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Abstract. Let F be an algebraically closed field of characteristic p ≥ 0,
which is complete with respect to a non-Archimedean absolute value. Let
V be a projective subvariety of PM (F). In this paper, we will prove some
second main theorems for non-Archimedean meromorphic maps of Fm into
V intersecting a family of hypersurfaces in N−subgeneral position with
truncated counting functions.

1. Introduction and Main results

Let F be an algebraically closed field of characteristic p ≥ 0, which is com-
plete with respect to a non-Archimedean absolute value. Let N ≥ n and
q ≥ N +1. Let H1, . . . ,Hq be hyperplanes in Pn(F). The family of hyperplanes
{H1}qi=1 is said to be in N -subgeneral position in Pn(F) if Hj0 ∩ · · · ∩HjN = ∅
for every 1 ≤ j0 < · · · < jN ≤ q.

In 2017, Yan [6] proved a truncated second main theorem for a non -
Archimedean meromorphic map into Pn(F) with a family of hyperplanes in
subgeneral position. With the standart notations on the Nevanlinna theory for
non-Archimedean meromorphic maps, his result is stated as follows.

Theorem A (cf. [6, Theorem 4.6]) Let F be an algebraically closed field of
characteristic p ≥ 0, which is complete with respect to a non-Archimedean abso-
lute value. Let f : Fm → Pn(F) be a linearly non-degenerate non-Archimedean
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meromorphic map with index of independence s and rankf = k. Let H1, . . . ,Hq

be hyperplanes in Pn(F) in N -subgeneral position (N ≥ n). Then, for all r ≥ 1,

(q − 2N + n− 1)Tf (r) ≤
q∑

i=1

N
(a)
f (Hi, r)−

N + 1

n+ 1
log r +O(1),

where

a =

{
ps−1(n− k + 1) if p > 0,

n− k + 1 if p = 0.

Here, the index of independence s and the rankf are defined in Section 2
(Definition 2.1).

Also, in 2017, An and Quang [2] proved a truncated second main theorem
for meromorphic mappings from Cm into a projective variety V ⊂ PM (C) with
hypersurfaces. Motivated by the methods of Yan [6] and An-Quang [2], our aim
in this article is to generalize Theorem A to the case where the map f is from
Fm into an arbitrary projective variety V of dimension n in PM (F) and the
hyperplanes are replaced by hypersurfaces of PM (F) in N -subgeneral position
with respect to V .

Firstly, we give the following definitions.

Definition B. Let V be a projective subvariety of PM (F) of dimension n (n ≤
M). Let Q1, . . . , Qq (q ≥ n + 1) be q hypersurfaces in PM (F). The family of
hypersurfaces {Qi}qi=1 is said to be in N -subgeneral position with respect to V
if

V ∩ (

N+1⋂
j=1

Qij ) = ∅ for any 1 ≤ i1 < · · · < iN+1 ≤ q.

If N = n, we just say {Qi}qi=1 is in general position with respect to V.

Now, let V be as above and let d be a positive integer. We denote by I(V )
the ideal of homogeneous polynomials in F[x0, . . . , xM ] defining V and by Hd

the F-vector space of all homogeneous polynomials in F[x0, . . . , xM ] of degree
d. Define

Id(V ) :=
Hd

I(V ) ∩Hd
and HV (d) := dimFId(V ).

Then HV (d) is called the Hilbert function of V . Each element of Id(V ) which
is an equivalent class of an element Q ∈ Hd, will be denoted by [Q],

Definition C. Let f : Fm → V be a non-Archimedean meromorphic map with
a reduced representation f = (f0, . . . , fM ). We say that f is degenerate over
Id(V ) if there is [Q] ∈ Id(V ) \ {0} such that Q(f) ≡ 0. Otherwise, we say that
f is non-degenerate over Id(V ).

We will generalize Theorem A to the following.
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Theorem 1.1. Let V be a projective subvariety of PM (F) of dimension n (n ≤
M). Let {Qi}qi=1 be hypersurfaces of PM (F) in N -subgeneral position with
respect to V with degQi = di (1 ≤ i ≤ q). Let d be the least common multiple of
d′is. Let f be a non-Archimedean meromorphic map of Fm into V , which is non-
degenerate over Id(V ) with the dth-index of non-degeneracy s and rankf = k.
Then, for all r ≥ 1,(
q − (2N + n− 1)Hd(V )

n+ 1

)
Tf (r) ≤

q∑
i=1

1

di
N

(κ0)
f (Qi, r)−

N(Hd(V )− 1)

nd
log r+O(1),

where

κ0 =

{
ps−1(Hd(V )− k) if p > 0,

Hd(V )− k if p = 0.

Here, the dth-index of non-degeneracy s is defined in Section 2 (Definition
2.1). Note that, in the case where V = Pn(C), d = 1, Hd(V ) = n+1, our result
will give back Theorem A.

For the case of counting function without truncation level, we will prove
the following.

Theorem 1.2. Let V be a arbitrary projective subvariety of PM (F). Let
{Qi}qi=1 be hypersurfaces of PM (F) in N -subgeneral position with respect to
V . Let f be a non-constant non-Archimedean meromorphic map of Fm into V .
Then, for any r > 0,

(q −N)Tf (r) ≤
q∑

i=1

1

degQi
Nf (Qi, r) +O(1),

where the quantity O(1) depends only on {Qi}qi=1.

We see that, the above result is a generalization of the previous results in
[1, 5].

2. Basic notions and auxiliary results

In this section, we will recall some basic notions from Nevanlinna theory
for non-Archimedean meromorphic maps due to Cherry-Ye [3] and Yan [6].

2.1. Non-Archimedean meromorphic function. Let F be an algebraically
closed field of characteristic p, complete with respect to a non-Archimedean
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absolute value | |. We set ∥z∥ = max1≤i≤m |zi| for z = (z1, . . . , zm) ∈ Fm and
define

Bm(r) := {z ∈ Fm; ∥z∥ < r}.

For a multi-index γ = (γ1, . . . , γm) ∈ Zm
≥0, define

zγ = zγ1

1 · · · zγm
m , |γ| = γ1 + · · ·+ γm, γ! = γ! · · · γm!.

For an analytic function f on Fm (i.e., entire function) given by a formal
power series

f =
∑
γ

aγz
γ

with aγ ∈ F such that lim|γ|→∞ |aγ |r|γ| = 0 (∀r ∈ F∗ = F \ {0}), define

|f |r = supγ |aγ |r|γ|.

We denote by Em the ring of all analytic functions on Fm.

We define a meromorphic function f on Fm to be the quotient of two analytic
functions g, h ∈ Em such that g and h have no common factors in Em, i.e., f = g

h .
We define

|f |r =
|g|r
|h|r

.

We denote by Mm the field of all meromorphic functions on Fm, which is the
fractional field of Em.

2.2. Derivatives and Hasse derivatives. For a meromorphic function
f ∈ Mm and a multi-index γ = (γ1, . . . , γm), we set

∂γf =
∂|γ|f

∂zγ1

1 · · · ∂zγm
m

.

Let α = (α1, . . . , αm) and β = (β1, . . . , βm) be multi-indices. We say that
α ≥ β if αi ≥ βi for all i = 1, . . . . ,m. If α ≥ β, we define

α− β = (α1 − β1, . . . , αm − βm),

(
α

β

)
=

(
α1

β1

)
· · ·

(
αm

βm

)
.

For an analytic function f =
∑

α aαz
α and a multi-index γ, we define the

Hasse derivative of multi-index γ of f by

Dγf =
∑
α≥γ

(
α

γ

)
aαz

α−γ .

We may verify that DαDβf =
(
α+β
β

)
Dα+β for all f ∈ Em. Therefore, the Hasse

derivative D can be extended to meromorphic functions in the following way:
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• For a multi-index ei = (0, . . . , 0, 1
jth−position

, 0, . . . , 0), we set Dk
j f :=

Dkei(f).

• For a meromorphic function f = g
h (g, h ∈ Em), we define

Dei = D1
jf :=

hD1
i g − gD1

i h

h2
, j = 1, . . . ,m.

• For γ = (γ1, . . . , γm), we may choose a sequence of multi-indices γ =
α1 > α2 > · · · > α|γ| such that αi = αi+1 + eji (ji ∈ {1, . . . ,m}) for
1 ≤ i ≤ |γ| − 1 and α|γ| = ej|γ| (j|γ| ∈ {1, . . . ,m}) and define

Dαih =
1(

αi+1+eji
αi+1

)DejiDαi+1h,∀i = |γ| − 1, |γ| − 2, . . . , 1.

We summarize here the fundamental properties of the Hasse derivative from
[6] as follows:

(i) Dγ(f + g) = Dγf +Dγg, f, g ∈ Mm.

(ii) Dγ(fg) =
∑

α,β D
αfDβg, f, g ∈ Mm.

(iii) DαDβf =
(
α+β
β

)
Dα+βf, f ∈ Mm

(iv) (Lemma on the logarithmic derivative) For f ∈ Em,

|Dγf |r ≤ |f |r
r|γ|

, |∂γf |r ≤ |f |r
r|γ|

.

(v) For f ∈ Em and a multi-index γ, let P be an irreducible element of Em
that divides f with exact multiplicity e. If e > |γ|, then P e−|γ| divides Dγf .

For each integer k ≥ 2, let

Mm[k] = {Q ∈ Mm : Di
jQ ≡ 0 for all 0 < i < k and 1 ≤ j ≤ m}.

If F has characteristic 0, then Mm[k] = F for all k ≥ 2. If F has characteristic
p > 0 and if s ≥ 1 is an integer, then Mm[ps] is the fraction field of Em, where
Em[ps] = {gps

: g ∈ Em} is a subring of Em. Moreover,

Mm[ps−1 + 1] = Mm[ps].

2.3. Non-Archimedean Nevanlinna’s function.

Let f =
∑

γ aγz
γ ∈ Em be an holomorphic function. The counting function

of zeros of f is defined as follows:

Nf (0, r) = nf (0, 0) log r +

∫ r

0

(nf (0, t)− nf (0, 0))
dt

t
(r > 0),
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where

nf (0, r) = sup{|γ|; |aγ |r|γ| = |f |r} and nf (0, 0) = min{|γ|; aγ ̸= 0}.

Let f be a meromorphic function on Fm. Assume that f = g
h , where g, h

are holomorphic functions without common factors. We define

Nf (0, r) = Ng(0, r) and Nf (∞, r) = Nh(0, r).

The Poisson-Jensen-Green formula (see [3, Theorem 3.1]) states that

Nf (0, r)−Nf (∞, r) = log |f |r + Cf for all r > 0,

where Cf is a constant depending on f but not on r.

Suppose that f ̸≡ a for a ∈ F. The counting function of f with respect to
the point a is defined by

Nf (a, r) = Nf−a(0, r).

The proximity functions of f with respect to ∞ and a are defined respec-
tively as follows

mf (∞, r) = max{0, log |f |r} = log+ |f |r and mf (a, r) = m1/(f−a)(∞, r).

The characteristic function of f is defined by

Tf (r) = mf (∞, r) +Nf (∞, r).

Note that, if f = g
h as above then Tf (r) = max{log |g|r, log |h|r}+O(1).

The first main theorem is stated as follows:

Tf (r) = mf (a, r) +Nf (a, r) +O(1) (∀r > 0).

2.4. Truncated counting function.

Let f ∈ Em. For j = 1, . . . ,m, define

gj = gcd(f,D1
j (f)) and hj =

f

gj
.

The radical R(f) of f is defined to be the least common multiple of hj ’s.

Case 1: F has characteristic p = 0. The truncated counting function of
zeros of f is defined by

N
(l)
f (0, r) = Ngcd(f,R(f)l)(0, r).
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In particular,

N
(1)
f (0, r) = NR(f)(0, r).

Case 2: F has characteristic p > 0. We define Rps(f) by induction in
s = 0, 1, . . . For s = 0, set Rp0(f) = R(f). For s ≥ 1, assume that Rps−1(f)
has been defined. We set

f =
f

gcd(f,Rps−1(f)ps)
, gi = gcd(f,Dps

i f), hi =
f

gi

for i = 1, . . . ,m. Let H be the least common multiple of hi’s, and set

G =
H

gcd(H,Rps−1(H)ps−1)
,

which is a psth power. Let R be the psth root of G and define the higher
ps-radical Rps(f) of f to be the least common multiple of Rps−1(f) and R.

Take a sequence {rj}i∈N ⊂ |F∗| such that rj → ∞. Take sj such that if
P ∈ Em is irreducible such that P |f and P is not unit on Bm(rj) then P |Rps(f)
for s > sj . Let uj be a unit on Bm(rj) such that

Rpsj (f) = ujRpsj+1 (f).

Define vj =
∏∞

l=j uj , which is unit on Bm(rj), and

S(f) = lim
j→∞

Rpsj (f)

vj
∈ Em,

which is called the square free part of f . The truncated (to level l) counting
function of zeros of f is defined by

N
(l)
f (0, r) = Ngcd(f,S(f)l)(0, r).

2.5. Non-Archimedean meromorphic maps and family of hypersur-
faces.

Let V be a projective subvariety of PM (F) of dimension n (n ≤ M). For
a positive integer d, take a basis {[A1], . . . , [AHd(V )]} of Id(V ), where Ai ∈
Hd[x0, . . . , xM ]. Let f : Fm → PM (F) be a non-Archimedean meromorphic
map with a reduced representation f = (f0, . . . , fM ), which is non-degenerate
over Id(V ). We have the following definition.

Definition 2.1. Assume that F has the character p > 0. Denote by s the
smallest integer such that any subset of {A1(f), . . . , AHd(V )(f)} linearly inde-
pendent over F remains linearly independent over Mm[ps]. We call s is the
dth-index of non-degeneracy of f .
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We see that the above definition does not depend on the choice of the basis
{[Ai]; 1 ≤ i ≤ Hd(V )} and the choice of the reduced representation f . If
V = PM (F) and d = 1 then s is also called the index of independence of f (see
[6, Definition 4.1]).

The following three lemmas are proved in [2] for the case of F = C and
the canonical absolute value. However, with the same proof, they also hold
for arbitrary algebraic closed field F of character p ≥ 0 and complete with an
arbitrary absolute value. We state them here without the proofs.

Throughout this paper, we sometimes identify each hypersurface in a pro-
jective variety with its defining homogeneous polynomial. The following lemma
of An-Quang [2] may be considered as a generalization of the lemma on Nochka
weights in [4].

Lemma 2.1 (cf. [2, Lemma 3]). Let V be a projective subvariety of PM (F) of
dimension n (n ≤ M). Let Q1, . . . , Qq be q (q > 2N − k + 1) hypersurfaces in
PM (F) in N -subgeneral position with respect to V of the common degree d. Then
there are positive rational constants ωi (1 ≤ i ≤ q) satisfying the following:

i) 0 < ωi ≤ 1, ∀i ∈ {1, . . . , q},
ii) Setting ω̃ = maxj∈Q ωj, one gets

q∑
j=1

ωj = ω̃(q − 2N + n− 1) + n+ 1.

iii)
n+ 1

2N − n+ 1
≤ ω̃ ≤ n

N
.

iv) For R ⊂ {1, . . . , q} with ♯R = N + 1, then
∑

i∈R ωi ≤ n+ 1.

v) Let Ei ≥ 1 (1 ≤ i ≤ q) be arbitrarily given numbers. For R ⊂ {1, . . . , q}
with ♯R = N + 1, there is a subset Ro ⊂ R such that ♯Ro = rankF{[Qi]; i ∈
Ro} = n+ 1 and ∏

i∈R

Eωi
i ≤

∏
i∈Ro

Ei.

Let Q be a hypersurface in Pn(F) of degree d defined by
∑

I∈Id
aIx

I = 0,

where Id = {(i0, . . . , iM ) ∈ NM+1
0 : i0 + · · ·+ iM = d}, I = (i0, . . . , iM ) ∈ Id,

xI = xi0
0 · · ·xiM

M and (x0 : · · · : xM ) is homogeneous coordinates of PM (F).
Let f be an non-Archimedean meromorphic map from Fm into a projective
subvariety V of PM (F) with a reduced representation f = (f0, . . . , fM ). We
define

Q(f) =
∑
I∈Id

aIf
I ,

where f I = f i0
0 · · · f in

n for I = (i0, . . . , in). We have the following lemma.
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Lemma 2.2 (cf. [2, Lemma 4]). Let {Qi}i∈R be a set of hypersurfaces in Pn(F)
of the common degree d and let f be a meromorphic mapping of Fm into Pn(F)
with a reduced representation f = (f0, . . . , fM ). Assume that

⋂
i∈R Qi∩V = ∅.

Then, there exist positive constants α and β such that

α∥f∥dr ≤ max
i∈R

|Qi(f)|r ≤ β∥f∥dr for any r > 0.

Lemma 2.3 (cf. [2, Lemma 5]). Let {Qi}qi=1 be a set of q hypersurfaces in
PM (F) of the common degree d. Then there exist (HV (d)−n−1) hypersurfaces

{Ti}HV (d)−n−1
i=1 in PM (F) such that for any subset R ∈ {1, . . . , q} with ♯R =

rankF{[Qi]; i ∈ R} = n+1, we get rankF{{[Qi]; i ∈ R}∪{[Ti]; 1 ≤ i ≤ Hd(V )−
n− 1}} = HV (d).

2.5. Value distribution theory for non-Archimedean meromorphic
maps.

Let f : Fm → V ⊂ PM (F) be a non-Archimedean meromorphic map with
a reduced representation f = (f0, . . . , fN ). The characteristic function of f is
defined by

Tf (r) = log ∥f∥r,

where ∥f∥r = max1≤0≤n |fi|r. This definition is well-defined upto a constant.

Let Q be a hypersurface in Pn(F) of degree d defined by
∑

I∈Id
aIx

I = 0,
where aI ∈ F (I ∈ Id) and are not all zeros. If Q(f) ̸≡ 0 then we define the
proximity function of f with respect to Q by

mf (Q, r) = log
∥f∥dr · ∥Q∥
|Q(f)|r

,

where ∥Q∥ := maxI∈Id
|aI |. We see that the definition of mf (Q, r) does not

depend on the choices of the presentations of f and Q.

The truncated (to level l) counting function of f with respect to Q is defined
by

N
(l)
f (Q, r) := N

(l)
Q(f)(0, r).

For simplicity, we will omit the character (l) if l = ∞.

The first main theorem for non-Archimedean meromorphic maps states that

dTf (r) = mf (Q, r) +Nf (Q, r) +O(1).

Proposition 2.1 (cf. [6, Propositions 4.3, 4.4]). Let p be the character of F.
Assume that f : Fm → Pn(F) is a non-Achimedean meromorphic map, which is
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linearly non-degenerate over F, with a reduced representation f = (f0, . . . , fn).
Then there exist multi-indices γ0 = (0, . . . , 0), γ1, . . . , γn with

|γ0| ≤ · · · ≤ |γn| ≤ κ0 ≤

{
ps−1(n− k + 1) if p > 0,

n− k + 1 if p = 0

where s is the index of independence of f and k = rankf , such that the gener-
alized Wronskian

Wγ0,...,γn(f0, . . . , fn) = det
(
Dγi

fj

)
0≤i,j≤n

̸≡ 0.

Here rankf is defined by

rankf = rankMm{(Dγf0, . . . , D
γfn); |γ| ≤ 1} − 1.

3. Proof of main theorems

Proof. [Proof of Theorem 1.1] By replacing Qi with Q
d/di

i if necessary, we
may assume that all Qi (i = 1, . . . , q) do have the same degree d. It is easy
to see that there is a positive constant β such that β∥f∥d ≥ |Qi(f)| for every
1 ≤ i ≤ q. Set Q := {1, · · · , q}. Let {ωi}qi=1 be as in Lemma 2.1 for the family

{Qi}qi=1. Let {Ti}Hd(V )−n−1
i=1 be (Hd(V )−n−1) hypersurfaces in PM (F), which

satisfy Lemma 2.3.

Take a F-basis {[Ai]}HV (d)
i=1 of Id(V ), where Ai ∈ Hd. Since f is non-

degenerate over Id(V ), it implies that {Ai(f); 1 ≤ i ≤ HV (d)} is linearly inde-
pendent over F. By Proposition 2.1, there multi-indices {γ1 = (0, . . . , 0), γ2 · · · ,
γHV (d)} ⊂ Zm

+ such that |γ0| ≤ · · · ≤ |γHd(V )| ≤ κ0, where

κ0 ≤

{
ps−1(HV (d)− k) if p > 0,

Hd(V )− k if p = 0

and the generalized Wronskian

W = det
(
Dγi

Aj(f)
)
1≤i,j≤Hd(V )

̸≡ 0.
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Here, we note that

k = rankMm
{(Dγf0, . . . , D

γfM ); |γ| ≤ 1} − 1

= rankMm

{(
Dγ

(f1
f0

)
, . . . , Dγ

(fM
f0

))
; |γ| ≤ 1

}
≤ rankMm

{(
Dγ

(A2(f)

A1(f)

)
, . . . , Dγ

(AHd(V )(f)

A1(f)

))
; |γ| ≤ 1

}
= rankMm

{
(Dγ(A1(f)), . . . , D

γ(AHd(V )(f))); |γ| ≤ 1
}
− 1.

For each Ro = {r01, . . . , r0n+1} ⊂ {1, . . . , q} with rankF{Qi}i∈Ro = ♯Ro =
n+ 1, set

WRo ≡ det
(
Dγj

Qr0v
(f)(1 ≤ v ≤ n+1), Dγj

Tl(f)(1 ≤ l ≤ HV (d)−n−1)
)
1≤j≤HV (d)

.

Since rankF{[Qr0v
](1 ≤ v ≤ n+1), [Tl](1 ≤ l ≤ HV (d)−n− 1)} = HV (d), there

exists a nonzero constant CRo ∈ F such that WRo = CRo ·W .

We denote by Ro the family of all subsets Ro of {1, . . . , q} satisfying

rankF{[Qi]; i ∈ Ro} = ♯Ro = n+ 1.

For each r > 0, there exists R̄ ⊂ Q with ♯R̄ = N + 1 such that |Qi(f)|r ≤
|Qj(f)|r,∀i ∈ R̄, j ̸∈ R̄. We choose Ro ⊂ R such that Ro ∈ Ro and Ro satisfies

Lemma 2.1(v) with respect to numbers
{ β∥f∥dr
|Qi(f)|r

}q

i=1
. Since

⋂
i∈R̄ Qi = ∅, by

Lemma 2.2, there exists a positive constant αR̄ such that

αR̄∥f∥dr ≤ max
i∈R̄

|Qi(f)|r.

Then, we get

∥f∥d(
∑q

i=1 ωi)
r |W |r

|Q1(f)|ω1
r · · · |Qq(f)|

ωq
r

≤ |W |r
αq−N−1

R̄
βN+1

∏
i∈R̄

(
β∥f∥dr
|Qi(f)|r

)ωi

≤ AR̄

|W |r · ∥f∥d(n+1)
r∏

i∈R̄o |Qi(f)|r

≤ BR̄

|WR̄o |r · ∥f∥dHV (d)
r∏

i∈R̄o |Qi(f)|r
∏HV (d)−n−1

i=1 |Ti(f)|r
,

where AR̄, BR̄ are positive constants.
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Therefore, for every r > 0,

log
∥f∥d(

∑q
i=1 ωi−Hd(V )

r |W |r
|Q1(f)|ω1

r · · · |Qq(f)|ωq
r

≤ max
R

log
|WR|r∏

i∈R |Qi(f)|r
∏HV (d)−n−1

i=1 |Ti(f)|r
+O(1)

≤ −
Hd(V )∑
j=1

|γj | log r +O(1),

where the maximum is taken over all subsets R ⊂ {1, . . . , q} such that ♯R =
n + 1 and rankF{[Qi]; i ∈ R} = n + 1. Here, the last inequality comes from
the lemma on logarithmic derivative. By the Poisson-Jensen-Green formula,
the definitions of the approximation function and the characteristic function,
we have

q∑
i=1

ωimf (Qi, r)− dHd(V )Tf (r)−NW (0, r) ≤ −(Hd(V )− 1) log r +O(1),

(note that
∑Hd(V )

i=1 |γi| ≤ Hd(V ) − 1). Then, by the first main theorem, we
obtain

(

q∑
i=1

ωi −Hd(V ))dTf (r) ≤
q∑

i=1

ωiNf (Qi, r)−NW (0, r)− (Hd(V )− 1) log r +O(1).

(3.1)

Claim.
∑q

i=1 ωiNf (Qi, r)−NW (0, r) ≤
∑q

i=1 ωiN
(κ0)
f (Qi, r) +O(1).

Indeed, set G̃j = gcd(Qj(f), S(Qj(f))
κ0). Since ωi (1 ≤ i ≤ q) are rational

numbers, there exists an integer A such that ω̃i = Aωi (1 ≤ i ≤ q) are integers.

Let P ∈ Em be an irreducible element with P |
∏q

i=1 Qi(f)
ω̃i . There exists a

subset R of {1, . . . , q} with ♯R = N + 1 such that P is not a division of Qi(f)
for any i ̸∈ R. Denote by ei the largest integer such that P ei |Qi(f) for each
i ∈ R. Then, there is a subset Ro ⊂ R with ♯Ro = n+ 1, WRo ̸≡ 0 and∑

i∈R

ωi max{0, ei − κ0} ≤
∑
i∈Ro

max{0, ei − κ0}.

Also, since W = CRo ·WRo , it clear that P divides W with multiplicity at least

min
{j1,...,jn+1}⊂{1,...,Hd(V )}

∑
i∈R0

min{0, ei − |γji |} ≥
∑
i∈R0

min{0, ei − κ0}

≥
∑
i∈R

ωi max{0, ei − κ0}

=
∑
i∈R

ωi(ei −min{ei, κ0}).
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This implies that

P
∑

i∈R ω̃iei |WA · P
∑

i∈R ω̃i min{ei,κ0}.

We note that P ω̃i min{ei,κ0}|Gω̃i
i . Therefore,

P
∑

i∈R ω̃iei |WA ·
∏
i∈R

Gω̃i
i .

This holds for every such irreducible element P . Then it yields that

q∏
i=1

Qi(f)
ω̃i |WA ·

q∏
i=1

Gω̃i
i .

Hence,
q∑

i=1

Nf (Qi, r) ≤ NW (0, r) +

q∑
i=1

N
(κ0)
f (Qi, r).

The claim is proved.

From the claim, Lemma 2.1(ii) and the inequality (3.1), we obtain

(ω̃(q − 2N + n− 1)−Hd(V ) + n+ 1)dTf (r)

≤
q∑

i=1

ωiN
(κ0)
f (Qi, r)− (Hd(V )− 1) log r +O(1).

Note that, ωi ≤ ω̃(1 ≤ i ≤ q) and
n+ 1

2N − n+ 1
≤ ω̃ ≤ n

N
. Then, the above

inequality implies that(
q − (2N − n+ 1)Hd(V )

n+ 1

)
≤

q∑
i=1

1

d
N

(κ0)
f (Qi, r)−

N(Hd(V )− 1)

nd
log r+O(1).

The theorem is proved.

Proof. [Proof of Theorem 1.2] For r > 0, without loss of generality, we may
assume that

|Q1(f)|1/ degQ1
r ≤ |Q2(f)|1/ degQ2

r ≤ · · · ≤ |Qq(f)|1/ degQN+1
r .

Since
⋂N+1

i=1 Qi = ∅, by Lemma 2.2, there exists a positive constant C such
that

C∥f∥r ≤ max
1≤i≤N+1

|Qi(f)|1/ degQi
r = |QN+1(f)|1/ degQN+1

r .
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Then, we get

q∑
i=1

mf (Qi, r)

degQi
= log

∥f∥qr
|Q1(f)|1/ degQ1

r · · · |Qq(f)|
1/ degQq
r

+O(1)

≤ log

N∏
i=1

∥f∥r
|Qi(f)|1/ degQi

r

+O(1)

=

N∑
i=1

mf (Qi, r)

degQi
+O(1)

≤ N · Tf (r) +O(1).

Therefore,

(q −N)Tf (r) ≤
q∑

i=1

1

degQi
Nf (Qi, r) +O(1) (r > 0).

The theorem is proved.
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