An algorithm for minimizing a strongly convex function on the equilibrium set of price equilibrium models
 

Hải Nguyễn Ngọc1, , Le Dung Muu2
1 Đại học Công đoàn
2 Thang Long University

Main Article Content

Abstract

We consider a class of equilibrium models including the im plicit Walras supply-demand and competitive models that, in general, is ill posed. We formulate such a model in the form a variational inequality hav ing certain monotonicity property which allows us to describe an algorithm avoiding the ill-posedness by finding the equilibrium point that is nearest to the given guessed or desired equilibrium price for the model. A main difficulty of the problem is that its feasible domain is not given explicitly as in a standard convex programming problem. The proposed algorithm is a combination between the gradient one and the Mann-Krashnoschelskii f ixed point procedure. The obtained computational results with many ran domly generated data show that the proposed algorithm works well for this class of the equilibrium models.

Article Details

References

[1] Bauschke, H. H., Combettes, P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011).
[2] Deutsch, F., Yamada, I. Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansivemappings, Numer. Funct. Anal, Optim. 19, 33-56 (1998).
[3] Dinh, B. V., Hung, P. G., Muu, L. D. Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35, 539-563 (2014)
[4] Facchinei, F., Pang, J. S. Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. 1,2, Springer-Verlag, Berlin (2003).
[5] Hai, N. N., Muu, L. D., Dinh, B. V. An algorithm for quasiconvex equilibrium problems and asymptotically nonexpansive mappings: application to a Walras model with implicit supply–demand, Math. Methods Oper. Res. 98, 299-324 (2023).
[6] Golshtein, E. G., Tretyakov, N. V. Modifed Lagrangians and Monotone Maps in Optimization, Wiley, New York, NY (1996).
[7] Konnov, I. V. Combined Relaxation Methods for Variational Inequalities, Springer-Verlag, Berlin (2000).
[8] Konnov, I. V. Economics Models and Variational Inequalities, Elsevier (2007).
[9] Muu, L. D., Quoc, T. D. Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl. 142, 185-204 (2009).
[10] Rockafellar, R. T. Monotone operator and the proximal point algorithm, SIAM J. Control and Optim. 14, 877-898 (1976).
[11] Tuy, H. Convex Analysis and Global Optimization, Springer, Berlin (2016).
[12] Walras, L. El´ements d’´Economie Politique Pure (1874), L. Corbaz, Lausanne; English translation.: Elements of Pure Economics, Allen and Unwin, London (1954).
[13] Xu, H. K. Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 : 240-256 (2002).
[14] Yamada, I., Ogura, N. Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim. 25 , 178-189 (2005).
[15] Zhu, D., Marcotte, P. A new class of generalized monotonicity, J. Optim. Theory Appl. 67, 457-471 (1995).