NONAUTONOMOUS ATTRACTORS FOR YOUNG DIFFERENTIAL EQUATIONS DRIVEN BY UNBOUNDED VARIATION PATHS
Main Article Content
Abstract
We prove the existence of the pullback attractor of the generated ow by a dissipative nonautonomous diferential equations driven by unbounded variation paths under the condition of smallness of nonlinear term. In case perturbed term is linear we prove that the attractor is singleton and also is forward one.
Article Details
Keywords
stochastic di erential equations (SDE), Young integral, rough path theory, rough differential equations, exponential stability
References
[2] N. D. Cong, L. H. Duc, P. T. Hong. Young differential equations revisited. J. Dyn. Di . Equat., Vol. 30, Iss. 4, (2018), 1921-1943.
[3] N. D. Cong, L. H. Duc, P. T. Hong. Lyapunov spectrum of nonautonomous linear Young differential equations. J. Dyn. Di . Equat, (2020), 1749-1777.
[4] L. H. Duc, P. T. Hong, N. D. Cong. Asymptotic stability for stochastic dissipative systems with a Holder noise. Preprint. ArXiv: 1812.04556
[5] N. D. Cong, L. H. Duc, P. T. Hong. Pullback Attractors for Stochastic Young Differential Delay Equations. J. Dyn. Di. Equat., 34(2022), 605- 636.
[6] L. H. Duc, P. T. Hong, N. D. Cong. Asymptotic stability for stochastic dissipative systems with a Holder noise. SIAM J. Control Optim.,Vol. 57, No. 4, pp. 3046 - 3071, (2019)
[7] H. Crauel, P. Kloeden, Nonautonomous and random attractors. Jahresber Dtsch. Math-Ver. 117 (2015), 173-206.
[8] H. Cui, P. E.Kloeden Invariant forward attractors of non-autonomous random dynamical systems. J. Di . Equat., 265, (2018), 6166-6186.
[9] H. Crauel, A. Debussche, F. Flandoli. Random attractors J. Dyn. Di . Equat. 9, (1997), 307-341.
[10] L. H. Duc, M. J. Garrido-Atienza, A. Neuenkirch, B. Schmalfuß. Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2; 1). J. Di . Equat., 264, Iss. 2, (2018), 1119-1145.
[11] L. H. Duc, P. T. Hong. Asymptotic stability of controlled differential equations. J. Dyn. Di . Equat., to appear.
[12] P. Friz, N. Victoir. Multidimensional stochastic processes as rough paths: theory and applications. Cambridge Studies in Advanced Mathematics, 120. Cambridge Unversity Press, Cambridge, 2010.
[13] M. Garrido-Atienza, B. Maslowski, B. Schmalfuß. Random attractors for stochastic equations driven by a fractional Brownian motion. International Journal of Bifurcation and Chaos, Vol. 20, No. 9 (2010) 27612782.
[14] J. A Langa, J. C. Robinson, A. Suarez. Stability, instability, and bifurcation phenomena in non-autonomous differential equations
[15] B. Mandelbrot, J. van Ness. Fractional Brownian motion, fractional noises and applications. SIAM Review, 4, No. 10, (1968), 422-437.
[16] V. V. Nemytskii, V. V. Stepanov. Qualitative theory of differential equations. GITTL, Moscow-Leningrad. (1949). English translation, Princeton University Press, (1960).
[17] D. Nualart, A.R ascanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53, No. 1, (2002), 55-81.
[18] G. Sell. Nonautonomous differential equations and topological dynamics. I. The Basic theory Transactions of the American Mathematical Society, Vol. 127, No. 2 (May, 1967), pp. 241-262.
[19] L.C. Young. An integration of Holder type, connected with Stieltjes integration. Acta Math. 67, (1936), 251-282.
[20] M. Zahle. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields, 111 (1998), 333-374.