Truncated second main theorem for non-Archimedean meromorphic maps

Si Duc Quang (Hanoi, Vietnam)

(Received Dec. 10, 2022)

Abstract

Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$, which is complete with respect to a non-Archimedean absolute value. Let V be a projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$. In this paper, we will prove some second main theorems for non-Archimedean meromorphic maps of \mathbb{F}^{m} into V intersecting a family of hypersurfaces in N-subgeneral position with truncated counting functions.

1. Introduction and Main results

Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$, which is complete with respect to a non-Archimedean absolute value. Let $N \geq n$ and $q \geq N+1$. Let H_{1}, \ldots, H_{q} be hyperplanes in $\mathbb{P}^{n}(\mathbb{F})$. The family of hyperplanes $\left\{H_{1}\right\}_{i=1}^{q}$ is said to be in N-subgeneral position in $\mathbb{P}^{n}(\mathbb{F})$ if $H_{j_{0}} \cap \cdots \cap H_{j_{N}}=\varnothing$ for every $1 \leq j_{0}<\cdots<j_{N} \leq q$.

In 2017, Yan [6] proved a truncated second main theorem for a non Archimedean meromorphic map into $\mathbb{P}^{n}(\mathbb{F})$ with a family of hyperplanes in subgeneral position. With the standart notations on the Nevanlinna theory for non-Archimedean meromorphic maps, his result is stated as follows.

Theorem A (cf. [6, Theorem 4.6]) Let \mathbb{F} be an algebraically closed field of characteristic $p \geq 0$, which is complete with respect to a non-Archimedean absolute value. Let $f: \mathbb{F}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{F})$ be a linearly non-degenerate non-Archimedean

[^0]meromorphic map with index of independence s and $\operatorname{rank} f=k$. Let H_{1}, \ldots, H_{q} be hyperplanes in $\mathbb{P}^{n}(\mathbb{F})$ in N-subgeneral position $(N \geq n)$. Then, for all $r \geq 1$,
$$
(q-2 N+n-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{f}^{(a)}\left(H_{i}, r\right)-\frac{N+1}{n+1} \log r+O(1)
$$
where
\[

a= $$
\begin{cases}p^{s-1}(n-k+1) & \text { if } p>0 \\ n-k+1 & \text { if } p=0\end{cases}
$$
\]

Here, the index of independence s and the $\operatorname{rank} f$ are defined in Section 2 (Definition 2.1).

Also, in 2017, An and Quang [2] proved a truncated second main theorem for meromorphic mappings from \mathbb{C}^{m} into a projective variety $V \subset \mathbb{P}^{M}(\mathbb{C})$ with hypersurfaces. Motivated by the methods of Yan [6] and An-Quang [2], our aim in this article is to generalize Theorem A to the case where the map f is from \mathbb{F}^{m} into an arbitrary projective variety V of dimension n in $\mathbb{P}^{M}(\mathbb{F})$ and the hyperplanes are replaced by hypersurfaces of $\mathbb{P}^{M}(\mathbb{F})$ in N-subgeneral position with respect to V.

Firstly, we give the following definitions.
Definition B. Let V be a projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$ of dimension $n(n \leq$ $M)$. Let $Q_{1}, \ldots, Q_{q}(q \geq n+1)$ be q hypersurfaces in $\mathbb{P}^{M}(\mathbb{F})$. The family of hypersurfaces $\left\{Q_{i}\right\}_{i=1}^{q}$ is said to be in N-subgeneral position with respect to V if

$$
V \cap\left(\bigcap_{j=1}^{N+1} Q_{i_{j}}\right)=\varnothing \text { for any } 1 \leq i_{1}<\cdots<i_{N+1} \leq q .
$$

If $N=n$, we just say $\left\{Q_{i}\right\}_{i=1}^{q}$ is in general position with respect to V.
Now, let V be as above and let d be a positive integer. We denote by $I(V)$ the ideal of homogeneous polynomials in $\mathbb{F}\left[x_{0}, \ldots, x_{M}\right]$ defining V and by H_{d} the \mathbb{F}-vector space of all homogeneous polynomials in $\mathbb{F}\left[x_{0}, \ldots, x_{M}\right]$ of degree d. Define

$$
I_{d}(V):=\frac{H_{d}}{I(V) \cap H_{d}} \text { and } H_{V}(d):=\operatorname{dim}_{\mathbb{F}} I_{d}(V)
$$

Then $H_{V}(d)$ is called the Hilbert function of V. Each element of $I_{d}(V)$ which is an equivalent class of an element $Q \in H_{d}$, will be denoted by $[Q]$,

Definition C. Let $f: \mathbb{F}^{m} \rightarrow V$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{M}\right)$. We say that f is degenerate over $I_{d}(V)$ if there is $[Q] \in I_{d}(V) \backslash\{0\}$ such that $Q(\mathbf{f}) \equiv 0$. Otherwise, we say that f is non-degenerate over $I_{d}(V)$.

We will generalize Theorem A to the following.

Theorem 1.1. Let V be a projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$ of dimension $n(n \leq$ $M)$. Let $\left\{Q_{i}\right\}_{i=1}^{q}$ be hypersurfaces of $\mathbb{P}^{M}(\mathbb{F})$ in N-subgeneral position with respect to V with $\operatorname{deg} Q_{i}=d_{i}(1 \leq i \leq q)$. Let d be the least common multiple of d_{i}^{\prime} s. Let f be a non-Archimedean meromorphic map of \mathbb{F}^{m} into V, which is nondegenerate over $I_{d}(V)$ with the $d^{\text {th }}$-index of non-degeneracy s and $\operatorname{rank} f=k$. Then, for all $r \geq 1$,
$\left(q-\frac{(2 N+n-1) H_{d}(V)}{n+1}\right) T_{f}(r) \leq \sum_{i=1}^{q} \frac{1}{d_{i}} N_{f}^{\left(\kappa_{0}\right)}\left(Q_{i}, r\right)-\frac{N\left(H_{d}(V)-1\right)}{n d} \log r+O(1)$,
where

$$
\kappa_{0}= \begin{cases}p^{s-1}\left(H_{d}(V)-k\right) & \text { if } p>0 \\ H_{d}(V)-k & \text { if } p=0\end{cases}
$$

Here, the $d^{t h}$-index of non-degeneracy s is defined in Section 2 (Definition 2.1). Note that, in the case where $V=\mathbb{P}^{n}(\mathbb{C}), d=1, H_{d}(V)=n+1$, our result will give back Theorem A.

For the case of counting function without truncation level, we will prove the following.

Theorem 1.2. Let V be a arbitrary projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$. Let $\left\{Q_{i}\right\}_{i=1}^{q}$ be hypersurfaces of $\mathbb{P}^{M}(\mathbb{F})$ in N-subgeneral position with respect to V. Let f be a non-constant non-Archimedean meromorphic map of \mathbb{F}^{m} into V. Then, for any $r>0$,

$$
(q-N) T_{f}(r) \leq \sum_{i=1}^{q} \frac{1}{\operatorname{deg} Q_{i}} N_{f}\left(Q_{i}, r\right)+O(1)
$$

where the quantity $O(1)$ depends only on $\left\{Q_{i}\right\}_{i=1}^{q}$.
We see that, the above result is a generalization of the previous results in $[1,5]$.

2. Basic notions and auxiliary results

In this section, we will recall some basic notions from Nevanlinna theory for non-Archimedean meromorphic maps due to Cherry-Ye [3] and Yan [6].
2.1. Non-Archimedean meromorphic function. Let \mathbb{F} be an algebraically closed field of characteristic p, complete with respect to a non-Archimedean
absolute value $\left|\mid\right.$. We set $\left.\|z\|=\max _{1 \leq i \leq m}\right| z_{i} \mid$ for $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{F}^{m}$ and define

$$
\mathbb{B}^{m}(r):=\left\{z \in \mathbb{F}^{m} ;\|z\|<r\right\} .
$$

For a multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$, define

$$
z^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{m}^{\gamma_{m}},|\gamma|=\gamma_{1}+\cdots+\gamma_{m}, \quad \gamma!=\gamma!\cdots \gamma_{m}!.
$$

For an analytic function f on \mathbb{F}^{m} (i.e., entire function) given by a formal power series

$$
f=\sum_{\gamma} a_{\gamma} z^{\gamma}
$$

with $a_{\gamma} \in \mathbb{F}$ such that $\lim _{|\gamma| \rightarrow \infty}\left|a_{\gamma}\right| r^{|\gamma|}=0\left(\forall r \in \mathbb{F}^{*}=\mathbb{F} \backslash\{0\}\right)$, define

$$
|f|_{r}=\sup _{\gamma}\left|a_{\gamma}\right| r^{|\gamma|}
$$

We denote by \mathcal{E}_{m} the ring of all analytic functions on \mathbb{F}^{m}.
We define a meromorphic function f on \mathbb{F}^{m} to be the quotient of two analytic functions $g, h \in \mathcal{E}_{m}$ such that g and h have no common factors in \mathcal{E}_{m}, i.e., $f=\frac{g}{h}$. We define

$$
|f|_{r}=\frac{|g|_{r}}{|h|_{r}}
$$

We denote by \mathcal{M}_{m} the field of all meromorphic functions on \mathbb{F}^{m}, which is the fractional field of \mathcal{E}_{m}.
2.2. Derivatives and Hasse derivatives. For a meromorphic function $f \in \mathcal{M}_{m}$ and a multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right)$, we set

$$
\partial^{\gamma} f=\frac{\partial^{|\gamma|} f}{\partial z_{1}^{\gamma_{1}} \cdots \partial z_{m}^{\gamma_{m}}} .
$$

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be multi-indices. We say that $\alpha \geq \beta$ if $\alpha_{i} \geq \beta_{i}$ for all $i=1, \ldots, m$. If $\alpha \geq \beta$, we define

$$
\alpha-\beta=\left(\alpha_{1}-\beta_{1}, \ldots, \alpha_{m}-\beta_{m}\right),\binom{\alpha}{\beta}=\binom{\alpha_{1}}{\beta_{1}} \cdots\binom{\alpha_{m}}{\beta_{m}} .
$$

For an analytic function $f=\sum_{\alpha} a_{\alpha} z^{\alpha}$ and a multi-index γ, we define the Hasse derivative of multi-index γ of f by

$$
D^{\gamma} f=\sum_{\alpha \geq \gamma}\binom{\alpha}{\gamma} a_{\alpha} z^{\alpha-\gamma}
$$

We may verify that $D^{\alpha} D^{\beta} f=\binom{\alpha+\beta}{\beta} D^{\alpha+\beta}$ for all $f \in \mathcal{E}_{m}$. Therefore, the Hasse derivative D can be extended to meromorphic functions in the following way:

- For a multi-index $e_{i}=\left(0, \ldots, 0,{ }_{j^{t h}-\text { position }}^{1}, 0, \ldots, 0\right)$, we set $D_{j}^{k} f:=$ $D^{k e_{i}}(f)$.
- For a meromorphic function $f=\frac{g}{h}\left(g, h \in \mathcal{E} \mathcal{E}_{m}\right)$, we define

$$
D^{e_{i}}=D_{j}^{1} f:=\frac{h D_{i}^{1} g-g D_{i}^{1} h}{h^{2}}, j=1, \ldots, m
$$

- For $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right)$, we may choose a sequence of multi-indices $\gamma=$ $\alpha^{1}>\alpha^{2}>\cdots>\alpha^{|\gamma|}$ such that $\alpha^{i}=\alpha^{i+1}+e_{j_{i}}\left(j_{i} \in\{1, \ldots, m\}\right)$ for $1 \leq i \leq|\gamma|-1$ and $\alpha^{|\gamma|}=e_{j_{|\gamma|}}\left(j_{|\gamma|} \in\{1, \ldots, m\}\right)$ and define

$$
D^{\alpha_{i}} h=\frac{1}{\binom{\alpha_{i+1}+e_{j_{i}}}{\alpha_{i+1}}} D^{e_{j_{i}}} D^{\alpha_{i+1}} h, \forall i=|\gamma|-1,|\gamma|-2, \ldots, 1 .
$$

We summarize here the fundamental properties of the Hasse derivative from [6] as follows:
(i) $D^{\gamma}(f+g)=D^{\gamma} f+D^{\gamma} g, f, g \in \mathcal{M}_{m}$.
(ii) $D^{\gamma}(f g)=\sum_{\alpha, \beta} D^{\alpha} f D^{\beta} g, f, g \in \mathcal{M}_{m}$.
(iii) $D^{\alpha} D^{\beta} f=\binom{\alpha+\beta}{\beta} D^{\alpha+\beta} f, f \in \mathcal{M}_{m}$
(iv) (Lemma on the logarithmic derivative) For $f \in \mathcal{E}_{m}$,

$$
\left|D^{\gamma} f\right|_{r} \leq \frac{|f|_{r}}{r|\gamma|},\left|\partial^{\gamma} f\right|_{r} \leq \frac{|f|_{r}}{r^{|\gamma|}}
$$

(v) For $f \in \mathcal{E}_{m}$ and a multi-index γ, let P be an irreducible element of \mathcal{E}_{m} that divides f with exact multiplicity e. If $e>|\gamma|$, then $P^{e-|\gamma|}$ divides $D^{\gamma} f$.

For each integer $k \geq 2$, let

$$
\mathcal{M}_{m}[k]=\left\{Q \in \mathcal{M}_{m}: D_{j}^{i} Q \equiv 0 \text { for all } 0<i<k \text { and } 1 \leq j \leq m\right\} .
$$

If F has characteristic 0 , then $\mathcal{M}_{m}[k]=\mathbb{F}$ for all $k \geq 2$. If \mathbb{F} has characteristic $p>0$ and if $s \geq 1$ is an integer, then $\mathcal{M}_{m}\left[p^{s}\right]$ is the fraction field of \mathcal{E}_{m}, where $\mathcal{E}_{m}\left[p^{s}\right]=\left\{g^{p^{s}}: g \in \mathcal{E}_{m}\right\}$ is a subring of \mathcal{E}_{m}. Moreover,

$$
\mathcal{M}_{m}\left[p^{s-1}+1\right]=\mathcal{M}_{m}\left[p^{s}\right]
$$

2.3. Non-Archimedean Nevanlinna's function.

Let $f=\sum_{\gamma} a_{\gamma} z^{\gamma} \in \mathcal{E}_{m}$ be an holomorphic function. The counting function of zeros of f is defined as follows:

$$
N_{f}(0, r)=n_{f}(0,0) \log r+\int_{0}^{r}\left(n_{f}(0, t)-n_{f}(0,0)\right) \frac{d t}{t}(r>0)
$$

where

$$
n_{f}(0, r)=\sup \left\{|\gamma| ;\left|a_{\gamma}\right| r^{|\gamma|}=|f|_{r}\right\} \text { and } n_{f}(0,0)=\min \left\{|\gamma| ; a_{\gamma} \neq 0\right\}
$$

Let f be a meromorphic function on \mathbb{F}^{m}. Assume that $f=\frac{g}{h}$, where g, h are holomorphic functions without common factors. We define

$$
N_{f}(0, r)=N_{g}(0, r) \text { and } N_{f}(\infty, r)=N_{h}(0, r)
$$

The Poisson-Jensen-Green formula (see [3, Theorem 3.1]) states that

$$
N_{f}(0, r)-N_{f}(\infty, r)=\log |f|_{r}+C_{f} \text { for all } r>0,
$$

where C_{f} is a constant depending on f but not on r.
Suppose that $f \not \equiv a$ for $a \in \mathbb{F}$. The counting function of f with respect to the point a is defined by

$$
N_{f}(a, r)=N_{f-a}(0, r)
$$

The proximity functions of f with respect to ∞ and a are defined respectively as follows

$$
m_{f}(\infty, r)=\max \left\{0, \log |f|_{r}\right\}=\log ^{+}|f|_{r} \text { and } m_{f}(a, r)=m_{1 /(f-a)}(\infty, r)
$$

The characteristic function of f is defined by

$$
T_{f}(r)=m_{f}(\infty, r)+N_{f}(\infty, r)
$$

Note that, if $f=\frac{g}{h}$ as above then $T_{f}(r)=\max \left\{\log |g|_{r}, \log |h|_{r}\right\}+O(1)$.
The first main theorem is stated as follows:

$$
T_{f}(r)=m_{f}(a, r)+N_{f}(a, r)+O(1)(\forall r>0)
$$

2.4. Truncated counting function.

Let $f \in \mathcal{E}_{m}$. For $j=1, \ldots, m$, define

$$
g_{j}=\operatorname{gcd}\left(f, D_{j}^{1}(f)\right) \text { and } h_{j}=\frac{f}{g_{j}}
$$

The radical $R(f)$ of f is defined to be the least common multiple of h_{j} 's.
Case 1: \mathbb{F} has characteristic $p=0$. The truncated counting function of zeros of f is defined by

$$
N_{f}^{(l)}(0, r)=N_{\operatorname{gcd}\left(f, R(f)^{l}\right)}(0, r) .
$$

In particular,

$$
N_{f}^{(1)}(0, r)=N_{R(f)}(0, r)
$$

Case 2: \mathbb{F} has characteristic $p>0$. We define $R_{p^{s}}(f)$ by induction in $s=0,1, \ldots$ For $s=0$, set $R_{p^{0}}(f)=R(f)$. For $s \geq 1$, assume that $R_{p^{s-1}}(f)$ has been defined. We set

$$
\bar{f}=\frac{f}{\operatorname{gcd}\left(f, R_{p^{s-1}}(f)^{p^{s}}\right)}, g_{i}=\operatorname{gcd}\left(\bar{f}, D_{i}^{p^{s}} \bar{f}\right), h_{i}=\frac{\bar{f}}{g_{i}}
$$

for $i=1, \ldots, m$. Let H be the least common multiple of h_{i} 's, and set

$$
G=\frac{H}{\operatorname{gcd}\left(H, R_{p^{s-1}}(H)^{p^{s-1}}\right)},
$$

which is a p^{s} th power. Let R be the p^{s} th root of G and define the higher p^{s}-radical $R_{p^{s}}(f)$ of f to be the least common multiple of $R_{p^{s-1}}(f)$ and R.

Take a sequence $\left\{r_{j}\right\}_{i \in \mathbb{N}} \subset\left|\mathbb{F}^{*}\right|$ such that $r_{j} \rightarrow \infty$. Take s_{j} such that if $P \in \mathcal{E}_{m}$ is irreducible such that $P \mid f$ and P is not unit on $\mathbb{B}^{m}\left(r_{j}\right)$ then $P \mid R_{p^{s}}(f)$ for $s>s_{j}$. Let u_{j} be a unit on $\mathbb{B}^{m}\left(r_{j}\right)$ such that

$$
R_{p^{s_{j}}}(f)=u_{j} R_{p^{s_{j+1}}}(f)
$$

Define $v_{j}=\prod_{l=j}^{\infty} u_{j}$, which is unit on $\mathbb{B}^{m}\left(r_{j}\right)$, and

$$
S(f)=\lim _{j \rightarrow \infty} \frac{R_{p^{s_{j}}}(f)}{v_{j}} \in \mathcal{E}_{m}
$$

which is called the square free part of f. The truncated (to level l) counting function of zeros of f is defined by

$$
N_{f}^{(l)}(0, r)=N_{\operatorname{gcd}\left(f, S(f)^{l}\right)}(0, r) .
$$

2.5. Non-Archimedean meromorphic maps and family of hypersur-

 faces.Let V be a projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$ of dimension $n(n \leq M)$. For a positive integer d, take a basis $\left\{\left[A_{1}\right], \ldots,\left[A_{H_{d}(V)}\right]\right\}$ of $I_{d}(V)$, where $A_{i} \in$ $\mathcal{H}_{d}\left[x_{0}, \ldots, x_{M}\right]$. Let $f: \mathbb{F}^{m} \rightarrow \mathbb{P}^{M}(\mathbb{F})$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{M}\right)$, which is non-degenerate over $I_{d}(V)$. We have the following definition.

Definition 2.1. Assume that \mathbb{F} has the character $p>0$. Denote by s the smallest integer such that any subset of $\left\{A_{1}(\mathbf{f}), \ldots, A_{H_{d}(V)}(\mathbf{f})\right\}$ linearly independent over \mathbb{F} remains linearly independent over $\mathcal{M}_{m}\left[p^{s}\right]$. We call s is the $d^{\text {th }}$-index of non-degeneracy of f.

We see that the above definition does not depend on the choice of the basis $\left\{\left[A_{i}\right] ; 1 \leq i \leq H_{d}(V)\right\}$ and the choice of the reduced representation \mathbf{f}. If $V=\mathbb{P}^{M}(\mathbb{F})$ and $d=1$ then s is also called the index of independence of f (see [6, Definition 4.1]).

The following three lemmas are proved in [2] for the case of $\mathbb{F}=\mathbb{C}$ and the canonical absolute value. However, with the same proof, they also hold for arbitrary algebraic closed field \mathbb{F} of character $p \geq 0$ and complete with an arbitrary absolute value. We state them here without the proofs.

Throughout this paper, we sometimes identify each hypersurface in a projective variety with its defining homogeneous polynomial. The following lemma of An-Quang [2] may be considered as a generalization of the lemma on Nochka weights in [4].

Lemma 2.1 (cf. [2, Lemma 3]). Let V be a projective subvariety of $\mathbb{P}^{M}(\mathbb{F})$ of dimension $n(n \leq M)$. Let Q_{1}, \ldots, Q_{q} be $q(q>2 N-k+1)$ hypersurfaces in $\mathbb{P}^{M}(\mathbb{F})$ in N-subgeneral position with respect to V of the common degree d. Then there are positive rational constants $\omega_{i}(1 \leq i \leq q)$ satisfying the following:
i) $0<\omega_{i} \leq 1, \forall i \in\{1, \ldots, q\}$,
ii) Setting $\tilde{\omega}=\max _{j \in Q} \omega_{j}$, one gets

$$
\sum_{j=1}^{q} \omega_{j}=\tilde{\omega}(q-2 N+n-1)+n+1
$$

iii) $\frac{n+1}{2 N-n+1} \leq \tilde{\omega} \leq \frac{n}{N}$.
iv) For $R \subset\{1, \ldots, q\}$ with $\sharp R=N+1$, then $\sum_{i \in R} \omega_{i} \leq n+1$.
v) Let $E_{i} \geq 1(1 \leq i \leq q)$ be arbitrarily given numbers. For $R \subset\{1, \ldots, q\}$ with $\sharp R=N+1$, there is a subset $R^{o} \subset R$ such that $\sharp R^{o}=\operatorname{rank}_{\mathbb{F}}\left\{\left[Q_{i}\right] ; i \in\right.$ $\left.R^{o}\right\}=n+1$ and

$$
\prod_{i \in R} E_{i}^{\omega_{i}} \leq \prod_{i \in R^{o}} E_{i}
$$

Let Q be a hypersurface in $\mathbb{P}^{n}(\mathbb{F})$ of degree d defined by $\sum_{I \in \mathcal{I}_{d}} a_{I} x^{I}=0$, where $\mathcal{I}_{d}=\left\{\left(i_{0}, \ldots, i_{M}\right) \in \mathbb{N}_{0}^{M+1}: i_{0}+\cdots+i_{M}=d\right\}, I=\left(i_{0}, \ldots, i_{M}\right) \in \mathcal{I}_{d}$, $x^{I}=x_{0}^{i_{0}} \cdots x_{M}^{i_{M}}$ and $\left(x_{0}: \cdots: x_{M}\right)$ is homogeneous coordinates of $\mathbb{P}^{M}(\mathbb{F})$. Let f be an non-Archimedean meromorphic map from \mathbb{F}^{m} into a projective subvariety V of $\mathbb{P}^{M}(\mathbb{F})$ with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{M}\right)$. We define

$$
Q(\mathbf{f})=\sum_{I \in \mathcal{I}_{d}} a_{I} f^{I},
$$

where $f^{I}=f_{0}^{i_{0}} \cdots f_{n}^{i_{n}}$ for $I=\left(i_{0}, \ldots, i_{n}\right)$. We have the following lemma.

Lemma 2.2 (cf. [2, Lemma 4]). Let $\left\{Q_{i}\right\}_{i \in R}$ be a set of hypersurfaces in $\mathbb{P}^{n}(\mathbb{F})$ of the common degree d and let f be a meromorphic mapping of \mathbb{F}^{m} into $\mathbb{P}^{n}(\mathbb{F})$ with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{M}\right)$. Assume that $\bigcap_{i \in R} Q_{i} \cap V=\varnothing$. Then, there exist positive constants α and β such that

$$
\alpha\|\mathbf{f}\|_{r}^{d} \leq \max _{i \in R}\left|Q_{i}(\mathbf{f})\right|_{r} \leq \beta\|\mathbf{f}\|_{r}^{d} \text { for any } r>0
$$

Lemma 2.3 (cf. [2, Lemma 5]). Let $\left\{Q_{i}\right\}_{i=1}^{q}$ be a set of q hypersurfaces in $\mathbb{P}^{M}(\mathbb{F})$ of the common degree d. Then there exist $\left(H_{V}(d)-n-1\right)$ hypersurfaces $\left\{T_{i}\right\}_{i=1}^{H_{V}(d)-n-1}$ in $\mathbb{P}^{M}(\mathbb{F})$ such that for any subset $R \in\{1, \ldots, q\}$ with $\sharp R=$ $\operatorname{rank}_{\mathbb{F}}\left\{\left[Q_{i}\right] ; i \in R\right\}=n+1$, we get $\operatorname{rank}_{\mathbb{F}}\left\{\left\{\left[Q_{i}\right] ; i \in R\right\} \cup\left\{\left[T_{i}\right] ; 1 \leq i \leq H_{d}(V)-\right.\right.$ $n-1\}\}=H_{V}(d)$.

2.5. Value distribution theory for non-Archimedean meromorphic

 maps.Let $f: \mathbb{F}^{m} \rightarrow V \subset \mathbb{P}^{M}(\mathbb{F})$ be a non-Archimedean meromorphic map with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{N}\right)$. The characteristic function of f is defined by

$$
T_{f}(r)=\log \|\mathbf{f}\|_{r},
$$

where $\|\mathbf{f}\|_{r}=\max _{1 \leq 0 \leq n}\left|f_{i}\right|_{r}$. This definition is well-defined upto a constant.
Let Q be a hypersurface in $\mathbb{P}^{n}(\mathbb{F})$ of degree d defined by $\sum_{I \in \mathcal{I}_{d}} a_{I} x^{I}=0$, where $a_{I} \in \mathbb{F}\left(I \in \mathcal{I}_{d}\right)$ and are not all zeros. If $Q(\mathbf{f}) \not \equiv 0$ then we define the proximity function of f with respect to Q by

$$
m_{f}(Q, r)=\log \frac{\|\mathbf{f}\|_{r}^{d} \cdot\|Q\|}{|Q(\mathbf{f})|_{r}}
$$

where $\|Q\|:=\max _{I \in \mathcal{I}_{d}}\left|a_{I}\right|$. We see that the definition of $m_{f}(Q, r)$ does not depend on the choices of the presentations of f and Q.

The truncated (to level l) counting function of f with respect to Q is defined by

$$
N_{f}^{(l)}(Q, r):=N_{Q(\mathbf{f})}^{(l)}(0, r) .
$$

For simplicity, we will omit the character ${ }^{(l)}$ if $l=\infty$.
The first main theorem for non-Archimedean meromorphic maps states that

$$
d T_{f}(r)=m_{f}(Q, r)+N_{f}(Q, r)+O(1)
$$

Proposition 2.1 (cf. [6, Propositions 4.3, 4.4]). Let p be the character of \mathbb{F}. Assume that $f: \mathbb{F}_{m} \rightarrow \mathbb{P}^{n}(\mathbb{F})$ is a non-Achimedean meromorphic map, which is
linearly non-degenerate over \mathbb{F}, with a reduced representation $\mathbf{f}=\left(f_{0}, \ldots, f_{n}\right)$. Then there exist multi-indices $\gamma^{0}=(0, \ldots, 0), \gamma^{1}, \ldots, \gamma^{n}$ with

$$
\left|\gamma^{0}\right| \leq \cdots \leq\left|\gamma^{n}\right| \leq \kappa_{0} \leq \begin{cases}p^{s-1}(n-k+1) & \text { if } p>0 \\ n-k+1 & \text { if } p=0\end{cases}
$$

where s is the index of independence of f and $k=\operatorname{rank} f$, such that the generalized Wronskian

$$
W_{\gamma^{0}, \ldots, \gamma^{n}}\left(f_{0}, \ldots, f_{n}\right)=\operatorname{det}\left(D^{\gamma^{i}} f_{j}\right)_{0 \leq i, j \leq n} \not \equiv 0
$$

Here $\operatorname{rank} f$ is defined by

$$
\operatorname{rank} f=\operatorname{rank}_{\mathcal{M}_{m}}\left\{\left(D^{\gamma} f_{0}, \ldots, D^{\gamma} f_{n}\right) ;|\gamma| \leq 1\right\}-1 .
$$

3. Proof of main theorems

Proof. [Proof of Theorem 1.1] By replacing Q_{i} with $Q_{i}^{d / d_{i}}$ if necessary, we may assume that all $Q_{i}(i=1, \ldots, q)$ do have the same degree d. It is easy to see that there is a positive constant β such that $\beta\|\mathbf{f}\|^{d} \geq\left|Q_{i}(\mathbf{f})\right|$ for every $1 \leq i \leq q$. Set $Q:=\{1, \cdots, q\}$. Let $\left\{\omega_{i}\right\}_{i=1}^{q}$ be as in Lemma 2.1 for the family $\left\{Q_{i}\right\}_{i=1}^{q}$. Let $\left\{T_{i}\right\}_{i=1}^{H_{d}(V)-n-1}$ be $\left(H_{d}(V)-n-1\right)$ hypersurfaces in $\mathbb{P}^{M}(\mathbb{F})$, which satisfy Lemma 2.3.

Take a \mathbb{F}-basis $\left\{\left[A_{i}\right]\right\}_{i=1}^{H_{V}(d)}$ of $I_{d}(V)$, where $A_{i} \in H_{d}$. Since f is nondegenerate over $I_{d}(V)$, it implies that $\left\{A_{i}(\mathbf{f}) ; 1 \leq i \leq H_{V}(d)\right\}$ is linearly independent over \mathbb{F}. By Proposition 2.1, there multi-indices $\left\{\gamma^{1}=(0, \ldots, 0), \gamma^{2} \ldots\right.$, $\left.\gamma^{H_{V}(d)}\right\} \subset \mathbb{Z}_{+}^{m}$ such that $\left|\gamma^{0}\right| \leq \cdots \leq\left|\gamma^{H_{d}(V)}\right| \leq \kappa_{0}$, where

$$
\kappa_{0} \leq \begin{cases}p^{s-1}\left(H_{V}(d)-k\right) & \text { if } p>0 \\ H_{d}(V)-k & \text { if } p=0\end{cases}
$$

and the generalized Wronskian

$$
W=\operatorname{det}\left(D^{\gamma^{i}} A_{j}(\mathbf{f})\right)_{1 \leq i, j \leq H_{d}(V)} \not \equiv 0 .
$$

Here, we note that

$$
\begin{aligned}
k & =\operatorname{rank}_{\mathcal{M}_{m}}\left\{\left(D^{\gamma} f_{0}, \ldots, D^{\gamma} f_{M}\right) ;|\gamma| \leq 1\right\}-1 \\
& =\operatorname{rank}_{\mathcal{M}_{m}}\left\{\left(D^{\gamma}\left(\frac{f_{1}}{f_{0}}\right), \ldots, D^{\gamma}\left(\frac{f_{M}}{f_{0}}\right)\right) ;|\gamma| \leq 1\right\} \\
& \leq \operatorname{rank}_{\mathcal{M}_{m}}\left\{\left(D^{\gamma}\left(\frac{A_{2}(\mathbf{f})}{A_{1}(\mathbf{f})}\right), \ldots, D^{\gamma}\left(\frac{A_{H_{d}(V)}(\mathbf{f})}{A_{1}(\mathbf{f})}\right)\right) ;|\gamma| \leq 1\right\} \\
& =\operatorname{rank}_{\mathcal{M}_{m}}\left\{\left(D^{\gamma}\left(A_{1}(\mathbf{f})\right), \ldots, D^{\gamma}\left(A_{H_{d}(V)}(\mathbf{f})\right)\right) ;|\gamma| \leq 1\right\}-1 .
\end{aligned}
$$

For each $R^{o}=\left\{r_{1}^{0}, \ldots, r_{n+1}^{0}\right\} \subset\{1, \ldots, q\}$ with $\operatorname{rank}_{\mathbb{F}}\left\{Q_{i}\right\}_{i \in R^{o}}=\sharp R^{o}=$ $n+1$, set
$W_{R^{o}} \equiv \operatorname{det}\left(D^{\gamma^{j}} Q_{r_{v}^{0}}(\mathbf{f})(1 \leq v \leq n+1), D^{\gamma^{j}} T_{l}(\mathbf{f})\left(1 \leq l \leq H_{V}(d)-n-1\right)\right)_{1 \leq j \leq H_{V}(d)}$.
Since $\operatorname{rank}_{\mathbb{F}}\left\{\left[Q_{r_{v}^{0}}\right](1 \leq v \leq n+1),\left[T_{l}\right]\left(1 \leq l \leq H_{V}(d)-n-1\right)\right\}=H_{V}(d)$, there exists a nonzero constant $C_{R^{o}} \in \mathbb{F}$ such that $W_{R^{o}}=C_{R^{o}} \cdot W$.

We denote by \mathcal{R}^{o} the family of all subsets R^{o} of $\{1, \ldots, q\}$ satisfying

$$
\operatorname{rank}_{\mathbb{F}}\left\{\left[Q_{i}\right] ; i \in R^{o}\right\}=\sharp R^{o}=n+1
$$

For each $r>0$, there exists $\bar{R} \subset Q$ with $\sharp \bar{R}=N+1$ such that $\left|Q_{i}(\mathbf{f})\right|_{r} \leq$ $\left|Q_{j}(\mathbf{f})\right|_{r}, \forall i \in \bar{R}, j \notin \bar{R}$. We choose $R^{o} \subset R$ such that $R^{o} \in \mathcal{R}^{o}$ and R^{o} satisfies Lemma 2.1(v) with respect to numbers $\left\{\frac{\beta\|\mathbf{f}\|_{r}^{d}}{\left|Q_{i}(\mathbf{f})\right|_{r}}\right\}_{i=1}^{q}$. Since $\bigcap_{i \in \bar{R}} Q_{i}=\varnothing$, by Lemma 2.2, there exists a positive constant $\alpha^{\bar{R}}$ such that

$$
\alpha^{\bar{R}}\|\mathbf{f}\|_{r}^{d} \leq \max _{i \in \bar{R}}\left|Q_{i}(\mathbf{f})\right|_{r}
$$

Then, we get

$$
\begin{aligned}
\frac{\|\mathbf{f}\|_{r}^{d\left(\sum_{i=1}^{q} \omega_{i}\right)}|W|_{r}}{\left|Q_{1}(\mathbf{f})\right|_{r}^{\omega_{1}} \cdots\left|Q_{q}(\mathbf{f})\right|_{r}^{\omega_{q}}} & \leq \frac{|W|_{r}}{\alpha_{\bar{R}}^{q-N-1} \beta^{N+1}} \prod_{i \in \bar{R}}\left(\frac{\beta\|\mathbf{f}\|_{r}^{d}}{\left|Q_{i}(\mathbf{f})\right|_{r}}\right)^{\omega_{i}} \\
& \leq A_{\bar{R}} \frac{|W|_{r} \cdot\|\mathbf{f}\|_{r}^{d(n+1)}}{\prod_{i \in \bar{R}^{o}}\left|Q_{i}(\mathbf{f})\right|_{r}} \\
& \leq B_{\bar{R}} \frac{\left|W_{\bar{R}^{o}}\right|_{r} \cdot\|\mathbf{f}\|_{r}^{d H_{V}(d)}}{\prod_{i \in \bar{R}^{o}}\left|Q_{i}(\mathbf{f})\right|_{r} \prod_{i=1}^{H_{V}(d)-n-1}\left|T_{i}(\mathbf{f})\right|_{r}},
\end{aligned}
$$

where $A_{\bar{R}}, B_{\bar{R}}$ are positive constants.

Therefore, for every $r>0$,

$$
\begin{aligned}
\log \frac{\|\mathbf{f}\|_{r}^{d\left(\sum_{i=1}^{q} \omega_{i}-H_{d}(V)\right.}|W|_{r}}{\left|Q_{1}(\mathbf{f})\right|_{r}^{\omega_{1}} \cdots\left|Q_{q}(\mathbf{f})\right|_{r}^{\omega_{q}}} & \leq \max _{R} \log \frac{\left|W_{R}\right|_{r}}{\prod_{i \in R}\left|Q_{i}(\mathbf{f})\right|_{r} \prod_{i=1}^{H_{V}(d)-n-1}\left|T_{i}(\mathbf{f})\right|_{r}}+O(1) \\
& \leq-\sum_{j=1}^{H_{d}(V)}\left|\gamma^{j}\right| \log r+O(1)
\end{aligned}
$$

where the maximum is taken over all subsets $R \subset\{1, \ldots, q\}$ such that $\sharp R=$ $n+1$ and $\operatorname{rank}_{\mathbb{F}}\left\{\left[Q_{i}\right] ; i \in R\right\}=n+1$. Here, the last inequality comes from the lemma on logarithmic derivative. By the Poisson-Jensen-Green formula, the definitions of the approximation function and the characteristic function, we have

$$
\sum_{i=1}^{q} \omega_{i} m_{f}\left(Q_{i}, r\right)-d H_{d}(V) T_{f}(r)-N_{W}(0, r) \leq-\left(H_{d}(V)-1\right) \log r+O(1)
$$

(note that $\sum_{i=1}^{H_{d}(V)}\left|\gamma^{i}\right| \leq H_{d}(V)-1$). Then, by the first main theorem, we obtain

$$
\begin{equation*}
\left(\sum_{i=1}^{q} \omega_{i}-H_{d}(V)\right) d T_{f}(r) \leq \sum_{i=1}^{q} \omega_{i} N_{f}\left(Q_{i}, r\right)-N_{W}(0, r)-\left(H_{d}(V)-1\right) \log r+O(1) \tag{3.1}
\end{equation*}
$$

Claim. $\sum_{i=1}^{q} \omega_{i} N_{f}\left(Q_{i}, r\right)-N_{W}(0, r) \leq \sum_{i=1}^{q} \omega_{i} N_{f}^{\left(\kappa_{0}\right)}\left(Q_{i}, r\right)+O(1)$.
Indeed, set $\tilde{G}_{j}=\operatorname{gcd}\left(Q_{j}(\mathbf{f}), S\left(Q_{j}(\mathbf{f})\right)^{\kappa_{0}}\right)$. Since $\omega_{i}(1 \leq i \leq q)$ are rational numbers, there exists an integer A such that $\tilde{\omega}_{i}=A \omega_{i}(1 \leq i \leq q)$ are integers.

Let $P \in \mathcal{E}_{m}$ be an irreducible element with $P \mid \prod_{i=1}^{q} Q_{i}(\mathbf{f})^{\tilde{\omega}_{i}}$. There exists a subset R of $\{1, \ldots, q\}$ with $\sharp R=N+1$ such that P is not a division of $Q_{i}(\mathbf{f})$ for any $i \notin R$. Denote by e_{i} the largest integer such that $P^{e_{i}} \mid Q_{i}(\mathbf{f})$ for each $i \in R$. Then, there is a subset $R^{o} \subset R$ with $\sharp R^{o}=n+1, W_{R^{o}} \not \equiv 0$ and

$$
\sum_{i \in R} \omega_{i} \max \left\{0, e_{i}-\kappa_{0}\right\} \leq \sum_{i \in R^{\circ}} \max \left\{0, e_{i}-\kappa_{0}\right\}
$$

Also, since $W=C_{R^{o}} \cdot W_{R^{o}}$, it clear that P divides W with multiplicity at least

$$
\begin{aligned}
\min _{\left\{j_{1}, \ldots, j_{n+1}\right\} \subset\left\{1, \ldots, H_{d}(V)\right\}} \sum_{i \in R^{0}} \min \left\{0, e_{i}-\left|\gamma^{j_{i}}\right|\right\} & \geq \sum_{i \in R^{0}} \min \left\{0, e_{i}-\kappa_{0}\right\} \\
& \geq \sum_{i \in R} \omega_{i} \max \left\{0, e_{i}-\kappa_{0}\right\} \\
& =\sum_{i \in R} \omega_{i}\left(e_{i}-\min \left\{e_{i}, \kappa_{0}\right\}\right)
\end{aligned}
$$

This implies that

$$
P^{\sum_{i \in R} \tilde{\omega}_{i} e_{i}} \mid W^{A} \cdot P^{\sum_{i \in R} \tilde{\omega}_{i} \min \left\{e_{i}, \kappa_{0}\right\}} .
$$

We note that $P^{\tilde{\omega}_{i} \min \left\{e_{i}, \kappa_{0}\right\}} \mid G_{i}^{\tilde{\omega}_{i}}$. Therefore,

$$
P^{\sum_{i \in R} \tilde{\omega}_{i} e_{i}} \mid W^{A} \cdot \prod_{i \in R} G_{i}^{\tilde{\omega}_{i}} .
$$

This holds for every such irreducible element P. Then it yields that

$$
\prod_{i=1}^{q} Q_{i}(\mathbf{f})^{\tilde{\omega}_{i}} \mid W^{A} \cdot \prod_{i=1}^{q} G_{i}^{\tilde{\omega}_{i}} .
$$

Hence,

$$
\sum_{i=1}^{q} N_{f}\left(Q_{i}, r\right) \leq N_{W}(0, r)+\sum_{i=1}^{q} N_{f}^{\left(\kappa_{0}\right)}\left(Q_{i}, r\right)
$$

The claim is proved.
From the claim, Lemma 2.1(ii) and the inequality (3.1), we obtain

$$
\begin{aligned}
(\tilde{\omega}(q-2 N+n-1) & \left.-H_{d}(V)+n+1\right) d T_{f}(r) \\
& \leq \sum_{i=1}^{q} \omega_{i} N_{f}^{\left(\kappa_{0}\right)}\left(Q_{i}, r\right)-\left(H_{d}(V)-1\right) \log r+O(1) .
\end{aligned}
$$

Note that, $\omega_{i} \leq \tilde{\omega}(1 \leq i \leq q)$ and $\frac{n+1}{2 N-n+1} \leq \tilde{\omega} \leq \frac{n}{N}$. Then, the above inequality implies that
$\left(q-\frac{(2 N-n+1) H_{d}(V)}{n+1}\right) \leq \sum_{i=1}^{q} \frac{1}{d} N_{f}^{\left(\kappa_{0}\right)}\left(Q_{i}, r\right)-\frac{N\left(H_{d}(V)-1\right)}{n d} \log r+O(1)$.
The theorem is proved.
Proof. [Proof of Theorem 1.2] For $r>0$, without loss of generality, we may assume that

$$
\left|Q_{1}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{1}} \leq\left|Q_{2}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{2}} \leq \cdots \leq\left|Q_{q}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{N+1}} .
$$

Since $\bigcap_{i=1}^{N+1} Q_{i}=\varnothing$, by Lemma 2.2, there exists a positive constant C such that

$$
C\|\mathbf{f}\|_{r} \leq \max _{1 \leq i \leq N+1}\left|Q_{i}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{i}}=\left|Q_{N+1}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{N+1}}
$$

Then, we get

$$
\begin{aligned}
\sum_{i=1}^{q} \frac{m_{f}\left(Q_{i}, r\right)}{\operatorname{deg} Q_{i}} & =\log \frac{\|\mathbf{f}\|_{r}^{q}}{\left|Q_{1}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{1}} \cdots\left|Q_{q}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{q}}}+O(1) \\
& \leq \log \prod_{i=1}^{N} \frac{\|\mathbf{f}\|_{r}}{\left|Q_{i}(\mathbf{f})\right|_{r}^{1 / \operatorname{deg} Q_{i}}}+O(1) \\
& =\sum_{i=1}^{N} \frac{m_{f}\left(Q_{i}, r\right)}{\operatorname{deg} Q_{i}}+O(1) \\
& \leq N \cdot T_{f}(r)+O(1) .
\end{aligned}
$$

Therefore,

$$
(q-N) T_{f}(r) \leq \sum_{i=1}^{q} \frac{1}{\operatorname{deg} Q_{i}} N_{f}\left(Q_{i}, r\right)+O(1) \quad(r>0) .
$$

The theorem is proved.

References

[1] T. T. H. An A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), 12551261.
[2] D. P. An, S. D. Quang Second main theorem and unicity of meromorphic mappings for hypersurfaces in projective varieties, Acta Math. Vietnamica 42 (2017), 455-470.
[3] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), 5043-5071.
[4] E. I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. 27 (1983), 377-381.
[5] M. Ru, A note on p-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), 1263-1269.
[6] Q. Yan, Truncated second main theorems and uniqueness theorems for nonArchimedean meromorphic maps, Ann. Polon. Math. 119 (2017), 165-193

Si Duc Quang

Department of Mathematics
Hanoi National University of Education
136 Xuan Thuy, Cau Giay, Hanoi,
Vietnam
quangsd@hnue.edu.vn

[^0]: Key words and phrases: non-Archimedean, second main theorem, meromorphic mapping, Nevanlinna, hypersurface, subgeneral position.
 2020 Mathematics Subject Classification: Primary 11S80, 11J97; Secondary 32H30

