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hypersurfaces

Nguyen Van Thin1,2 (Thai Nguyen, Viet Nam)

(Received Feb. 7, 2023)

Abstract. The purpose of this paper is to study uniqueness problem
of meromorphic mapping from Cm into the complex space Pn(C) sharing
partial fixed and moving hypersurfaces. Using the second main theorems
due to S. D. Quang and D. P. An [12, 13], we obtain some uniqueness
results. Our results are improved some before results in this trend. In
our best knowledge, there are not any uniqueness results of meromorphic
mapping partially shared hypersurfaces up to now.

1. Introduction and main results

Let f be a nonconstant meromorphic function. A meromorphic function a
is said to be small with respect to f if T (r, a) = o(T (r, f)), as r → +∞ possibly
outside a set of finite Lebesgue measure. We denote S(f) by the set of small

functions with respect to f and Ŝ(f) = S(f)∪{∞}. For a positive integer p and

a ∈ Ŝ(f), we denote by Ep)(a; f) the set of those distinct zeros of f − a whose
multiplicities do not exceed p. Here, we mean that a zero of f −∞ is a pole of
f. When p = ∞, E∞)(a; f) is the set of distinct zeros of f − a. For A ⊂ C, we

denote NA(r, a; f)(or NA(r,
1

f − a
)) by the reduced counting function of those

zeros of f − a which belong to the set A, where a ∈ Ŝ(f).

In 1926, R. Nevanlinna proved the Five Value Theorem as follows:
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Theorem 1.1. Let f and g be two non-constant meromorphic functions and
aj ∈ C ∪ {∞} be distinct values, j = 1, . . . , 5. If E∞)(aj ; f) = E∞)(aj ; g) for
j = 1, . . . , 5, then f ≡ g.

In 2015, I. Lahiri and R. Pal [7] proved the Five Function Theorem which
is improved the Five Value Theorem:

Theorem 1.2. Let f, g be two nonconstant meromorphic functions and aj =

aj(z) ∈ Ŝ(f) ∩ Ŝ(g) be distinct for j = 1, . . . , k, k ≥ 5. Suppose that p1 ≥ p2 ≥
. . . pk are positive intergers or infinitely and δ ≥ 0 is such that

1

p1
+
(
1 +

1

p1

) k∑
j=2

1

1 + pj
+ 1 + δ < (k − 2)

(
1 +

1

p1

)
.

Let Aj = Epj)(aj ; f) \ Epj)(aj ; g) for j = 1, 2, . . . , k. If
∑k

j=1 NAj (r, aj ; f) ≤
δT (r, f) and

lim inf
r→∞

∑k
j=1 Npj)(r, aj ; f)∑k
j=1 Npj)(r, aj ; g)

>
p1

(1 + p1)(k − 2)− p1(1 + δ)− 1− (1 + p1)
∑k

j=2

1

1 + pj

,

then f ≡ g.

Note that in the proof of Theorem 1.2, we need ∪k
j=1Epj)(aj ; f)∩Epj)(aj ; g) ̸=

∅. Theorem 1.2 is a extension and improvement of some before results in [1, 3, 9].

In 2003, P. C. Hu, P. Li and C. C. Yang gave the extension of Five Value
Theorem for meromorphic function several variables.

Theorem 1.3. [10] Let f and g be two nonconstant meromorphic functions
on Cm, let aj , j = 1, . . . , q, be q distinct complex element in P1(C) and take
mj ∈ Z+∪{∞}(j = 1, . . . , q) satisfying m1 ≥ m2 ≥ · · · ≥ mq and ν1f−aj ,≤mj

=

ν1g−aj ,≤mj
(j = 1, . . . , q). If

∑q
j=3

mj

mj + 1
> 2, then f ≡ g.

In 1975, H. Fujimoto [8] generalized Theorem 1.1 to the case of meromorphic
mappings from Cm into Pn(C), and obtained that for two linearly nondegener-
ate meromorphic mappings f, g of Cm into Pn(C), if they have the same inverse
images of 3n+2 hyperplane counted with multiplicites in Pn(C) in general po-
sition, then f ≡ g. In 1983, L. Smiley considered meromorphic mappings which
share 3n + 2 hyperplanes of Pn(C) without counting multiplicity and proved
the following result:
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Theorem 1.4. [15] Let f, g be linearly nondegenerate meromorphic mappings
of Cm into Pn(C). Let {Hj}qj=1, q ≥ 3n+2 be hyperplanes in Pn(C) in general
position. Assume that
(a) dim(f−1(Hi) ∩ f−1(Hj)) ≤ m− 2 for all 1 ≤ i < j ≤ q,
(b) f(z) = g(z) on ∪q

j=1f
−1(Hj) without counting multiplicity,

(c) f−1(Hj) = g−1(Hj) for all 1 ≤ j ≤ q.
Then f ≡ g.

Let D be a hypersurface in Pn(C) such that f(Cm) ̸⊂ D. Let Q be a
homogeneous polynomial defining D. For each positive integer m, we denote
Em)(D, f) by the set zeros of Q(f̃) with multiplicity at most m, each zero

counted only one time. When m = 1, we denote E1)(D, f) by E(D, f).

In 2010, Chen-Yan [4] gave following result for uniqueness of meromorphic
mappings partially shared hyperplanes as follows:

Theorem 1.5. Let f and g be two linearly non-degenerate meromorphic map-
pings of Cm into Pn(C) and Hj , 1 ≤ j ≤ q be q hyperplanes in general position
such that dimf−1(Hi ∩Hj) ≤ m− 2 for i ̸= j. Assume that

E(Hj , f) ⊂ E(Hj , g), 1 ≤ j ≤ q

and f = g on ∪q
j=1f

−1(Hj). If q = 2n+ 3 and

lim inf
r→∞

∑2n+3
j=1 N1

f (r,Hj)∑2n+3
j=1 N1

g (r,Hj)
>

n

n+ 1
,

then f ≡ g.

Let V be complex projective subvariety of Pn(C) of dimension k(k ≤ n).
Let d be positive integer. We denote by I(V ) the ideal of homogeneous poly-
nomials in C[x0, . . . , xn] defining V, and Hd the vector space consisting of all
homogeneous polynomials in C[x0, . . . , xn] with degree d. Define

Id(V ) :=
Hd

I(V ) ∩Hd
and Hd(V ) := dim Id(V ).

The function HV (d) is called Hilbert function of V. Each element of Id(V )
which is an equivalent class of an element Q ∈ Hd, will denote by [Q].

Let f be a meromorphic mapping from Cm to V. Let f̃ be a reduced repre-
sentation of f.We say that f is degenerate over Id(V ) if there is [Q] ∈ Id(V )\{0}
such that Q(f̃) = 0, otherwise we say that f is nondegenerate over Id(V ).
Hence, if f is algebraically nondegenerate then f is nondegenerate over Id(V )
for every d ≥ 1. Then the condition “f is nondegenerate over Id(V )” is meanful.
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The family of hypersurfaces {Dj}qj=1 is said to be in N(N ≥ k)-subgeneral
position with respective V if for any 1 ≤ i1 ≤ · · · ≤ iN+1 ≤ q, we have
V ∩ (∩N+1

j=1 Dij ) = ∅. When N = k, we said that {Dj}qj=1 is in general position
in V.

Motivate from above results, we will prove first result for uniqueness of
meromorphic mapping partially shared hypersurfaces as follows:

Theorem 1.6. Let V be a complex projective subvariety of Pn(C) of dimension
k(k ≤ n). Let {Dj}qj=1 be hypersurfaces in Pn(C) in N -subgeneral position
with respective to V, which define the homogenous polynomials {Qj}qj=1 with
degQj = dj(1 ≤ j ≤ q). Let d be the least common multiple of d1, . . . , dq.
Let f, g be meromorphic mappings of Cm into V which are nondegenerate over
Id(V ). Let mj(j = 1, . . . , q) be positive integers or ∞ with m1 ≥ · · · ≥ mq.
Assume that
(a) dim(f−1(Di) ∩ f−1(Dj)) ≤ m− 2 for all 1 ≤ i < j ≤ q.
(b) Suppose that f(z) = g(z) on ∪q

j=1

(
Emj)(Dj , f) ∩ Emj)(Dj , g)

)
, where

∪q
j=1

(
Emj)(Dj , f) ∩ Emj)(Dj , g)

)
̸= ∅

outside a analytic subset with codimension at most 2.
(c) Let δ ≥ 0 be a real number. Set Aj = Emj)(Dj , f) \ Emj)(Dj , g) for
j = 1, . . . , q. Suppose that

∑q
j=1 Nf (r,Aj) ≤ δT (r, f),

lim inf
r→∞

∑q
j=1 N

HV (d)−1
f,≤mj

(r,Dj)∑q
j=1 N

HV (d)−1
g,≤mj

(r,Dj)

>
m1(HV (d)− 1)

d′(1 +m1)
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
− (HV (d)− 1)(1 + δ)m1

and

q >
(2N − k + 1)HV (d)

k + 1
+

q∑
i=1

HV (d)− 1

mi + 1
+

(HV (d)− 1)(2 + δ)m1

d′(1 +m1)
,

then f ≡ g, where d′ = minj=1,...,q{dj}.

Since f is algebraically nondegenerate implies that f is nondegenerate over
Id(V ) for every d ≥ 1. Then, we obtain the result as follows:

Corollary 1.1. Let V be a complex projective subvariety of Pn(C) of dimen-
sion k(k ≤ n). Let {Dj}qj=1 be hypersurfaces in Pn(C) in N -subgeneral position
with respective to V, which define the homogenous polynomials {Qj}qj=1 with
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degQj = dj(1 ≤ j ≤ q). Let d be the least common multiple of d1, . . . , dq. Let
f, g be meromorphic mappings of Cm into V which are algebraically nondegen-
erate. Let mj(j = 1, . . . , q) be positive integers or ∞ with m1 ≥ · · · ≥ mq.
Assume that
(a) dim(f−1(Di) ∩ f−1(Dj)) ≤ m− 2 for all 1 ≤ i < j ≤ q.
(b) Suppose that f(z) = g(z) on ∪q

j=1

(
Emj)(Dj , f) ∩ Emj)(Dj , g)

)
, where

∪q
j=1

(
Emj)(Dj , f) ∩ Emj)(Dj , g)

)
̸= ∅

outside a analytic subset with codimension at most 2.
(c) Let δ ≥ 0 be a real number. Set Aj = Emj)(Dj , f) \ Emj)(Dj , g) for
j = 1, . . . , q. Suppose that

∑q
j=1 Nf (r,Aj) ≤ δT (r, f),

lim inf
r→∞

∑q
j=1 N

HV (d)−1
f,≤mj

(r,Dj)∑q
j=1 N

HV (d)−1
g,≤mj

(r,Dj)

>
m1(HV (d)− 1)

d′(1 +m1)
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
− (HV (d)− 1)(1 + δ)m1

and

q >
(2N − k + 1)HV (d)

k + 1
+

q∑
i=1

HV (d)− 1

mi + 1
+

(HV (d)− 1)(2 + δ)m1

d′(1 +m1)
,

then f ≡ g.

Remark 1.1. In Corollary 1.1, when V = Pn(C), N = n, we have Hd(V ) =(
n+d
n

)
and k = n. Suppose that E(Dj , f) = E(Dj , g) for all j = 1, . . . , q, and

f(z) = g(z) on ∪q
j=1E(Dj , f), we can choose δ = 0, then

lim inf
r→∞

∑q
j=1 N

HV (d)−1
f,≤mj

(r,Dj)∑q
j=1 N

HV (d)−1
g,≤mj

(r,Dj)
= 1

>
m1(HV (d)− 1)

d′(1 +m1)
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
− (HV (d)− 1)(1 + δ)m1

Hence, all assumptions of Corollary 1.1 are satisfied. Set m1 = · · · = mq = ∞,

we get the uniqueness result with 3
(
n+d
n

)
hypersurfaces. The number hypersur-

faces in Corollary 1.1 is smaller than the number hypersurfaces in [6]. Hence,
Theorem 1.6 is a improvement the result due to Dulock-Ru [6].
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When d = 1, N = n, V = Pn(C), we get the following result for uniqueness
of meromorphic mappings sharing partial hyperplanes from Corollary 1.1:

Corollary 1.2. Let {Hj}qj=1 be hyperplanes in Pn(C) in general position with
respective in Pn(C). Let f, g be meromorphic mappings nondegenerate alge-
braically of Cm into Pn(C). Let mj(j = 1, . . . , q) be positive integers or ∞ with
m1 ≥ · · · ≥ mq. Assume that
(a) dim(f−1(Hi) ∩ f−1(Hj)) ≤ m− 2 for all 1 ≤ i < j ≤ q.
(b) Suppose that f(z) = g(z) on ∪q

j=1

(
Emj)(Hj , f) ∩ Emj)(Hj , g)

)
, where

∪q
j=1

(
Emj)(Hj , f) ∩ Emj)(Hj , g)

)
̸= ∅

outside a analytic subset with codimension at most 2.
(c) Let δ ≥ 0 be a real number. Set Aj = Emj)(Hj , f) \ Emj)(Hj , g) for
j = 1, . . . , q. Suppose that

∑q
j=1 Nf (r,Aj) ≤ δT (r, f),

lim inf
r→∞

∑q
j=1 N

n
f,≤mj

(r,Hj)∑q
j=1 N

n
g,≤mj

(r,Hj)

>
m1n

(1 +m1)
(
q − n− 1−

∑q
i=1

n

mi + 1

)
− n(1 + δ)m1

and q > n+ 1 +
∑q

i=1

n

mi + 1
+

n(2 + δ)m1

1 +m1
, then f ≡ g.

LetM denote the field of all meromorphic function on Cm andM[x0, . . . , n]
the M-vector space of all polynomials in variables x0, . . . , xn whose coefficients
are in M. Denote Q be homogenous polynomials over C obtained by substitut-
ing a specific point z ∈ Cm into the coefficients of Q. We will call a moving hy-
persurface in Pn(C) each nonzero homogenous polynomial Q ∈ M[x0, . . . , xn].
The moving hypersurface Q is said to be slow with respect to a meromorphic
mapping f if all coefficients are small with respect to f. Here a meromorphic
function φ is said to be small with respect to f if ∥T (r, a) = o(T (r, f)).

Let {Qi}qi=1 be a family of moving hypersurfaces in Pn(C), degQi = di, i =
1, . . . , q. Assume that Qi =

∑
I∈Tdi

aiIw
I , where Td is the set of all n-tuples

(i0, . . . , in) with i0 + · · · + in = d and ij ≥ 0 for all j. We may consider
Qi as a meromorphic mapping into PN (C) with reduced representation (· · · :
haiI

: . . . ) and denote T (r,Qi) its characteristic function, where h is a suitable
holomorphic function and N =

(
n+di

n

)
−1. Denote K = K{Qi}q

i=1
by the smallest

subfield of M which contains C and all
aiI
aiJ

with aiJ ̸≡ 0.

We say that {Qi}qi=1 are in weakly general position if there exists z ∈ Cm

such that all coefficients of {Qi}qi=1 are holomorphic function at z and for any
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1 ≤ i0 < i1 < · · · < in ≤ q, the system{
Qij (z)(w0, . . . , wn) = 0

0 ≤ j ≤ n

has only the trivial solution w = (0, . . . , 0) ∈ Cn+1.

The above family {Qi}qi=1 is said to be in general position with respect to
the Veronese embedding if {Qi1 , . . . , QiN+1

} are linearly independent over M
for any 1 ≤ i1 < · · · < iN+1 ≤ q.

With above definitions, we get the results as follows for uniqueness of mero-
morphic mapping sharing partial moving hypersurfaces.

Theorem 1.7. Let f and g be nonconstant meromorphic mappings of Cm

into Pn(C). Let f̃ and g̃ be reduced representation of f and g, respectively.
Let Qi, i = 1, . . . , q, be slow (with respect to f and g) moving hypersurfaces
in Pn(C) in weak general position with degQi = di such that Qi(f̃) ̸≡ 0 and
Qi(g̃) ̸≡ 0 (1 ≤ i ≤ q). Put d = lcm(d1, . . . , dq) and N =

(
n+d
n

)
− 1. Let

mj(j = 1, . . . , q) be positive integers or ∞ with m1 ≥ · · · ≥ mq. Assume that
(a) dim(f−1(Qi) ∩ f−1(Qj)) ≤ m− 2 for all 1 ≤ i < j ≤ q.
(b) Suppose that f(z) = g(z) on ∪q

j=1

(
Emj)(Qj , f) ∩ Emj)(Qj , g)

)
, where

∪q
j=1

(
Emj)(Qj , f) ∩ Emj)(Qj , g)

)
̸= ∅

outside a analytic subset with codimension at most 2.
(c) Let δ ≥ 0 be a real number. Set Aj = Emj)(Qj , f) \ Emj)(Qj , g) for
j = 1, . . . , q. Suppose that

∑q
j=1 Nf (r,Aj) ≤ δT (r, f),

lim inf
r→∞

∑q
j=1 N

N
f,≤mj

(r,Qj)∑q
j=1 N

N
g,≤mj

(r,Qj)

>
m1N

d′(1 +m1)
(q − (n− 1)(N + 1)

nN + n+ 1
−
∑q

i=1

N

mi + 1

)
−N(1 + δ)m1

and

q > (nN + n+ 1)
( q∑

i=1

N

mi + 1
+

N(2 + δ)m1

d′(1 +m1)

)
+ (n− 1)(N + 1),

then f ≡ g, where d′ = minj=1,...,q{dj}.

Remark 1.2. When f−1(Qj) = g−1(Qj) for all j = 1, . . . , q, and f(z) =
g(z) on ∪q

j=1f
−1(Qj), we can choose δ = 0 in above theorem. Then we see that

all assumptions of Theorem 1.7 are satisfied. Set m1 = · · · = mq = ∞, we get



52 Nguyen Van Thin

the uniqueness result with number moving hypersurfaces are smaller than the
number moving hypersurfaces in the result of Dethloff-Tan [5]. Furthermore,
we do not need the assumption f and g are nondegenerate algebraically over
K{Qi}q

i=1
. Hence, Theorem 1.7 is an improvement the result due to Dethloff-Tan

[5].

Theorem 1.8. Let f and g be nonconstant meromorphic mappings of Cm

into Pn(C). Let f̃ and g̃ be reduced representation of f and g, respectively. Let
Qi, i = 1, . . . , q, be slow (with respect to f and g) moving hypersurfaces in Pn(C)
in general position with respect to the Veronese embedding such that Qi(f̃) ̸≡ 0
and Qi(g̃) ̸≡ 0 (1 ≤ i ≤ q). Set degQi = di and put d = lcm(d1, . . . , dq), N =(
n+d
n

)
− 1. Let mj(j = 1, . . . , q) be positive integers or ∞ with m1 ≥ · · · ≥ mq.

Assume that
(a) dim(f−1(Qi) ∩ f−1(Qj)) ≤ m− 2 for all 1 ≤ i < j ≤ q.
(b) Suppose that f(z) = g(z) on ∪q

j=1

(
Emj)(Qj , f) ∩ Emj)(Qj , g)

)
, where

∪q
j=1

(
Emj)(Qj , f) ∩ Emj)(Qj , g)

)
̸= ∅

outside a analytic subset with codimension at most 2.
(c) Let δ ≥ 0 be a real number. Set Aj = Emj)(Qj , f) \ Emj)(Qj , g) for
j = 1, . . . , q. Suppose that

∑q
j=1 Nf (r,Aj) ≤ δT (r, f),

lim inf
r→∞

∑q
j=1 N

N
f,≤mj

(r,Qj)∑q
j=1 N

N
g,≤mj

(r,Qj)

>
m1N

d′(1 +m1)
(q −N + 1

N + 2
−
∑q

i=1

N

mi + 1

)
−N(1 + δ)m1

and

q > (N + 2)
( q∑

i=1

N

mi + 1
+

N(2 + δ)m1

d′(1 +m1)

)
+N − 1,

then f ≡ g, where d′ = minj=1,...,q{dj}.

2. Preliminaries

We set ||z|| = (
∑m

j=1 |zj |2)1/2 for z = (z1, . . . , zm) ∈ Cm. For r > 0, define

B(r) = {z ∈ Cm : ||z|| < r}, S(r) = {z ∈ Cm : ||z|| = r}, dc =
1

4πi
(∂ − ∂),

v = (ddc||z||2)m−1 and σ = dc log ||z||2 ∧ (ddc||z||2)m−1.
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Let h be a nonzero entire function on Cm. For a ∈ Cm, we can write h as
h(z) =

∑∞
n=0 Pn(z−a), where Pn(z) is either identically zero or a homogeneous

polynomial with degree n. The number νh(a) = min{n : Pn ̸= 0} is said to be
the zero multiplicity of h at a. Set suppνh := {z ∈ Cm : νh(z) ̸= 0}, which is a
purely (m− 1)-dimensional analytic subset or empty set.

Let φ be a nonzero meromorphic function on Cm. For each a ∈ Cm, we
choose holomorphic functions φ0 and φ1 on a neighborhood U of a such that

φ =
φ0

φ1
on U and dim((φ−1

0 ∩φ−1
1 )(0)) ≤ m−2, and we define νφ := νφ0

, ν∞φ :=

νφ1
, which are independent of the choices of φ0 and φ1.

Let f be a nonconstant meromorphic mapping of Cm into Pn(C). We can
choose holomorphic function f0, f1, . . . , fn on Cm such that If := {z ∈ Cm :
f0(z) = · · · = fn(z) = 0} is of dimension at most m− 2 and f = (f0 : · · · : fn).
Usually, f̃ = (f0, . . . , fn) is a reduced representation of f. The characteristic
function of f is defined by

T (r, f) =

∫
S(r)

log ||f̃ ||σ −
∫

S(1)

log ||f̃ ||σ (r > 1),

where ||f̃ || = (
∑n

j=0 |fj |2)1/2. Note that T (r, f) is independent, up to an addi-
tive constant, of the choice of the reduced representation of f.

For a hyperplane H = {(x0 : · · · : xn) ∈ Pn(C) : a0x0 + · · · + anxn = 0}.
We denote (f̃ , H) =

∑n
j=0 ajfj . Suppose that f(Cm) ̸⊂ H, then the proximity

function of f with respective to H is defined by

mf (r,H) =

∫
S(r)

log
||f̃ ||.||H||
|(f̃ , H)|

σ −
∫

S(1)

log
||f̃ ||.||H||
|(f̃ , H)|

σ (r > 1),

where ||H|| = (
∑n

j=0 |aj |2)1/2. The function mf (r,H) is independent, up to an
additive constant, of the choice of the reduced representation of f.

On Cm, every norms are equivalent, then we may choose ||f̃ || = max{|f0|, . . . , |fn|}
and ||H|| = |a0|+ · · ·+ |an| in above definitions.

Let D be a hypersurface in Pn(C) of degree d. Let Q be the homogeneous
polynomial defining D. Under the assumption that Q(f̃) ̸≡ 0, the proximity
function mf (r,D) of f is defined by

mf (r,D) =

∫
S(r)

log
||f̃ ||d||Q||
|Q(f̃)|

σ −
∫

S(1)

log
||f̃ ||d||Q||
|Q(f̃)|

σ (r > 1),

where ||Q|| is the total absolute the coefficients of Q. We see that mf (r,D) is
independent, up to an additive constant, of the choice of the reduced represen-
tation of f .
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Let k,M be positive integers or +∞. For a divisor ν on Cm. We define the
counting function of ν as follows. Set

νM (z) = min{ν(z),M}, νM≤k(z) =

{
0 if ν(z) > k

νM (z) if ν(z) ≤ k

and

νM≥k(z) =

{
0 if ν(z) < k

νM (z) if ν(z) ≥ k
.

We denote

n(t) =

{ ∫
suppν∩B(t)

ν(z)v if n ≥ 2∑
|z|≤t ν(z) if n = 1

.

Similarly, we can define nM (t), nM
≥k(t) and nM

≤k(t). We define

N(r, ν) =

r∫
1

n(t)

t2n−1
dt (r > 1).

We can defineN(r, νM ), N(r, νM≤k) andN(r, νM≥k) similarly and denote byNM (r, ν),

NM
≤k(r, ν) and NM

≥k(r, ν), respectively.

For a meromorphic function φ on Cm, we denote by

Nφ(r) = N(r, νφ), N
M
φ (r) = N(r, νMφ ),

NM
φ,≤k(r) = N(r, νMφ,≤k), N

M
φ,≥k(r) = N(r, νMφ,≥k).

Let D be a hypersurfaces in Pn(C) with degree d which is defined by the
homogeneous Q. Suppose that f(Cm) ̸⊂ D, we denote νQ(f̃) the map from Cm

into Z whose value νQ(f̃)(z) (z ∈ Cm) is the intersection multiplicity of the

images of f and Q at f(z). Then νQ(f̃) is a divisor on Cm. We denote by

Nf (r,D) = N(r, νQ(f̃)), N
M
f (r,D) = N(r, νM

Q(f̃)
),

NM
f,≤k(r,D) = N(r, νM

Q(f̃),≤k
), NM

f,≥k(r,D) = N(r, νM
Q(f̃),≥k

).

For a close subset A of a purely (m− 1)-dimensional analytic subset of Cm,
we define

nA(t) =


∫

A∩B(t)

v if m ≥ 2

|A ∩B(t)| if m = 1
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and

N(r,A) =

r∫
1

NA(t)

t2m−1
dt (r > 1).

The Poisson-Jensen formula implies the First Main Theorem.

Theorem 2.1. [14] Let f = (f0 : · · · : fm) : Cm → Pn(C) be a meromorphic
mapping, and let D be a hypersurface in Pn(C) of degree d If f(Cm) ̸⊂ D, then
for every real number r with 1 < r < +∞,

dTf (r) = mf (r,D) +Nf (r,D) +O(1),

where O(1) is a constant independent of r.

As usual, “∥P” means the assertion P holds for all r ∈ [1,∞) outside a
subset with Lebesgue finite. In 2017, S. D. Quang and D. P. An have get the
following results.

Theorem 2.2. [12] Let V be a complex projective subvariety of Pn(C) of di-
mension k(k ≤ n). Let {Qi}qi=1 be hypersurfaces of Pn(C) in N -subgeneral
position with respective to V, with degQi = di, 1 ≤ i ≤ q. Let d be the least
common multiple of d1, . . . , dq. Let f be a meromorphic mappings of Cm into V

which is nondegenerate over Id(V ). If q >
(2N − k + 1)HV (d)

k + 1
, then we have

∥
(
q − (2N − k + 1)HV (d)

k + 1

)
Tf (r) ≤

q∑
i=1

1

di
N

HV (d)−1
f (r,Di) + o(T (r, f)).

Theorem 2.3. [13] Let f be a meromorphic mapping of Cm into Pn(C). Let
Qi(i = 1, . . . , q) be slowly (with respective f) moving hypersurfaces of Pn(C)
with degree degQi = di. Set d = lcm(d1, . . . , qq) and N =

(
n+d
n

)
− 1. Assume

that Qi(f̃) ̸≡ 0(1 ≤ i ≤ q). If q ≥ 2N + 1 and {Qi}qi=1 are in general position
with respect to the Veronese embedding, then

∥q −N + 1

N + 2
T (r, f) ≤

q∑
i=1

1

di
NN

f (r,Qi) + o(T (r, f)).

If {Qi}qi=1 are in weakly general position, then S. D. Quang and D. P. An
obtained the result as follows:

Theorem 2.4. [13] Let f be a meromorphic mappings of Cm into Pn(C). Let
Qi(i = 1, . . . , q) be slowly (with respective f) moving hypersurfaces of Pn(C)
in weakly general position with degQi = di. Set d = lcm(d1, . . . , dq) and N =(
n+d
n

)
− 1. Assume that Qi(f̃) ̸≡ 0(1 ≤ i ≤ q) and q ≥ nN +n+1, the we have

∥q − (n− 1)(N + 1)

nN + n+ 1
T (r, f) ≤

q∑
i=1

1

di
NN

f (r,Qi) + o(T (r, f)).
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3. Proof of Theorems

3.1. Proof of Theorem 1.6

Suppose that f ̸≡ g. Then there exists two distinct indices s, t ∈ {0, . . . , n}
such that

Φ := fsgt − ftgs ̸≡ 0.

From assumption (a) and (b), for any z in ∪q
j=1

(
Emj)(Dj , f) ∩ Emj)(Dj , g)

)
outside a analytic subset with codimension at least 2 is a zero of Φ, and

NΦ(r) ≤ Tf (r) + Tg(r) +O(1).(1.1)

Apply Theorem 2.2, we have

∥
(
q− (2N − k + 1)HV (d)

k + 1

)
Tf (r) ≤

q∑
i=1

1

di
N

HV (d)−1
f (r,Di) + o(T (r, f))

=

q∑
i=1

1

di

(
N

HV (d)−1
f,≤mi

(r,Di) +N
HV (d)−1
f,≥mi+1 (r,Di)

)
+ o(T (r, f))

≤
q∑

i=1

1

di

(
N

HV (d)−1
f,≤mi

(r,Di) + (HV (d)− 1)N1
f,≥mi+1(r,Di)

)
+ o(T (r, f))

≤
q∑

i=1

1

di

(
N

HV (d)−1
f,≤mi

(r,Di) +
HV (d)− 1

mi + 1
Nf,≥mi+1(r,Di)

)
+ o(T (r, f)).(1.2)

By First Main Theorem, we have

Nf (r,Di) ≤ diT (r, f) +O(1).(1.3)

Then from (1.2) and (1.3), we have

∥
(
q − (2N − k + 1)HV (d)

k + 1

)
Tf (r) ≤

q∑
i=1

( mi

di(mi + 1)
N

HV (d)−1
f,≤mi

(r,Di)

+
HV (d)− 1

mi + 1
T (r, f)

)
+ o(T (r, f)).

This implies

∥
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
T (r, f)

≤
q∑

i=1

mi

di(mi + 1)
N

HV (d)−1
f,≤mi

(r,Di) + o(T (r, f)).(1.4)
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Similarly, we get

∥
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
T (r, g)

≤
q∑

i=1

mi

di(mi + 1)
N

HV (d)−1
g,≤mi

(r,Di) + o(T (r, g)).(1.5)

Set Bj = Emj)(Dj , f) \ Aj = Emj)(Dj , f) ∩ Emj)(Dj , g)(j = 1, . . . , q). From
the assumption (c) and (1.1), we have

q∑
j=1

N
HV (d)−1
f,≤mj

(r,Di) =

q∑
j=1

N
HV (d)−1
f,≤mj

(r,Aj) +

q∑
j=1

N
HV (d)−1
f,≤mj

(r,Bj)

≤ (HV (d)− 1)

q∑
j=1

N1
f,≤mj

(r,Aj) + (HV (d)− 1)

q∑
j=1

N1
f,≤mj

(r,Bj)

≤ (HV (d)− 1)δT (r, f) + (HV (d)− 1)NΦ(r)

≤ (HV (d)− 1)(1 + δ)T (r, f) + (HV (d)− 1)T (r, g).(1.6)

Hence, from (1.4), (1.5) and (1.6), we obtained

(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

) q∑
j=1

N
HV (d)−1
f,≤mj

(r,Di)

≤ (HV (d)− 1)(1 + δ)

q∑
i=1

mi

di(mi + 1)
N

HV (d)−1
f,≤mi

(r,Di)

+ (HV (d)− 1)

q∑
i=1

mi

di(mi + 1)
N

HV (d)−1
g,≤mi

(r,Di) + o(T (r, f) + T (r, g)).(1.7)

Set d′ = mini=1,...,q{di}. Since 1 ≥ m1

1 +m1
≥ · · · ≥ mq

1 +mq
≥ 1

2
, then from

(1.7), we have

(
q− (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1
− (HV (d)− 1)(1 + δ)m1

d′(1 +m1)

)
×

q∑
i=1

N
HV (d)−1
f,≤mi

(r,Di)

≤ m1(HV (d)− 1)

d′(1 +m1)

q∑
i=1

N
HV (d)−1
g,≤mi

(r,Di) + o(T (r, f) + T (r, g)).(1.8)
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From (1.4) and (1.6), we have T (r, f) ≤ O(T (r, g)), then

o(T (r, f)) = o(T (r, g)).(1.9)

Furthermore, from (1.5), we have

T (r, g)∑q
i=1 N

HV (d)−1
g,≤mi

(r,Di)
(1.10)

is bounded as r → ∞. Thus, combining (1.8) to (1.10), we deduce

lim inf
r→∞

∑q
i=1 N

HV (d)−1
f,≤mi

(r,Di)∑q
i=1 N

HV (d)−1
g,≤mi

(r,Di)

≤ m1(HV (d)− 1)

d′(1 +m1)
(
q − (2N − k + 1)HV (d)

k + 1
−

q∑
i=1

HV (d)− 1

mi + 1

)
− (HV (d)− 1)(1 + δ)m1

.

This is a contradiction with assumption of Theorem 1.6. Then f ≡ g. ■

3.2. Proof of Theorem 1.7

By arguments as Theorem 1.6, there exists two distinct indices s, t ∈ {0, . . . , n}
such that

Φ := fsgt − ftgs ̸≡ 0.

From assumption (a) and (b), for any z in ∪q
j=1

(
Emj)(Qj , f) ∩ Emj)(Qj , g)

)
outside a analytic subset with codimension at least 2 is a zero of Φ, and

NΦ(r) ≤ Tf (r) + Tg(r) +O(1).(1.11)

Apply Theorem 2.4, the inequalities (1.4) and (1.5) are replaced by

∥
(q − (n− 1)(N + 1)

nN + n+ 1
−

q∑
i=1

N

mi + 1

)
T (r, f)

≤
q∑

i=1

mi

di(mi + 1)
NN

f,≤mi
(r,Qi) + o(T (r, f))(1.12)

and

∥
(q − (n− 1)(N + 1)

nN + n+ 1
−

q∑
i=1

N

mi + 1

)
T (r, g)

≤
q∑

i=1

mi

di(mi + 1)
NN

g,≤mi
(r,Qi) + o(T (r, g)),(1.13)
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respectively. Set Bj = Emj)(Qj , f) \ Aj = Emj)(Qj , f) ∩ Emj)(Qj , g)(j =
1, . . . , q). From the assumption (c) and (1.11), we have

q∑
j=1

NN
f,≤mj

(r,Qi) =

q∑
j=1

NN
f,≤mj

(r,Aj) +

q∑
j=1

NN
f,≤mj

(r,Bj)

≤ N

q∑
j=1

N1
f,≤mj

(r,Aj) +N

q∑
j=1

N1
f,≤mj

(r,Bj)

≤ NδT (r, f) +NNΦ(r)

≤ N(1 + δ)T (r, f) +NT (r, g).(1.14)

Combining (1.12) to (1.14), we get

(q − (n− 1)(N + 1)

nN + n+ 1
−

q∑
i=1

N

mi + 1

) q∑
j=1

NN
f,≤mj

(r,Qi)

≤ N(1 + δ)

q∑
i=1

mi

di(mi + 1)
NN

f,≤mi
(r,Qi)

+N

q∑
i=1

mi

di(mi + 1)
NN

g,≤mi
(r,Qi) + o(T (r, f) + T (r, g)).(1.15)

Set d′ = mini=1,...,q{di}. Since 1 ≥ m1

1 +m1
≥ · · · ≥ mq

1 +mq
≥ 1

2
, then from

(1.15), we have

(q − (n− 1)(N + 1)

nN + n+ 1
−

q∑
i=1

N

mi + 1
− N(1 + δ)m1

d′(1 +m1)

) q∑
i=1

NN
f,≤mi

(r,Di)

≤ m1N

d′(1 +m1)

q∑
i=1

NN
g,≤mi

(r,Qi) + o(T (r, f) + T (r, g)).(1.16)

From (1.16), we deduce

lim inf
r→∞

∑q
i=1 N

N
f,≤mi

(r,Qi)∑q
i=1 N

N
g,≤mi

(r,Qi)

≤ m1N

d′(1 +m1)
(q − (n− 1)(N + 1)

nN + n+ 1
−
∑q

i=1

N

mi + 1

)
−N(1 + δ)m1

.

This is a contradiction with assumption of Theorem 1.7. Then f ≡ g. ■



60 Nguyen Van Thin

3.3. Proof of Theorem 1.8

Proof Theorem 1.8 is proved similarly Theorem 1.6 and Theorem 1.7 by
using Theorem 2.3. Hence, we omit it here. ■

References

[1] Cao, T. B, Yi, H. X, On the multiple values and uniqueness of mero-
morphic functions sharing small functions as targets, Bull. Korean Math.
Soc, 44(4) (2007), 631-640.

[2] Cartan, H., Sur les zeros des combinaisions linearires de p fonctions
holomorpes donnees, Mathematica (Cluj), 7 (1933), 80-103.

[3] Chen, T. G, Chen, K. Y, Tsai, Y. L, Some generalizations of Nevan-
linna’s five value theorem, Kodai Math. J, 30(3) (2007), 438-444.

[4] Chen, Y., Yan, Q., A note on uniqueness problem for meromorphic
mappings with 2N +3 hyperplanes, Sci. China Math, 53(10) (2010), 2657-
2663.

[5] Dethloff, G., Tan, T. V, A Uniqueness Theorem for Meromorphic
Maps with Moving Hypersurfaces, Publ. Math. Debrecen, 78 (2011), 347-
357.

[6] Dulock, M., Ru, M., A uniqueness theorem for holomorphic curves
into encountering hypersurfaces in projective space, Complex Variables
and Elliptic Equations, 53 (2008), 797-802.

[7] Lahiri, I., Pal, R., A note on Nevanlinna’s Five Value Theorem, Bull.
Korean Math. Soc, 52(2) (2015), 345-350.

[8] Fujimoto, H., The uniqueness problem of meromorphic maps into com-
plex projective spaces, Nagoya Math. J, 58 (1975), 1-23.

[9] Gopalakrishna, H. S, Bhoosnurmath, S. S, Uniqueness theorems for
meromorphic functions, Math. Scand, 39(1) (1976), 125-130.

[10] Hu, P. C, Li, P., Yang, C. C, Unicity of meromorphic mappings,
Kluwer, 2003.

[11] Phuong, H. T, On unique range sets for holomorphic maps sharing hy-
persurfaces without counting multiplicity, Acta. Math. Vietnamica, 34(3)
(2009), 351-360.

[12] Quang, S. D, An, D. P, Second Main Theorem and unicity of meromor-
phic mappings for hypersurfaces in projective varieties, Acta Mathematica
Vietnamica, 42(3) (2017), 455-470.



Uniqueness of meromorphic mappings partially shared hypersurfaces 61

[13] Quang, S. D, An, D. P, Second Main Theorems for meromorphic map-
pings with moving hypersurfaces and a uniqueness problem, Computational
Methods and Function Theory, 17(3) (2017), 445-461.

[14] Ru, M., A defect relation for holomorphic curves intersecting hypersur-
faces, Amer. Journal of Math, 126 (2004), 215-226.

[15] Smiley, L., Geometry conditions for unicity of holomorphic curves, Con-
temp. Math, 25 (1983), 149-154.

Nguyen Van Thin
Thai Nguyen University of Education1

Thai Nguyen
Viet Nam and
Thang Long Institute of Mathematics and Applied Sciences2

Thang Long University, Nghiem Xuan Yem, Hoang Mai, Hanoi
Viet Nam
thinmath@gmail.com and thinnv@tnue.edu.vn


