists of all holomorphic functions in O(D) for which

(3.3) ∥f∥Hp,q,s =

(
2sq

∫ 1

0

r(1− r2)sq−1Mq
p (r, f) dr

)1/q

< ∞,

where

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ

)1/p

.

Note that when q = p and s = α+1
p , then ∥f∥

H
p,p, α+1

p
= ∥f∥Ap

α
which

implies that Hp,p,α+1
p = Ap

α(D).
Similar to earlier results in Korenblum constants, Karapetrović also proved

that the Korenblum constants exist under the mixed norm spaces, Hp,q,s, 1 ≤
p ≤ q < ∞ and 0 < s < ∞.

Theorem 3.14 ([4]). Let 1 ≤ p ≤ q < ∞ and 0 < s < ∞. Then there exists
a constant 0 < c < 1 with the following property: If f and g are holomorphic
functions on D such that |f(z)| ≤ |g(z)| for all c < |z| < 1, then ∥f∥Hp,q,s ≤
∥g∥Hp,q,s .



96 Wee JunJie and Le Hai Khoi

Corollary 3.1 ([4]). Let 0 < p < ∞ and −1 < α < ∞. Then the Korenblum
maximum principle holds in weighted Bergman space Ap

α(D) if and only if p ≥ 1.

In summary, the results for Bergman spaces can be summarised using the
following tables.

α p Lower Bound Upper Bound

Ap
α(D)

α > −1
1 ≤ p < ∞

α = 0
p = 2

1999: κA2 ≥ 1
25

2006: κA2 ≥ 0.21
2006: κA2 ≥ 0.25018
2011: κA2 ≥ 0.28185

1991: κA2 < 1√
2

2003: κA2 < 0.69472
2004: κA2 < 0.685086
2004: κA2 < 0.67795
2008: κA2 < 0.677905
2008: κA2 < 0.6778994

1 ≤ p < ∞
1999: κAp ≥ 0.15724
2006: κAp ≥ 0.1921
2011: κAp ≥ 0.23917

2020: κAp ≤
(

2
p+2

)1/p

α > 0 1 ≤ p < ∞
2022: Corollary 2.18

No Specific
Development−1 < α < 0 1 ≤ p < ∞

Table 1. Main Development on classical weighted Bergman spaces Ap
α(D)

γ p Lower Bound Upper Bound

Ap
γ(D)

γ > −1
1 ≤ p < ∞

γ = 0 - See Table 1 for Ap(D)

γ > 0 1 ≤ p < ∞
No Specific
Development

2020: Theorem 3.9

−1 < γ < 0 1 ≤ p < ∞ No Specific
Development

Table 2. Main Development on Bergman spaces with exponential weights
Ap

γ(D).

Based on the summary, we make some minor progress in the areas with no
development so far. In particular, we can apply similar methods from Theorem
3.9 to obtain explicit expressions for the upper bound of Korenblum constants
in classical weighted Bergman spaces Ap

α(D), α ≥ 0 and p ≥ 1.

Theorem 3.15. Let p ≥ 1, α ≥ 0. Consider the Bergman space Ap
α(D).

Suppose

p

√
(α+ 1)Γ(p2 + 1)Γ(α+ 1)

Γ(p2 + α+ 2)
< c < 1.

There exist functions f and g in Ap
α(D) such that |f(z)| < |g(z)| for all c <

|z| < 1, but ∥f∥Ap
α
> ∥g∥Ap

α
.
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Remark 3.2. Clearly, in order to have the Korenblum Maximum Principle
for Ap

α(D), p ≥ 1, α ≥ 0, we must have

κAp
α
≤ p

√
(α+ 1)Γ(p2 + 1)Γ(α+ 1)

Γ(p2 + α+ 2)
.

4. Korenblum Constants for Other Weighted Function Spaces

In this section, we survey the results of Korenblum constants for other
weighted function spaces. In general, for a function space L, the Korenblum
conjecture is as follows,

Conjecture 4.1. There exists a numerical constant c, 0 < c < 1, such that
for any functions f and g in L, if

(4.1) |f(z)| ≤ |g(z)|, ∀z ∈ E,

then

(4.2) ∥f∥L ≤ ∥g∥L.

Here, E is a set of values of z in order for (4.1) to imply (4.2). In [7], the
set E satisfying the above conjecture for the function space L is also known as
a dominating set for L.
Weighted Hardy Spaces. Korenblum stated in [15] that for the case where
L is the Hardy-Hilbert space H2(D), then (4.1) implies (4.2) even for the case
E = D. Interestingly, it was only until 1998 that the following criteria was
discovered for a dominating set in general Hardy spaces Hp(D) (0 < p ≤ ∞).

Theorem 4.1 ([7]). Let 0 < p ≤ ∞. Then E is non-tangentially dense if and
only if E is a dominating set for the general Hardy spaces Hp(D) (0 < p ≤ ∞).

As there is no specific development on the set E for Hp
α(D) (α > 0, 0 <

p ≤ ∞) and even for Hp
φ(D) where φ(z) ̸= (1− |z|)α, then these areas call for

investigation. In summary, we have the following table.

α p Results

Hp
φ(D)

Hp
α(D)

α = 0 0 < p ≤ ∞ 1998: Theorem 4.1
α > 0 0 < p ≤ ∞ No Specific Development

- - - No Specific Development

Table 3. Development of Korenblum constants on Hp
φ(D).
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Weighted Fock Spaces. Throughout the years, some results also showed an
extension to the Fock spaces (see [7, 34]). It first began in 2006 when Schuster
modified the proof of Theorem 3.12 and obtained κF2 ≥ 0.54.

Proposition 4.2 ([21]). Let f(z) and g(z) be entire functions in F2(C). Sup-
pose that |f(z)| ≤ |g(z)| for any z such that |z| > c, where cF2 = 0.54. Then
||f ||F2 ≤ ||g||F2 .

Wang [27] then modified his result in A2(D) for F2(C) and obtained the
following improved lower bound.

Theorem 4.3 ([27]). Let f(z) and g(z) be entire functions in F2(C). Suppose
that |f(z)| ≤ |g(z)| for any z such that |z| > c, where cF2 = 0.7248. Then
||f ||F2 ≤ ||g||F2 .

Till today, the lower bound κF2 ≥ 0.7248 remains as the best lower bound
so far. In 2012, Zhu [34] showed that Korenblum constants actually exist for
the classical weighted Fock spaces Fp

α(C) where α > 0 and p ≥ 1.

Theorem 4.4 ([34]). Let f(z) and g(z) be entire functions in Fp
α(C). Suppose

that |f(z)| ≤ |g(z)| for any z such that |z| > c. Then ||f ||Fp
α
≤ ||g||Fp

α
.

To be specific, Zhu proved that the Korenblum Maximum Principle can hold
for Fp

α(C) where α > 0 and p ≥ 1 as there exist a sufficiently small positive c
to satisfy

(4.3) 2c(1− e−
pα
2 c2)

(
α

∫ ∞

c

e−
pα
2 ρ2

(ρ2 − c2)dρ

)−1

< 1.

In general, the outline of the proofs for lower bounds of Korenblum constants
are similar to the works of Schuster [21]. The main workhorse for the im-
provements of the lower bound relies on changing the inequality to manipulate
|f |p−|g|p in the proof. Consequently, this will lead to changes in the numerical
estimate of the lower bound. However, in order to obtain a particular lower
bound for the Korenblum constant, several results have used Mathematica to
provide a numerical estimate.

On the other hand, the following simple result involving the Gamma func-
tion, is proved in 2020 [32]. The result provides an upper bound for κFp

α
, where

α > 0 and p ≥ 1.

Theorem 4.5 ([32]). Let p ≥ 1, α > 0 and

c > p

√( 2

pα

) p
2

Γ
(p
2
+ 1

)
.
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There exist functions f and g in Fp
α(C), such that |f(z)| < |g(z)| for any

|z| > c, but ∥f∥pFp
α
> ∥g∥pFp

α
. Therefore,

κFp
α
≤ p

√( 2

pα

) p
2

Γ
(p
2
+ 1

)
.

By setting p = 2 and α = 1 in Theorem 4.5, the following special case is
obtained for F2(C).

Corollary 4.1 ([32]). Let cF2 > 1. There exist functions f and g in F2(C)
such that |f(z)| < |g(z)| for all |z| > cF2 , but ∥f∥2F2 > ∥g∥2F2 . Therefore,
cF2 ≤ 1.

For instance, when p = 1 and α = 1
2 , we can write the upper bound as

κF1
0.5

≤
√
4 · Γ

(
3

2

)
=

√
π.

Theorem 4.5 inspired us to study the Korenblum constants for other Fock
spaces under general weights such as α

2 λ|z| −
1
p log |d|, where α > 0, 0 < p <

∞, d ∈ C\{0}, λ > 0 in [32]. The interest in these specific set of general
weights is that it introduces various weighted Fock spaces where the upper
bound of its Korenblum constants involves special functions such as Gamma
function, Mellin transform of Dirichlet series and Generalized Hypergeometric
function. For example, we applied the Gamma function and obtained a simple
generalisation of Theorem 4.5.

For any complex number s with Re(s) > 0, the Gamma function is defined
as

Γ(s) =

∫ ∞

0

xs−1e−x dx.

Furthermore, with a change of variables, we have

(4.4)

∫ ∞

0

xae−bxc

dx =
1

c
·
(
1

b

) a+1
c

Γ

(
a+ 1

c

)
, a, b, c > 0.

Now, define the weighted Fock spaces Fp,α
m (C), that is,

Definition 4.1. For 0 < p < ∞, α > 0, m > 0, the weighted Fock space
Fp,α

m (C) with weight α
2 |z|

m consists of entire functions f(z) ∈ O(C) for which

∥f∥pFp,α
m

=

∫
C
|f(z)|pe−

pα
2 |z|m dA(z) < ∞.
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Now, the following result [33] generalises Theorem 4.5 for the weighted Fock
space Fp,α

m (C).

Theorem 4.6 ([33]). Let 0 < p < ∞, α > 0, m > 0 and let

(4.5) c >
p

√(
2

pα

) p
m

Γ

(
p+ 2

m

)(
Γ

(
2

m

))−1

.

There exist functions f and g in Fp,α
m (C), such that |f(z)| < |g(z)| for any

|z| > c, but ∥f∥pFp,α
m

> ∥g∥pFp,α
m

. Therefore,

κFp,α
m

≤ p

√(
2

pα

) p
m

Γ

(
p+ 2

m

)(
Γ

(
2

m

))−1

.

In summary, the results for classical weighted Fock spaces can be sum-
marised using the following table.

α p Lower Bound Upper Bound

Fp
α(C)

α > 0
1 ≤ p < ∞

α = 1
p = 2

2006 : κF2 ≥ 0.54
2006 : κF2 ≥ 0.7248

2020 : κF2 ≤ 1

1 ≤ p < ∞
2012: Theorem 4.6 2020: Theorem 4.7

α ̸= 1 1 ≤ p < ∞

Table 4. Development of Korenblum constants on Fp
α(C).

5. Extension to Intersections of Weighted Fock spaces

In this section, we survey our extension of results from classical weighted
Fock spaces to other weighted Fock spaces. To do this, we directed our atten-
tion to the Gamma function, which is one of the many special functions which
satisfies the well-known Ramanujan’s Master theorem. The Ramanujan’s Mas-
ter Theorem was first reported in Ramanujan’s Quarterly Reports [2] and can
be satisfied by many special functions, such as Mellin transform of Dirichlet
series and Generalized Hypergeometric functions. Further details can be found
in [1,2].

5.1. Preliminaries

The Ramanujan’s Master theorem was first rigorously treated by G.H.
Hardy in [9] whose proof relied on the Cauchy residue theorem and Mellin
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inversion theorem. Hardy proved that the Ramanujan’s Master theorem can
be satisfied for a sufficiently large class of functions that satisfies certain growth
condition. We shall recall the Ramanujan’s Master Theorem for Hardy’s class
of functions below.

Proposition 5.1 (Ramanujan’s Master Theorem [1]). Let ω(z) be a holomor-
phic and single-valued function defined on the half-plane H(δ) = {z ∈ C :
Re(z) ≥ −δ} for some 0 < δ < 1. Suppose that, there exist positive constants
C, P and A < π such that the growth condition

(5.1) |ω(u+ iv)| < CePu+A|v|,

holds for all z = u+ iv ∈ H(δ). Then for all 0 < Re(s) < δ,

(5.2)

∫ ∞

0

xs−1{ω(0)− xω(1) + x2ω(2)− · · · } dx =
π

sinπs
ω(−s).

Similar to many previous applications in Ramanujan’s Master theorem,
(5.2) is more commonly written as

(5.3)

∫ ∞

0

xs−1
∞∑
k=0

ϕ(k)

k!
(−x)k dx = Γ(s)ϕ(−s).

Equation (5.3) acts as a valid integral identity for computing the Mellin trans-
forms for particular functions ϕ, assuming that the series term on the left-hand
side holds and the integral is convergent for some values of Re(s). Over the
years, equation (5.3) has been applied conveniently and directly by Ramanujan
and several authors.

It is also well-known that this integral transform has close relations to the
theory of Dirichlet series. Let 0 < (λn) ↑ ∞ be a sequence of positive real
numbers and (dn) be a sequence of complex numbers. We now consider a
Dirichlet series, with real frequencies (λn),

∞∑
n=1

dne
−λns, s ∈ C.

It is well-known that if we let L = lim sup
n→∞

log n

λn
, then in case L < ∞, the

following inequalities must hold

lim sup
n→∞

log |dn|
λn

≤ σc ≤ σu ≤ σa ≤ lim sup
n→∞

log |dn|
λn

+ L,

where σc, σa, σu are abscissa of convergence, absolute convergence, or uniform
convergence respectively. Readers may refer to the book [10] for more informa-
tion regarding Dirichlet series.
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In the interest of constructing weighted Fock spaces using Dirichlet series,
we now restrict the Dirichlet series with non-negative coefficients as follows,

(5.4) g(s) =

∞∑
n=1

|dn|e−λns, s ∈ C, with σc ≤ 0.

Then the Dirichlet series g(s) represents a holomorphic function on the
half-plane {z ∈ C : Re(z) > σc}. Naturally, this class of Dirichlet series can be
characterized into two classes [10].

(I)

∞∑
n=1

|dn| = ∞ and σc = lim sup
n→∞

log(|d1|+ |d2|+ · · ·+ |dn|)
λn

= 0.

(II)

∞∑
n=1

|dn| < ∞ and σc = lim sup
n→∞

log(|dn+1|+ |dn+2|+ · · · )
λn

≤ 0.

The Dirichlet series itself comprises of several special functions that satisfies
the Ramanujan’s Master Theorem. Here, we list down the particular cases
discussed in [33]:

• If λn = Fn+1 for all n ∈ N, then g(s) becomes the Fibonacci zeta-function

ζF (s) =

∞∑
n=1

1

F s
n

.

• If λn = n and dn = 1 for all n ∈ N, then g(s) is the Riemann Zeta
function ζ(s).

• If λn = n and dn = 1
n! for all n ∈ N, then g(s) = ee

−s − 1.

In addition, one can also consider (dn) to be arithmetical functions such as the
Euler Totient function or the partition function p(n).

The main connection between Dirichlet series and the weighted Fock spaces
discussed in [33] is due to the Mellin transform of the Dirichlet series. His-
torically, Cahen [6] and Perron [9] (see also [5, p. 327]) discovered the Mellin
transform of Dirichlet series a long time ago. As an immediate consequence
from their early works, we made full use of the fact that g(s) satisfies the Mellin
inversion theorem. In fact, the Mellin transform of g(s) is a unique family of
special functions satisfying (5.3) and also has many applications in theoretical
computer science (see [8]).

Proposition 5.2 ([10]). Let s > 0 and g(x) be series (5.4), x ∈ R. Then the
Mellin transform of g(x) can be computed as

(5.5) M(g; s) =

∫ ∞

0

xs−1g(x) dx = Γ(s)

∞∑
n=1

|dn|
λs
n

,
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provided that the series on the right-hand side converges.

By establishing this connection, we proved the following identity which will
be used to deal with our infinite intersections of weighted Fock spaces.

Proposition 5.3 ([33]). Let s be a complex constant and m ≥ 0. Then

∞∑
n=1

|dn|
∫
C
|sz|me−λn|z| dA(z) =


∞, λ1 = 0.

2π|s|mΓ(m+ 2)

∞∑
n=1

|dn|
λm+2
n

, λ1 > 0,

provided that the series in the right-hand side above converges.

The following are immediate consequences of Proposition 5.3.

Corollary 5.1 ([33]). Let s be a complex constant, (Fn) be the Fibonacci se-
quence, and m ≥ 0. Then

∞∑
n=1

∫
C
|sz|me−Fn+1 |z| dA(z) = 2π|s|mΓ(m+ 2)[ζF (m+ 2)− 1],

where ζF (s) =

∞∑
n=1

1

F s
n

is the Fibonacci zeta-function, provided that the series

converges.

Corollary 5.2 ([33]). Let s be a complex constant and m ≥ 0. Then

∞∑
n=1

|dn|
∫
C
|bz|me−n|z| dA(z) = 2π|s|mΓ(m+ 2)

∞∑
n=1

|dn|
nm+2

.

In particular, if dn = 1 for all n ∈ N, then
∞∑

n=1

∫
C
|sz|me−n|z| dA(z) = 2π|s|mΓ(m+ 2)ζ(m+ 2),

where ζ(·) is the Riemann zeta-function, provided that the series converges.

In [33], we presented an interesting connection between Proposition 5.2,
Corollary 5.2, and Generalized Hypergeometric functions. To do this, recall
that the definition of Generalized Hypergeometric functions pFq(c;d; z), where
p, q ∈ N (see, e.g., [20).

Definition 5.1. Let c = (c1, · · · , cp), d = (d1, · · · , dq) be two real p- and q-
tuples, a(k) = a(a+1) · · · (a+ k− 1) be a real rising factorial. The Generalized
Hypergeometric function is

(5.6) pFq(c;d; z) =

∞∑
k=0

c
(k)
1 c

(k)
2 · · · c(k)p

d
(k)
1 d

(k)
2 · · · d(k)q

zk

k!
, z ∈ C.
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Proposition 5.4 ([33]). Let s be a complex constant and m ≥ 0. For the

function ee
−r − 1, by Proposition 5.2 and Corollary 5.2, we have∫

C
|sz|m(ee

−|z|
− 1) dA(z) =

∫ 2π

0

∫ ∞

0

|s|mrm+1
∞∑

n=1

1

n!
e−nr dr dθ

= 2π|s|mΓ(m+ 2)

∞∑
n=1

1

n!nm+2
=

∞∑
n=1

∫
C
|sz|me−n|z|+log | 1

n! | dA(z).

In particular, if m is an integer, we have∫
C
|sz|m(ee

−|z|
− 1) dA(z) = 2π|s|mΓ(m+ 2)

∞∑
k=0

1

(k + 1)!

(
1

k + 1

)m+2

= 2π|s|mΓ(m+ 2)

∞∑
k=0

1

k!

(
1(k)

2(k)

)m+3

= 2π|s|mΓ(m+ 2)m+3Fm+3(1;2; 1).

5.2. Korenblum Constants for Intersections of Weighted Fock Spaces

Using Proposition 5.3 and its corollaries, we defined the following weighted
Fock space in [33].

Definition 5.2. Let 0 < p < ∞ and α > 0. For a positive real number λ and
a non-zero complex number d, we define the weighted Fock space

Fp,α
λ,d (C) :=

{
f(z) ∈ O(C) : ∥f∥pFp,α

λ,d
=

∫
C
|f(z)|pe−

pα
2 λ|z|+log |d| dA(z) < ∞

}
.

Naturally, we proceeded to obtain an upper bound of Korenblum constants
for the above weighted Fock space Fp,α

λ,d (C).

Theorem 5.5 ([33]). Let

(5.7) c >
2

pαλ
p
√
Γ(p+ 2).

Then there exist functions f and g in Fp,α
λ,d (C), such that |f(z)| < |g(z)| for

any |z| > c, but ∥f∥pFp,α
λ,d

> ∥g∥pFp,α
λ,d

. Therefore,

κFp,α
λ,d

≤ 2

pαλ
p
√

Γ(p+ 2).

With particular values of parameters, Theorem 5.5 gives interesting esti-
mates. For example, if p is a positive integer, then we have

κFp,α
λ,d

≤ 2

pαλ
p
√
(p+ 1)!.
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In the case when λ = π− 2
3 , p = 3

2 and α =
3√225
3 , we also have

κFp,α
λ,d

≤ π.

Finally, we built a sequence for these weighted Fock spaces and consider
intersections of these spaces, i.e., let 0 < (λn) ↑ ∞ and (dn) be a sequence of
non-zero complex numbers. Each pair (λn, dn) defines a weighted Fock space
Fp,α

λn,dn
(C), for which, by Theorem 5.5, the following is an upper bound estimate

for its Korenblum’s constant,

(5.8) κFp,α
λn,dn

≤ 2

pαλn

p
√
Γ(p+ 2), n ∈ N.

From here, we first considered the finite intersection of the above weighted
Fock spaces. We presented the case for an intersection of two spaces which can
be written as

Fp,α
i,j = Fp,α

λi,di

⋂
Fp,α

λj ,dj
(i < j),

endowed with the topology given by the norm

(5.9) ∥f∥Fp,α
i,j

:= max
{
∥f∥Fp,α

λi,di
, ∥f∥Fp,α

λj,dj

}
.

Note that the space Fp,α
i,j is a Banach space with the norm above.

With standard arguments, we obtained the following upper bounds for Ko-
renblum constant of Fp,α

i,j .

Theorem 5.6 ([33]). Let

(5.10) c >


2

pαλi

p
√

Γ(p+ 2), |di| ≥ |dj |
2

pαλi

p
√

Γ(p+ 2), |di| < |dj | and |di|
λp+2
i

≥ |dj |
λp+2
j

2
pαλj

p
√

Γ(p+ 2), |di| < |dj | and |di|
λp+2
i

<
|dj |
λp+2
j

.

Then there exist functions f and g in Fp,α
i,j , such that |f(z)| < |g(z)| for any

|z| > c, but

∥f∥Fp,α
i,j

> ∥g∥Fp,α
i,j

.

Therefore,

κFp,α
i,j

≤


2

pαλi

p
√

Γ(p+ 2), |di| ≥ |dj |
2

pαλi

p
√

Γ(p+ 2), |di| < |dj | and |di|
λp+2
i

≥ |dj |
λp+2
j

2
pαλj

p
√

Γ(p+ 2), |di| < |dj | and |di|
λp+2
i

<
|dj |
λp+2
j

.
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Next, we considered the Korenblum constants for an infinite intersection of
spaces Fp,α

λn,dn
(n ∈ N),

Fp,α
{λn,dn} =

{
f ∈ O(C) : ∥f∥pFp,α

λn,dn

< ∞, for every n ∈ N
}
,

endowed with the topology given by the series of norms

∥f∥pFp,α
{λn,dn}

=

∞∑
n=1

∥f∥pFp,α
λn,dn

< ∞.

For the above intersection, we have to ensure that it is non-empty as oth-
erwise, it would be trivial to consider its Korenblum constants. Fortunately,
if we want at least the simple constant function f(z) = c ∈ Fp,α

{λn,dn}, we can

have its norm

∞∑
n=1

∥f∥pFp,α
λn,dn

= 2πcp
(

2

pα

)2 ∞∑
n=1

|dn|
λ2
n

< ∞,

by assuming that

(5.11)

∞∑
n=1

|dn|
λ2
n

< ∞.

As mentioned previously, the pair of sequences (λn) and (dn) contributes
to a large class of special functions in Dirichlet series. Hence, there exist many
pairs (λn, dn) for which condition (5.11) may or may not hold. For example, if
λn = n, we take dn = nρ, then condition (5.11) is satisfied, if ρ < 1, and it is
not satisfied, if ρ ≥ 1.

Note also that since ∃n0 such that λn0 ≥ 1, then λkp
n0

≥ 1 for any 0 < p < ∞
and k ∈ N. Hence, λkp+2

n0
≥ λ2

n0
. Then for all n ≥ n0, λn ≥ 1 implies

λkp+2
n ≥ λ2

n. As a result, condition (5.11) implies

(5.12)

∞∑
n=1

|dn|
λkp+2
n

< ∞.

This also allows all polynomials zk ∈ Fp,α
{λn,dn}.

In the rest of this section, we assume that condition (5.11) holds.

Then the space Fp,α
{λn,dn} always contain a constant function f(z) = c and

all polynomial in z.

By using Proposition 5.3, we obtained an interesting upper bound for
κFp,α

{λn,dn}
in terms of Dirichlet series and Gamma functions.
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Theorem 5.7 ([33]). Let 0 < (λn) ↑ ∞ and (dn) be a sequence of non-zero
complex numbers satisfying condition (5.11). Suppose

(5.13) c >
2

pα
p

√√√√Γ(p+ 2)

∞∑
n=1

|dn|
λp+2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

,

then there exist functions f and g in Fp,α
{λn,dn}, such that |f(z)| < |g(z)| for any

|z| > c, but
∥f∥Fp,α

{λn,dn}
> ∥g∥Fp,α

{λn,dn}
.

Therefore,

κFp,α
{λn,dn}

≤ 2

pα
p

√√√√Γ(p+ 2)

∞∑
n=1

|dn|
λp+2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

.

Following the particular cases of Dirichlet series, we also obtained the fol-
lowing special cases of Theorem 5.7 in [33].

Corollary 5.3 ([33]). Let dn = 1 and (Fn) be the Fibonacci sequence. If the
Korenblum Maximum Principle holds for the space Fp,α

{Fn+1,1}, then

κFp,α
{Fn+1,1}

≤ 2

pα
p

√
Γ(p+ 2)

ζF (p+ 2)− 1

ζF (2)− 1
,

where ζF (s) =

∞∑
n=1

1

F s
n

is the Fibonacci zeta function.

Corollary 5.4 ([33]). Let λn = n for all n ∈ N. If the Korenblum Maximum
Principle holds for the space Fp,α

{n,dn}, then

(5.14) κFp,α
{n,dn}

≤ 2

pα
p

√√√√Γ(p+ 2)

∞∑
n=1

|dn|
np+2

( ∞∑
n=1

|dn|
n2

)−1

,

provided that a series

∞∑
n=1

|dn|
n2

converges.

For Corollary 5.4, if dn = 1 for all n ∈ N, we get a corollary which involves
the Riemann zeta function ζ(z).

(5.15) κFp,α
{n,1}

≤ 2

pα
p

√
6

π2
Γ(p+ 2)ζ(p+ 2).
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On the other hand, if dn = 1
n! for all n ∈ N, we use Proposition 5.4 to get

this corollary which involves the Generalized Hypergeometric functions.

κFp,α

{n, 1
n!

}
≤ 2

pα
p

√√√√ Γ(p+ 2)

3F3(1;2; 1)

∞∑
n=1

1

n!np+2
.

In addition, when p is an integer, we have

κFp,α

{n, 1
n!

}
≤ 2

pα
p

√
Γ(p+ 2)p+3Fp+3(1;2; 1)

3F3(1;2; 1)
.

Combining definitions 4.1 and 5.2 of two types of weighted Fock spaces
together with Theorem 5.7 led us to generalise them to the following slightly
more complicated weighted Fock spaces in [33].

Definition 5.3. Let 0 < p < ∞, α > 0 and m > 0. For each n ∈ N, the
weighted Fock spaces Fp,α

m,λn,dn
(C) consists of entire functions f(z) ∈ O(C) for

which

∥f∥pFp,α
m,λn,dn

=

∫
C
|f(z)|pe−

pα
2 λn|z|m+log |dn| dA(z) < ∞.

Similarly, we extended our results to the infinite intersections of weighted
Fock spaces Fp,α

{m,λn,dn} =
⋂∞

n=1 F
p,α
m,λn,dn

(C). Fp,α
{m,λn,dn} consists of entire

functions f(z) ∈ O(C) such that ∥f∥pFp,α
m,λn,dn

< ∞ for all n ∈ N, endowed with

the topology given by the series of norms

∥f∥pFp,α
{m,λn,dn}

:=

∞∑
n=1

∥f∥pFp,α
m,λn,dn

< ∞.

Following condition (5.11), we shall assume that the triple {m, dn, λn} must
fulfill the condition

(5.16)

∞∑
n=1

|dn|
λ
2/m
n

< ∞,

which would imply that for any k ∈ N and 0 < p < ∞,

∞∑
n=1

|dn|

λ
kp+2
m

n

< ∞.

This would mean that the space Fp,α
{m,λn,dn} is also non-empty, as it contains

the constant function c and all polynomial in z.
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Our final upper bound in [33] is for the case λn = nm and dn = 1 for all
n ∈ N. Clearly, for any m > 0, 0 < p < ∞ and α > 0, condition (5.16) must
remain satisfied here. With a combination of proofs from both Theorem 4.6
and Theorem 5.7, the upper bound for the Korenblum constant of the space
Fp,α

{m,nm,1} is

κFp,α
{m,nm,1}

≤
(

2

pα

) 1
m

p

√
6

π2
ζ(p+ 2)Γ

(
p+ 2

m

)
Γ

(
2

m

)−1

.

We summarize the results surveyed in this section. In this section, the
following main results are surveyed.

(i) For Fp,α
m (C),

κFp,α
m

≤ p

√(
2

pα

) p
m

Γ

(
p+ 2

m

)(
Γ

(
2

m

))−1

.

(ii) For Fp,α
λn,dn

(C),

κFp,α
λn,dn

≤ 2

pαλn

p
√

Γ(p+ 2).

(iii) For Fp,α
i,j (C),

κFp,α
i,j

≤


2

pαλi

p
√

Γ(p+ 2), |di| ≥ |dj |
2

pαλi

p
√

Γ(p+ 2), |di| < |dj | and |di|
λp+2
i

≥ |dj |
λp+2
j

2
pαλj

p
√
Γ(p+ 2), |di| < |dj | and |di|

λp+2
i

<
|dj |
λp+2
j

.

(iv) For Fp,α
{λn,dn},

κFp,α
{λn,dn}

≤ 2

pα
p

√√√√Γ(p+ 2)

∞∑
n=1

|dn|
λp+2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

.

(v) Lastly, for Fp,α
{m,nm,1}, m > 0 and α > 0,

κFp,α
{m,nm,1}

≤
(

2

pα

) 1
m

p

√
6

π2
ζ(p+ 2)Γ

(
p+ 2

m

)
Γ

(
2

m

)−1

.
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6. Failure of Korenblum Maximum Principle

In this section, we survey the remaining results from all function spaces
having a failure of Korenblum Maximum Principle. The failure of Korenblum
Maximum Principle was first discovered for the Bloch space B by Jiang, Pra-
jitura and Zhao in [14]. In fact, the Korenblum constant does not exist even
if E is the whole unit disc D in the Bloch space B. In other words, the whole
unit disc D cannot even be a dominating set for the Bloch space B.

Theorem 6.1 ([14]). Let g(z) = z3 + z and f(z) = zg(z) = z4 + z2. Then
|f(z)| ≤ |g(z)| for all z ∈ D, but ∥f∥B > ∥g∥B.

In the recent years, there is a regained interest in Korenblum constants
which should be largely attributed to the failure of Korenblum Maximum
Principle for Ap(D), 0 < p < 1 reported in 2018. In 2018, Vladimir Božin
and Karapetrović [3] discovered a complete failure in Korenblum Maximum
Principle for Bergman space Ap(D), 0 < p < 1. In other words, no Koren-
blum constant exist to satisfy the Korenblum Maximum Principle for Bergman
spaces as long as 0 < p < 1. This result closes a research gap from Hinkkanen
where he first proved the existence of κAp for Ap(D) but for p ≥ 1. Note that
Proposition 6.3 is a consequence of Proposition 6.2.

Proposition 6.2 ([3]). Let 0 < p < 1 and 0 < c < 1. Then, there exist n ∈ N
and 0 < ε < 1 such that

1 +
np

2
εnp+2 >

(
1 +

(
ε

c

)n)p

.

Theorem 6.3 ([3]). Let 0 < p < 1 and 0 < c < 1. Then there exist functions
f and g in Ap(D) such that |f(z)| < |g(z)| for all c < |z| < 1 and

||f ||Ap > ||g||Ap .

Shortly after, Lou and Hu [13] disproved the principle for classical weighted
Fock spaces Fp

α(C) where 0 < p < 1, α > 0 using similar methods. In particu-
lar, the following proposition is used to disprove the principle instead.

Proposition 6.4 ([13]). Let 0 < p < 1 and α > 0. Suppose c > 0. Then there
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exist positive integer n and 0 < ρ < ∞, such that

2ρnp+2

(∫ 1

0

ue−
pα
2 ρ2u2

du+

∫ ∞

1

unp+1e−
pα
2 ρ2u2

du

)
>

(
1 +

(
ρ

c

)n)p(
2

pα

)np
2 +1

Γ

(
np

2
+ 1

)
.

Lou and Hu [13] then obtained the following result.

Proposition 6.5 ([13]). Let 0 < p < 1 and α > 0. Suppose c > 0. Then there
exist functions f and g in Fp

α(C) such that |f(z)| < |g(z)| for all |z| > c and

||f ||Fp
α
> ||g||Fp

α
.

The results about the failures of Korenblum Maximum Principle in Ap(D),
0 < p < 1 [3] and in Fp

α(C), 0 < p < 1, α > 0 [13] inspired us to investigate
whether there are any failures of the Korenblum Maximum Principle for the
weighted Bergman space with exponential weights Ap

γ(D), 0 < p < 1, γ ̸= 0.
Similarly, we showed that such a failure exist and the result below not only
proves this fact, but also generalizes Theorem 6.3 for any γ > 0 [32].

Proposition 6.6 ([32]). Let 0 < p < 1, γ > 0 and 0 < c < 1. Then there exist
positive integer n and 0 < δ < 1, such that

2δnp+2

(∫ 1

0

ue−
pγ
2 δ2u2

du+

∫ 1
δ

1

unp+1e−
pγ
2 δ2u2

du

)
>

(
1 +

(δ
c

)n
)p ( 2

pγ

)np
2 +1

∫ pγ
2

0

u
np
2 e−u du.

Theorem 6.7 ([32]). Let 0 < p < 1 and γ > 0. Suppose 0 < c < 1. Then
there exist functions f and g in Ap

γ(D) such that |f(z)| < |g(z)| for any z with
c < |z| < 1 and ∥f∥Ap

γ
> ∥g∥Ap

γ
.

Recently, we turned our attention back to the weighted Fock spaces and
answer whether the Korenblum constant exist even for small intersections of
weighted Fock spaces. However, we found that the principle fails for the infinite
intersection Fp,α

{m,λn,dn}(C) when 0 < p < 1 and m ≥ 2 [33]. This also left a

new open problem as to whether the principle fails for 0 < m < 2.

The following proposition is a generalisation of Propostion 6.4.

Proposition 6.8 ([33]). Let 0 < p < 1, α > 0, m ≥ 2, 0 < (λn) ↑ ∞ and
c > 0. Then there exist a positive integer k and 0 < δ < 1 such that for all
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n ∈ N,

mδkp+2

(∫ 1

0

ue−
pα
2 λnδ

mum

du+

∫ ∞

1

ukp+1e−
pα
2 λnδ

mum

du

)
>

(
1 +

(
δ

c

)k)p(
2

pαλn

)( kp+2
m )

Γ

(
kp+ 2

m

)
.

Thus, we have the following result.

Theorem 6.9 ([33]). Let 0 < p < 1, α > 0, 0 < (λn) ↑ ∞, m ≥ 2 and (dn)
be a sequence of non-zero complex numbers. Suppose c > 0. Then there exist
functions f and g in Fp,α

{m,λn,dn}(C) such that |f(z)| < |g(z)| for any z with

|z| > c and ∥f∥Fp,α
{m,λn,dn}

> ∥g∥Fp,α
{m,λn,dn}

.

Remark 6.1. In [33], we make note that Lemma 6.8 can be slightly mod-
ified or relaxed accordingly for finite intersection or individual spaces such as
Fp,α

m,λi,di
(C)

⋂
Fp,α

m,λj ,dj
(C) and Fp,α

m,λn,dn
(C) respectively. For these spaces, the

proof for the failure of Korenblum constants when 0 < p < 1 and m ≥ 2 can be
similarly proven just like Theorem 6.9. We refer the reader to [4] for further
details.

Instead of working towards smaller spaces, a recent failure of Korenblum
maximum principle was also extended to the mixed norm space Hp,q,s where
0 < p, q, s < ∞ by Karapetrović [4]. Recall that the mixed norm space Hp,q,s

(0 < p, q, s < ∞) consists of all holomorphic functions in O(D) for which

(6.1) ∥f∥Hp,q,s =

(
2sq

∫ 1

0

r(1− r2)sq−1Mq
p (r, f) dr

)1/q

< ∞,

where

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ

)1/p

.

Interestingly, this latest failure of Korenblum Maximum Principle was ex-
tended for the space Hp,q,s where 0 < p, s < ∞ and 0 < q < 1.

Theorem 6.10 ([4]). Let 0 < p, s < ∞, 0 < q < 1 and 0 < c < 1. Then
there exist functions f and g holomorphic on D such that |f(z)| < |g(z)| for all
c < |z| < 1, but ∥f∥Hp,q,s > ∥g∥Hp,q,s .
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7. Future Directions and Open Questions

7.1. Future Directions

In [31], a proposed future direction is to study the Korenblum constants for
general function spaces with series norms. Recall that G is a domain and we
shall write O(G) as the set of holomorphic functions defined on G. Then we
define β = (βk) as a sequence of positive real numbers. This allows us to define
the function space

H(G, β) :=

{
f(z) =

∞∑
k=0

akz
k ∈ O(G) : ||f ||2O(G) =

∞∑
k=0

|ak|2β2
k < ∞

}
.

When G = C, we have the Hilbert space of entire functions. Further, if β =
(
√
k!)k∈N, we have the classical Fock space F2(C). If G = D, we have H2(β).

In the case β = (1)k∈N, it becomes the classical Hardy space H2(D); if β =
( 1√

k+1
)k∈N, it becomes the classical Bergman space A2(D); if β = (

√
k + 1)k∈N,

we then have the Dirichlet space D(D). If we consolidate the development of
Korenblum constants under H(G, β), we obtain Table 5.

G - β = (βk) Function Space Current Development

H(G, β)

C Hilbert Space of Entire Functions
√
k! F2(C) 0.7248 ≤ κF2 ≤ 1

D H2(β)

1 H2(D) (see Table 4)

1√
k+1

A2(D) 0.28185 ≤ κA2 < 0.67795

√
k + 1 D(D)

No Specific Development but

D(D) ⊂ H2(D)

Table 5. Current Development on H(G, β)

7.2. Open Questions

1. For the weighted Bergman spaces, the following open questions call for
investigation. The open questions were previously mentioned in [32].

Question 7.1 ([32]). Let p ≥ 1, let γ ≥ 0 and let

c =



(
2

p+2

) 1
p

, γ = 0,

p

√√√√√(
2
pγ

) p
2

∫ pγ
2

0

u
p
2 e−udu

(1−e−
pγ
2 )

, γ > 0.
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Does there exist functions f(z) and g(z) in Ap
γ(D) for which |f(z)| <

|g(z)| with c < |z| < 1 and ∥f∥Ap
γ
> ∥g∥Ap

γ
?

Question 7.2 ([32]). Let −1 < γ < 0 and 1 ≤ p < ∞. Does there
exist functions f(z) and g(z) in Ap

γ(D) for which |f(z)| < |g(z)| with
c < |z| < 1 and ∥f∥Ap

γ
> ∥g∥Ap

γ
?

2. For the weighted Hardy spaces, the following question calls for investiga-
tion.

Question 7.3. Can Theorem 4.1 be generalised for Hp
α(D), α > 0, 0 <

p ≤ ∞? In addition, how does Theorem 4.1 change with respect to φ?

3. For the intersection of weighted Fock spaces, we have the following open
questions from [33].

Question 7.4. It would be interesting to know whether the upper bound of
κFp,α

{λn,dn}
in Theorem 5.7 is always less than κFp,α

λ1,d1
. This is because the

upper bound of κFp,α
{λn,dn}

is always less than the upper bound of κFp,α
λ1,d1

.

To see this, for 0 < λ1 < λn for all n ≥ 2, λp+2
n > λp

1λ
2
n which shows that

∞∑
n=1

|dn|
λp+2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

<
1

λp
1

∞∑
n=1

|dn|
λ2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

=
1

λp
1

< ∞.

Hence, we have

κFp,α
{λn,dn}

≤ 2

pα
p

√√√√Γ(p+ 2)

∞∑
n=1

|dn|
λp+2
n

( ∞∑
n=1

|dn|
λ2
n

)−1

<
2

pαλ1

p
√
Γ(p+ 2).

Question 7.5. Does there exist any relationship between κFp,α
{m,nm,1}

and

κFp,α
m

?

Question 7.6. What is an upper bound for finite intersection of more
than two spaces Fp,α

λn,dn
(C), etc?

Question 7.7. Is it true that the principle still fails for Fp,α
{m,λn,dn}(C)

when 0 < p < 1 and 0 < m < 2, in particular, m = 1?

4. Following Theorem 6.1, we propose the following open question for the
weighted Bloch spaces Bφ.

Question 7.8. Does there exist functions f(z) and g(z) in Bφ such that
|f(z)| ≤ |g(z)| for all z ∈ D, but ∥f∥Bφ > ∥g∥Bφ?
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5. For the function space H(G, β), we propose the following open question.

Question 7.9. Is it possible to generalise the results for Korenblum con-
stants under the spaces H2(D), A2(D) and D(D) under H2(β)?

In general, the main challenge along this direction would be that the space
H(G, β) involves norms in series notations while most of the function
spaces discussed in this survey deals with integral norms.
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dodistance for the annulus, Proc. Amer. Math. Soc., 134 (2006), no. 12, 3525–3530.
[22] Schwick W., On Korenblum’s maximum principle, Proc. Amer. Math. Soc., 125

(1997), no. 9, 2581–2587.
[23] Shen C., A slight improvement to Korenblum’s constant, J. Math. Anal. Appl., 337

(2008), no. 1, 464–465.
[24] Chunjie W., Refining the constant in a maximum principle for the Bergman space,

Proc. Amer. Math. Soc., 132 (2004), no. 3, 853–855.
[25] Chunjie W., An upper bound on Korenblum’s constant, Integral Equations Operator

Theory, 49 (2004), no. 4, 561–563.
[26] Chunjie W., On Korenblum’s constant, J. Math. Anal. Appl., 296 (2004), no. 1,

262–264.
[27] Chunjie W., On Korenblum’s maximum principle, Proc. Amer. Math. Soc., 134

(2006), no. 7, 2061–2066.
[28] Chunjie W., Behavior of the constant in Korenblum’s maximum principle, Math.

Nachr., 281 (2008), no. 3, 447–454.
[29] Chunjie W., Domination in the Bergman space and Korenblum’s constant, Integral

Equations Operator Theory, 61 (2008), no. 3, 423–432.
[30] Chunjie W., Some results on Korenblum’s maximum principle, J. Math. Anal. Appl.,

373 (2011), no. 2, 393–398.
[31] JunJie W., The Korenblum Maximum Principle for some Function Spaces, Bachelor’s

Thesis, Nanyang Technological University, 2019. Available at URI hdl.handle.net/

10356/77142.
[32] JunJie W. and Khoi L. H., Korenblum constants for some function spaces, Proc.

Amer. Math. Soc., 148 (2020), no. 3, 1175–1185.
[33] JunJie W. and Khoi L. H., Korenblum constants for various weighted Fock

spaces, Complex Variables and Elliptic Equations, posted on June 2022, 1-22, DOI
10.1080/17476933.2022.2052862.

[34] Kehe Z., Analysis on Fock spaces, Graduate Texts in Mathematics, vol. 263, Springer,
New York, (2012).

Wee JunJie, Division of Mathematical Sciences, School of Physical and Math-
ematical Sciences, Nanyang Technological University (NTU)
637371 Singapore; weej0016@e.ntu.edu.sg

Le Hai Khoi, University of Science and Technology of Hanoi – USTH (Viet-
nam France University), Vietnam Academy of Science and Technology
Hanoi 10000, Vietnam; le-hai.khoi@usth.edu.vn

hdl.handle.net/10356/77142
hdl.handle.net/10356/77142

	Introduction
	Basic Notations for Weighted Function Spaces
	Korenblum Constants for Bergman Spaces
	Development of Upper Bounds
	Development in Lower Bounds

	Korenblum Constants for Other Weighted Function Spaces
	Extension to Intersections of Weighted Fock spaces
	Preliminaries
	Korenblum Constants for Intersections of Weighted Fock Spaces

	Failure of Korenblum Maximum Principle
	Future Directions and Open Questions
	Future Directions
	Open Questions


