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Abstract. Let IF be an algebraically closed field of characteristic p > 0,
which is complete with respect to a non-Archimedean absolute value. Let
V be a projective subvariety of PM (F). In this paper, we will prove some
second main theorems for non-Archimedean meromorphic maps of F™ into
V' intersecting a family of hypersurfaces in N—subgeneral position with
truncated counting functions.

1. Introduction and Main results

Let F be an algebraically closed field of characteristic p > 0, which is com-
plete with respect to a non-Archimedean absolute value. Let N > n and
q> N+1.Let Hy,...,H, be hyperplanes in P"(F). The family of hyperplanes
{H,}_, is said to be in N-subgeneral position in P*(F) if H;, N---NH;, = &
for every 1 < jo < - - <jn <gq.

In 2017, Yan [6] proved a truncated second main theorem for a non -
Archimedean meromorphic map into P*(F) with a family of hyperplanes in
subgeneral position. With the standart notations on the Nevanlinna theory for
non-Archimedean meromorphic maps, his result is stated as follows.

Theorem A (cf. [6, Theorem 4.6]) Let F be an algebraically closed field of
characteristic p > 0, which is complete with respect to a non-Archimedean abso-
lute value. Let f : F™ — P™(F) be a linearly non-degenerate non-Archimedean
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meromorphic map with index of independence s and rankf = k. Let Hy,...,H,
be hyperplanes in P (F) in N -subgeneral position (N > n). Then, for allr > 1,

q
1
(¢ —2N +n—1)T¢(r) Z J(c (H;,r) — +1 logr + O(1),

where

- ptn—k+1) ifp>0,
Cln-—k+1 if p=0.

Here, the index of independence s and the rankf are defined in Section 2
(Definition 2.1).

Also, in 2017, An and Quang [2] proved a truncated second main theorem
for meromorphic mappings from C™ into a projective variety V' C PM(C) with
hypersurfaces. Motivated by the methods of Yan [6] and An-Quang [2], our aim
in this article is to generalize Theorem A to the case where the map f is from
F™ into an arbitrary projective variety V of dimension n in PM(F) and the
hyperplanes are replaced by hypersurfaces of P (FF) in N-subgeneral position
with respect to V.

Firstly, we give the following definitions.

Definition B. Let V be a projective subvariety of PM(F) of dimension n (n <
M). Let Q1,...,Qq (¢ > n+ 1) be q hypersurfaces in PM(F). The family of
hypersurfaces {Q;}i_, is said to be in N-subgeneral position with respect to V
if
N41
ﬂ(ﬂ Qi;)) =2 foranyl <ip <--- <iny1 <q.

If N = n, we just say {Q;}!_, is in general position with respect to V.
Now, let V be as above and let d be a positive integer. We denote by I(V)

the ideal of homogeneous polynomials in F[zg, ..., zas] defining V' and by H,
the F-vector space of all homogeneous polynomials in F[zg, ..., 2] of degree
d. Define "
d .
14(V) := ————— and Hy(d) := dimply(V).
a(V) V) H, and Hy (d) imp (V)

Then Hy (d) is called the Hilbert function of V. Each element of I;(V) which
is an equivalent class of an element @ € Hy, will be denoted by [Q)],

Definition C. Let f : F™ — V be a non-Archimedean meromorphic map with
a reduced representation £ = (fo,..., far). We say that f is degenerate over
Iy(V) if there is [Q] € I4(V) \ {0} such that Q(f) = 0. Otherwise, we say that

f is non-degenerate over I;(V).

We will generalize Theorem A to the following.
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Theorem 1.1. Let V be a projective subvariety of PM(F) of dimension n (n <
M). Let {Q;}!_, be hypersurfaces of PM(F) in N-subgeneral position with
respect to V with deg Q; = d; (1 <14 < q). Let d be the least common multiple of
d;s. Let f be a non-Archimedean meromorphic map of F™ into V', which is non-
degenerate over 14(V) with the d*"-index of non-degeneracy s and rankf = k.
Then, for all T > 1,

q
<q _(@N+ lel)Hd(VU OESY %N}””)(Qhr)—ijvwdg;) ~Diogro(1),

where

Here, the d"-index of non-degeneracy s is defined in Section 2 (Definition
2.1). Note that, in the case where V. =P"(C),d = 1, Hg(V) = n+ 1, our result
will give back Theorem A.

For the case of counting function without truncation level, we will prove
the following.

Theorem 1.2. Let V be a arbitrary projective subvariety of PM(F). Let
{Qi}L, be hypersurfaces of PM(F) in N-subgeneral position with respect to
V. Let f be a non-constant non-Archimedean meromorphic map of F™ into V.
Then, for any r > 0,

(4= NITH(r) < 3 = Ny(@ur) +0(1),

1 deg Qs
where the quantity O(1) depends only on {Q;}{_;.

We see that, the above result is a generalization of the previous results in
[1, 5].

2. Basic notions and auxiliary results

In this section, we will recall some basic notions from Nevanlinna theory
for non-Archimedean meromorphic maps due to Cherry-Ye [3] and Yan [6].

2.1. Non-Archimedean meromorphic function. Let F be an algebraically
closed field of characteristic p, complete with respect to a non-Archimedean
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absolute value | |. We set ||z|| = maxi<ij<m |2i] for z = (21, ..., 2m) € F™ and
define

B™(r) :={z e F™;||z]| < r}.

For a multi-index v = (71, ..., vm) € ZZ,, define

Z’Y:Zl/yl"'z;;{n', |/y|:fy1+.+fym7 ’y!:’y!’ym!.

For an analytic function f on F™ (i.e., entire function) given by a formal
power series
f=2 0
¥

with a, € F such that lim,|_, la, | =0 (Vr € F* =T\ {0}), define

£l = sup, Jay |17,

We denote by &, the ring of all analytic functions on F™.

We define a meromorphic function f on F to be the quotient of two analytic
functions g, h € &,, such that g and h have no common factors in &,,, i.e., f = {.
We define

o gl
|f|7“ - |h|7‘

We denote by M,,, the field of all meromorphic functions on F", which is the
fractional field of &,,.

2.2. Derivatives and Hasse derivatives. For a meromorphic function
f € M,, and a multi-index v = (71, ...,7¥m), we set
oty

Ozt - Oz

o f =

Let o = (a,...,am) and B = (B4, ..., Bm) be multi-indices. We say that
a>pifa; > p;foralli=1,....,m. If a > 3, we define

a_B:(al_ﬁl,...,am_ﬂ'rrL)v(g) = (;i) (gm>

For an analytic function f = )" aq,2“ and a multi-index ~, we define the
Hasse derivative of multi-index v of f by

DVf= Z <a> aoz" 7.
a2y 7

We may verify that D*DP f = (O‘;fﬁ) De*B for all f € &,,. Therefore, the Hasse
derivative D can be extended to meromorphic functions in the following way:
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e For a multi-index e¢; = (0,...,0, 1 ,0,...,0), we set fo =

jth —position
Dkei(f).
e For a meromorphic function f = £ (g,h € &), we define

hDilg — gDZ-lh

D% =Djf = 3 L i=1,...,m.

e For v = (71,...,7m), we may choose a sequence of multi-indices v =
a' > a? > .- > ol such that o = o't +¢j, (j; € {1,...,m}) for
1<i<|y|—1and all = €j, (v € {1,...,m}) and define

. 1 e .
D% h = WD(E”DQ“H}L,V’L = |’)/‘ — 1, |’y| — 2, ey 1.
Qg1

We summarize here the fundamental properties of the Hasse derivative from
[6] as follows:

(i) D7(f+9) =D7f+ D%, f,9 € M.

(i) D7(fg) = X D*FDg, fg € M.

(i) DDA f = (“}P) D+ f, f € My,

(iv) (Lemma on the logarithmic derivative) For f € &,

| £

rivl’

< 1ol <

(v) For f € &,, and a multi-index =, let P be an irreducible element of &,,
that divides f with exact multiplicity e. If e > ||, then P¢~I"l divides D7 f.

For each integer k > 2, let
Mp[k] ={Q € My, : DiIQ=0forall 0 <i < kand1<j<m}

If F' has characteristic 0, then M,,[k] = F for all k¥ > 2. If F has characteristic
p>0andif s > 1is an integer, then M [p?] is the fraction field of &,,, where
Enlp®] = {97 : g € &) is a subring of &,,. Moreover,

Mm[p571 + 1] = Mm[ps}'

2.3. Non-Archimedean Nevanlinna’s function.

Let f =3 a,2" € &, be an holomorphic function. The counting function
of zeros of f is defined as follows:

N(0,7) =nys(0,0)logr + /Or(nf(O,t) - nf(0,0))? (r>0),
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where
ns(0,r) = sup{|7; |a, v = |f|,} and ny(0,0) = min{|v|;a, # 0}.

Let f be a meromorphic function on F™. Assume that f = £, where g, h
are holomorphic functions without common factors. We define

N¢(0,7) = Ng(0,7) and Ny(oo,r) = Np(0,7).
The Poisson-Jensen-Green formula (see [3, Theorem 3.1]) states that
N¢(0,7) — N¢(oo,r) =log|f| + Cy forall r >0,

where C is a constant depending on f but not on r.

Suppose that f # a for a € F. The counting function of f with respect to
the point a is defined by

N¢(a,r) = Ny_q(0,7).

The proximity functions of f with respect to co and a are defined respec-
tively as follows

my (oo, r) = max{0,log|f|,} =log™ |f|. and ms(a,r) = my/(j—a)(c0,7).
The characteristic function of f is defined by
Tf(?") = mf(ooa )+ Nf(OO’T)'

Note that, if f = £ as above then Ty (r) = max{log|g|.,log|h|.} + O(1).

The first main theorem is stated as follows:
T¢(r) =mys(a,r) + Ny(a,r) + O(1) (Vr > 0).
2.4. Truncated counting function.
Let f € &,,. For j =1,...,m, define

9; = gcd(f,Djl-(f)) and h; = gi
J

The radical R(f) of f is defined to be the least common multiple of h;’s.

Case 1: F has characteristic p = 0. The truncated counting function of
zeros of f is defined by

!
N} )(0,r) = Ngcacs,r(5)1)(0,7).
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In particular,
1
NE(0,7) = Ny (0,7).

Case 2: F has characteristic p > 0. We define R,<(f) by induction in
s =0,1,... For s = 0, set R,o(f) = R(f). For s > 1, assume that Rj.—1(f)
has been defined. We set

_ f — e f
f: s?gi:ngfanfahi:*
5d(f, Ry 2 (D7) (D5, =g
fori=1,...,m. Let H be the least common multiple of h;’s, and set

o H
 ged(H, Rpe—1 (H)P* ")’

which is a p°th power. Let R be the p®th root of G and define the higher
p°-radical Rys(f) of f to be the least common multiple of R,.-1(f) and R.

Take a sequence {7;}ien C |F*| such that r; — oo. Take s; such that if
P € &, is irreducible such that P|f and P is not unit on B™(r;) then P|Rps(f)
for s > s;. Let u; be a unit on B™(r;) such that

Rij (f) = ujRpSJ+1 (f)

Define v; = [];2, u;, which is unit on B™(r;), and

S(f) = lim 2 )

j—o0 ’Uj

€ Em,

which is called the square free part of f. The truncated (to level [) counting
function of zeros of f is defined by

l
NJE )(O7T) = Ngcd(f,S(f)l)(Ovr)'

2.5. Non-Archimedean meromorphic maps and family of hypersur-
faces.

Let V be a projective subvariety of PM(F) of dimension n (n < M). For

a positive integer d, take a basis {[A1],...,[Am, )]} of Ia(V), where A; €
Halzo, ..., z0]. Let f : F™ — PM(F) be a non-Archimedean meromorphic
map with a reduced representation f = (f,..., far), which is non-degenerate

over I4(V). We have the following definition.

Definition 2.1. Assume that F has the character p > 0. Denote by s the
smallest integer such that any subset of {A1(f),..., Ag,cv)(£)} linearly inde-
pendent over F remains linearly independent over M., [p?]. We call s is the
d"-index of non-degeneracy of f.
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We see that the above definition does not depend on the choice of the basis
{[A;];1 < i < Hg(V)} and the choice of the reduced representation f. If
V =PM(F) and d = 1 then s is also called the index of independence of f (see
[6, Definition 4.1]).

The following three lemmas are proved in [2] for the case of F = C and
the canonical absolute value. However, with the same proof, they also hold
for arbitrary algebraic closed field F of character p > 0 and complete with an
arbitrary absolute value. We state them here without the proofs.

Throughout this paper, we sometimes identify each hypersurface in a pro-
jective variety with its defining homogeneous polynomial. The following lemma
of An-Quang [2] may be considered as a generalization of the lemma on Nochka
weights in [4].

Lemma 2.1 (cf. [2, Lemma 3]). Let V be a projective subvariety of PM(F) of
dimension n (n < M). Let Q1,...,Qq be q¢ (¢ > 2N — k + 1) hypersurfaces in
PM(F) in N -subgeneral position with respect to V of the common degree d. Then
there are positive rational constants w; (1 <1i < q) satisfying the following:
)0<w; <1, Vie{l,...,q}
it) Setting & = maxjeqwj, one gets
q
> wi=a(g-2N+n-1)+n+1.
j=1
i) n+1 n
W) ——— —.
2N —n—+1 N
i) For R C {1,...,q} with R =N +1, then ) ,cpw; <n+1.
v) Let E; > 1 (1 < i < q) be arbitrarily given numbers. For R C {1,...,q}
with §R = N + 1, there is a subset R° C R such that $R° = rankp{[Q;];i €

R°}=n+1 and
I1E5 < I] B

i€ER i€ R°

<w<

IS}

Let @ be a hypersurface in P"(F) of degree d defined by Z[GId arz’ =0,
where Zy = {(ig, .. .,in) € NYTY 2 dg+ - iy = d}, I = (ig, - ,in) € Ta,
ol = 20 2 and (xo : --- : xp) is homogeneous coordinates of PM ().
Let f be an non-Archimedean meromorphic map from F™ into a projective
subvariety V of PM(F) with a reduced representation f = (fo,..., far). We

define
Q) =Y arf’,
IeZy

where fI = 80 <o+ fin for I = (ig,...,in). We have the following lemma.
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Lemma 2.2 (cf. [2, Lemma 4]). Let {Q;}icr be a set of hypersurfaces in P"(FF)
of the common degree d and let | be a meromorphic mapping of F™ into P™(F)
with a reduced representation f = (fo,..., fur). Assume that ()., QiNV = @.
Then, there exist positive constants o and 3 such that

ol < max|Qu(6)], < BIE[ for any > 0.

Lemma 2.3 (cf. [2, Lemma 5]). Let {Q;}!_, be a set of ¢ hypersurfaces in
PM(F) of the common degree d. Then there exist (Hy (d) —n—1) hypersurfaces
{ﬂ}i"l(d)_n_l in PM(F) such that for any subset R € {1,...,q} with iR =
rankp{[Q;];7 € R} = n+1, we get rankp{{[Q;];i € RYU{[T;];1 <i < Hy(V)—

2.5. Value distribution theory for non-Archimedean meromorphic
maps.

Let f : F™ — V C PM(F) be a non-Archimedean meromorphic map with
a reduced representation f = (fy,..., fv). The characteristic function of f is
defined by

Ty(r) = log |||,

where |/f||, = maxi<o<p |fi|r. This definition is well-defined upto a constant.

Let @ be a hypersurface in P*(F) of degree d defined by Zlel'd arz! =0,
where ay € F (I € Z;) and are not all zeros. If Q(f) # 0 then we define the
proximity function of f with respect to @ by

gl el
mf(Qﬂ") = log W7

where [|Q|| := maxjez, |ar|. We see that the definition of ms(Q,r) does not
depend on the choices of the presentations of f and Q.

The truncated (to level 1) counting function of f with respect to @ is defined
by
! !
N](f )(Qv r) = Néng) (0,7).
For simplicity, we will omit the character () if | = co.

The first main theorem for non-Archimedean meromorphic maps states that
de(T) = mf(Q, r)+ ]\7f(Q7 r) 4+ O(1).

Proposition 2.1 (cf. [6, Propositions 4.3, 4.4]). Let p be the character of F.
Assume that f : Fp, — P*(F) is a non-Achimedean meromorphic map, which is
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linearly non-degenerate over F, with a reduced representation £ = (fo,..., fn).
Then there exist multi-indices 4° = (0,...,0),7%, ...,y with

s—1 _ :
W <<y <ro< P MTEED >0,
n—k+1 ifp=20

where s is the index of independence of f and k = rankf, such that the gener-
alized Wronskian

Woo,..an (fos o fa) = det (D7'f;) £ 0.

0<i,j<n

Here rankf is defined by

rank f = rankng, {(D7 fo, ..., D7 fn);|v] < 1} — 1.
3. Proof of main theorems

Proof. [Proof of Theorem 1.1] By replacing Q; with Q?/d" if necessary, we
may assume that all @Q; (i = 1,...,¢) do have the same degree d. It is easy
to see that there is a positive constant 8 such that B||f||? > |Q;(f)| for every
1<i<gq.Set Q:={1,---,q}. Let {w;}{_, be as in Lemma 2.1 for the family
{Qi},. Let {Ti}f[:dl(v)_n_l be (Hy(V)—n—1) hypersurfaces in PM (F), which
satisfy Lemma 2.3.

Take a F-basis {[Ai}}fi"l(d) of I4(V), where A, € Hy. Since f is non-
degenerate over I4(V), it implies that {A;(f);1 < i < Hy(d)} is linearly inde-
pendent over F. By Proposition 2.1, there multi-indices {y! = (0,...,0),7%-- -,
V(DY © Zm such that |/°] < -+ < |[yHa(V)| < kg, where

p*H(Hy(d) k) ifp>0,
Ko <
Hy(V)—k if p=0

and the generalized Wronskian

_ Ay
W = det (D Aj(f))lgi’jSHd(v)géO.
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Here, we note that

= rank,, D’on, DV )i <1 -1

{(

—rankM7{< )7 D”(‘?Z));Ivgl}

< rank,, {( Az(f) --vD”( (f)));lvél}
{(D

(f) ( )
(), DY (A, ()i < 1} = 1.

= rank y

m

For each R° = {r{,...,r0, } C {1,...,q} with rankp{Q;}icr- = §R° =
n+1, set

Wro = det(D" Quo (£)(1 < v < n+1), DY T(E)(1 < 1< Hy(d)=n—1)) 0

Since rankp{[Q0](1 <v <n+1),[T}](1 <1 < Hy(d) —n—1)} = Hy(d), there
exists a nonzero constant Cro € F such that Wgo = Cgro - W

We denote by R° the family of all subsets R° of {1,...,¢} satisfying

rankp{[Q;];7 € R°} =4R° =n+ 1.

For each r > 0, there exists R C Q with R = N + 1 such that |Q;(f)[, <
|Q;(£)|r,Vi € R,j ¢ R. We choose R° C R such that R° € R° and R satisfies

|ﬁ”( [i . Since ;e Qi = 9, by

£)lr
Lemma 2.2, there exists a positive constant a* such that

Lemma 2.1(v) with respect to numbers {

o||£]|¢ < max |Q;(£)],.
i€ER

Then, we get

d q_ Wi Wi
[l ==, W H(ﬁuff)
QB 1Qq(B)F™ ~ a% N1 pN+1 L\ [Qi(D)]
W, - £
icre [Qi(E)]:
dH
Wl - [I£]J7

icqe 1Qi(E)] TT D7 1|Ti<f>|/

where Ay, By are positive constants.

< Ap

< Bp
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Therefore, for every r > 0,

d(>X9_ wi—Hg(V
el =t Oy Wl
QUO QB[ R Hy @1
nr alr HieRlQﬁ e T IT3(F)
Ha(V
Z ¥ |logr + O(1),

log +0(1)

where the maximum is taken over all subsets R C {1,...,q} such that {R =
n+ 1 and rankp{[Q;];7 € R} = n + 1. Here, the last inequality comes from
the lemma on logarithmic derivative. By the Poisson-Jensen-Green formula,
the definitions of the approximation function and the characteristic function,
we have

Zw,mf Qi,7) — dHy(V)Ty(r) — Nw (0,7) < —(Ha(V) — 1) logr + O(1),

(note that Zi‘il(v) |v{| < Hq(V) —1). Then, by the first main theorem, we
obtain

(3.1)
q q

() wi = Hy(V)dTy(r) Z £(Qiyr) — Ny (0,7) — (Hg(V) — 1) logr 4+ O(1).

Claim. Y7, w;N¢(Q;,7) — Nw(0,7) < 37, wiN}KO)(Qi,T) +0(1).
Indeed, set G; = ged(Q;(f), S(Q;(f))"°). Since w; (1 < i < q) are rational
numbers, there exists an integer A such that @w; = Aw; (1 < i < q) are integers.
Let P € &, be an irreducible element with P|[]"_, Q;(f)*. There exists a
subset R of {1,...,¢} with §R = N + 1 such that P is not a division of Q;(f)
for any i ¢ R. Denote by e; the largest integer such that P¢|Q;(f) for each
i € R. Then, there is a subset R° C R with {R° =n + 1, Wg. # 0 and

Zwi max{0,e; — ko} < Z max{0, e; — Ko}

i€ER i€ R°

Also, since W = Cgo - Wgo, it clear that P divides W with multiplicity at least

) Z min{0, e; — |77 |} > Z min{0,e; — Ko}
d

i€ERO
> g w; max{0,e; — Ko}
i€ER

= Zwi(ei — min{e;, ko}).

iI€ER

‘ ~ min
{1, sdnt13C{L,.0,
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This implies that
PZiER &ziei ‘WA . PZiER L:Ji min{ei7no} .
We note that P min{eimo}|G¥ - Therefore,

PzieR‘:’iei

wA-T] G

i€R
This holds for every such irreducible element P. Then it yields that
q i a
[Ta:@ - T e
i=1 i=1

Hence,
q q
STNsH(Qir) < Nw (0,7) + 3 NP (Qi ).
=1 =1

The claim is proved.

From the claim, Lemma 2.1(ii) and the inequality (3.1), we obtain
(W(g—=2N+n—1)— Hy(V) +n+ 1)dTy(r)

<> wiNE(Qiyr) — (Ha(V) = 1)logr + O(1).

1
Note that, w; < &(1 < i < ¢) and — 1+ < & <

N —nrl S o < Then, the above

Ik

inequality implies that

logr+O(1).

(2N —n+ 1) Hy(V 1 (m) _ N(Ha(V)—1)

The theorem is proved.

Proof. [Proof of Theorem 1.2] For r > 0, without loss of generality, we may
assume that

Qu(E)]}/ 489 < [Qa(F)[}/ 9592 < - < |Qq(B)}/ A @N .

Since ﬂfg{l ; = &, by Lemma 2.2, there exists a positive constant C' such
that

1/degQi _ 1/deg QN+1
Clel < | max | [QuOY % = |Qu () #6051
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Then, we get
q
my(Qi,7) [1£]]2
= log —o +0(1)
E:: deg Qs QuE) DT Qq(£)] B
M el
<log[[ — 575 +0(1)

1 Qi) s

_ Z mf Q’Lv (1)

Therefore,

1 +0(1) (r>0).

The theorem is proved.
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