Random dynamical system generated by nonautonomous stochastic differential equations driven by fractional Brownian motions

Hong Phan Thanh 1,
1 Thang Long University

Main Article Content

Abstract

In this paper, we prove that a non-autonomous stochastic differential equation generates a continuous random dynamical system. The flow then possesses a random pullback attractor under the  dissipativity condition(s) of the drift and smallness of diffusion part.

Article Details

References

[1] L. Arnold, Random Dynamical Systems. Springer, Berlin Heidelberg New York, 1998.
[2] I. Bailleul, S. Riedel, M. Scheutzow, Random dynamical systems, rough paths and rough flows. J. Differential Equations, Vol. 262, (2017), 5792–5823.
[3] C. Castaing, M. Valadier , Convex analysis and measurable multifunctions. Lecture Notes in Math. No 580, Springer-Verlag, Berlin, Heidelberg, New York, 1977
[4] N. D. Cong, L. H. Duc, P. T. Hong, Young differential equations revisited. J. Dyn. Diff. Equat., Vol. 30, Iss. 4, (2018), 1921–1943.
[5] H. Crauel, P. Kloeden, Nonautonomous and random attractors. Jahresber Dtsch. Math-Ver. 117 (2015), 173–206.
[6] P. Kloeden, M. Rasmussen, Nonautonomous Dynamical System. Mathematical Surveys and Monographs. https://doi.org/10.1090/surv/176 (2011).
[7] L. H. Duc, P. T. Hong, N. D. Cong, Asymptotic stability for stochastic dissipative systems with a H¨older noise. SIAM J. Control Optim.,Vol. 57, No. 4, pp. 3046 - 3071, (2019)
[8] L. H. Duc, P. T. Hong, Asymptotic Dynamics of Young Differential Equations . J. Dyn. Diff. Equat. 35, 1667–1692 (2023).
[9] L. H. Duc, B. Schmalfuß, S. Siegmund, A note on the generation of random dynamical systems from fractional stochastic delay differential equations. Stoch. Dyn., Vol. 15(2015), No. 3, 1–13.
[10] L. H. Duc, Random attractors for dissipative systems with rough noises Discrete & Continuous Dynamical Systems 2022, 42(4): 1873-1902
[11] P. Friz, N. Victoir, Multidimensional stochastic processes as rough paths: theory and applications. Cambridge Unversity Press, Cambridge, 2010.
[12] M. Garrido-Atienza, B. Maslowski, B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion. International Journal of Bifurcation and Chaos, Vol.20, No. 9 (2010) 2761–2782.
[13] M. Garrido-Atienza, B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion. J. Dyn. Diff. Equat., 23, (2011), 671–681. DOI 10.1007/s10884-011-9222-5.
[14] P. T. Hong, Nonautonomous attractors for Young differential equations driven by unbounded variation paths. Journal of Mathematics and Science Thang Long University, Vol. 1, No. 4 (2022).
[15] Y. Hu, Analysis on Gaussian Spaces. World scientific Publishing, (2016).
[16] T. Lyons, Differential equations driven by rough signals, I, An extension of an inequality of L.C. Young. Math. Res. Lett. 1, (1994), 451–464.
[17] B. Mandelbrot, J. van Ness, Fractional Brownian motion, fractional noises and applications. SIAM Review, 4, No. 10, (1968), 422–437.
[18] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations. GITTL, Moscow–Leningrad. (1949). English translation, Princeton University Press, (1960).
[19] R. J. Sacker, G. Sell, Lifting properties in skew-product flows with applications to differential equations. Memoirs of the American Mathematical Society, Vol. 11, No. 190, (1977).
[20] B. Schmalfuß, Attractors for the nonautonomous dynamical systems. In K. Groger, B. Fiedler and J. Sprekels, editors, Proceedings EQUADIFF99, World Scientific, (2000), 684–690.
[21] B. Schmalfuß. Attractors for the nonautonomous and random dynamical systems perturbed by impulses. Discret. Contin. Dyn. Syst., 9, No. 3, (2003), 727–744.
[22] G. Sell, Nonautonomous differential equations and topological dynamics. I. The Basic theory Transactions of the American Mathematical Society, Vol. 127, No. 2 (1967), 241-262.
[23] G. Sell, Nonautonomous Differential Equations and Topological Dynamics. II. Limiting Equations Transactions of the American Mathematical Society, Vol. 127, No. 2 ( 1967), 263-283
[24] L.C. Young, An integration of H¨older type, connected with Stieltjes integration. Acta Math. 67, (1936), 251–282.