Ha Huy Vui
◆ Research interests:
- Singularity theory
- Real algebraic geometry - Polynomial optimization
◆ Education
- 1996: Doctor of Science, Institute of Mathematics, Hanoi, Vietnam
- 1980: Ph.D., Institute of Mathematics , Hanoi, Vietnam
- 1975:B.Sc., Belorusian State University, Minsk, (former USSR)
◆ Honours & Awards
- Award fellowship of the Alexander von Humboldt Foundation, Germany, 1989.
- JSPS senior fellow, Tokyo Institute of Technology. Visiting Prof., Paul Sabatier University, Toulouse, France (1994-1995-1996); Visiting Prof., Bordeaux University, France (1993); Reseach fellow CNRS, U.Nice, France (1993)
◆ Publications
1. Ha Huy Vui, Computation of the Lojasiewicz exponent for a germ of a smooth function in two real variables. Studia Math.240 (2018)
2. Dinh,Si Tiep; Ha Huy Vui; Pham, Tien Son, Holder type global error bounds for non-degenerate polynomial systems, Acta Math. Vietnam. 42 (2017), no.3,563-585.
3. Ha, Huy-Vui; Ho, Toan Minh, Positive polynomials on nondegenerate basic semi-algebraic sets. Adv. Geom. 16 (2016), no. 4, 497–510.
4. Đang, Van Đoat; Hà, Huy Vui; Pham, Tien Son, Well-posedness in unconstrained polynomial optimization problems. SIAM J. Optim. 26 (2016), no. 3, 1411–1428.
5. Ha Huy Vui; Loc, Tran Gia, On the volume and the number of lattice points of some semialgebraic sets. Internat. J. Math. 26 (2015), no. 10, 1550078,13 pp.
6. Hà, Huy Vui.; Ngãi, H. V.; Phạm, T. S., A global smooth version of the classical Łojasiewicz inequality. J. Math.Anal. Appl. 421 (2015), no. 2,1559–1572.
7. Dinh, Si Tiep; Ha, Huy Vui; Pham, Tien Son, A Frank-Wolfe type theorem for nondegenerate polynomial programs. Math. Program. 147 (2014), no. 1-2, Ser. A, 519–538.
8. Đinh, Si Tiep; Hà, Huy Vui; Pham, Tien Son ;Thao, Nguyen Thi, Global Łojasiewicz-type inequality for non-degenerate polynomial maps. J. Math.Anal. Appl. 410 (2014), no. 2, 541–560.
9. Hà Huy Vui Global Hölderian error bound for nondegenerate polynomials.- SIAM J. Optim. 23 (2013), no. 2, 917–933.
10. Tiep, Dinh Si; Vui, Ha Huy; Thao, Nguyen Thi, Łojasiewicz inequality for polynomial functions on non-compact domains. Internat. J. Math. 23(2012), no. 4, 1250033, 28 pp.
11. Ha Huy Vui; Nguyen Thi Thao, Atypical values at infinity of polynomial and rational functions on an algebraic surface in Rn. Acta Math. Vietnam.36 (2011), no. 2, 537–553.
12. Vui, Ha Huy; Thang, Nguyen Tat, On the topology of polynomial mappings from Cn to Cn-1. Internat. J. Math. 22 (2011), No.3,435-448.
13. Ha Huy Vui; Nguyen Hong Duc, On the stability of gradient polynomial systems at infinity. Nonlinear Anal. 74 (2011), no. 1,257–262.
14. Ha Huy Vui; Pham Tien Son, Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20 (2010), no.6, 3082-3103.
15. Ha Huy Vui;Nguyen Hong Duc, Łojasiewicz inequality at infinity for polynomials in two real variables. Math. Z. 266 (2010), no. 2, 243–264.
16. Ha Huy Vui; Nguyen Hong Duc, A formula for the Łojasiewicz exponent at infinity in the real plane via real approximation.Hokkaido Math. J.38 (2009), no. 3,417-425.
17. Ha Huy Vui; Nguyen Hong Duc, Łojasiewicz exponent of the gradient near the fiber. Ann. Polon. Math. 96 (2009), no. 3, 197–207.
18. Ha Huy Vui; Pham Tien Son, Solving polynomial optimization problems via the truncated tangency variety and sums of squares. J. Pure Appl.Algebra 213 (2009), no. 11, 2167–2176.
19. Ha Huy Vui; Nguyen Tat Thang, On the topology of polynomial functions on algebraic surfaces in Cn. Singularities II, 61–67, Contemp. Math., 475, Amer. Math. Soc., Providence, RI, 2008.
20. Ha Huy Vui; Pham Tien Son,On the Łojasiewicz exponent at infinity of real polynomials. Ann. Polon. Math. 94 (2008), no. 3, 197–208.
21. Ha Huy Vui, Pham Tien Son, Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19 (2008), no. 2, 941–951.
22. Ha Huy Vui; Nguyen Hong Duc, On the Łojasiewicz exponent near the fibre of polynomial mappings. Ann. Polon. Math. 94 (2008), no. 1, 43–52. 23. Ha Huy Vui; Pham Tien Son, Critical values of singularities at infinity of complex polynomials. Vietnam J. Math. 36 (2008), no. 1, 1–38.
24. Ha Huy Vui, Pham Tien Son, An estimation of the number of bifurcation values for real polynomials. Acta Math. Vietnam. 32 (2007), no. 2-3,141–153.
25. Ha Huy Vui; Pham Tien Son Minimizing polynomial functions. Acta Math.Vietnam. 32 (2007), no. 1, 71–82.
26. Ha Huy Vui; Pham Tien Son, On local Pareto optima of real analytic mappings. Acta Math. Vietnam.30 (2005), no. 2, 191–202.
27. Ha Huy Vui, Degree of C0-sufficiency of an analytic germ with respect to a principal ideal. Vietnam J. Math. 32 (2004), no. 1, 13–19.28. Ha Huy Vui, Pham Tien Son, Newton-Puiseux approximation and Łojasiewicz exponents. Kodai Math. J. 26 (2003), no. 1, 1–15.
29. Ha Huy Vui Milnor number of positive polynomials. Vietnam J. Math. 30 (2002), no. 4, 413– 416.
30. Hà Huy Vui; Pham Tien Son, Topology of families of affine plane curves. Ann. Polon. Math. 71 (1999), no. 2,129–139.
31. Hà Huy Vui; Pham Tien Son, Remark on the equisingularity of families of affine plane curves. Ann. Polon. Math. 68 (1998), no. 3, 275–280.
32. Ha Huy Vui Infimum of polynomials and singularity at infinity. From local to global optimization (Rimforsa, 1997), 187–204, Nonconvex Optim. Appl., 53, Kluwer Acad. Publ., Dordrecht, 2001.
33. Ha Huy Vui; Pham Tien Son ,Invariance of the global monodromies in families of polynomials of two complex variables. Acta Math. Vietnam. 22(1997), no. 2, 515–526.
34. Cassou-Noguès, Pierrette; Ha Huy Vui Théorème de Kuiper-Kuo-Bochnak-Lojasiewicz à l’infini. (French) [The Kuiper-Kuo-Bochnak-Łojasiewicz theorem at infinity] Ann. Fac. Sci. ToulouseMath. (6) 5 (1996), no. 3, 387–406.
35. Hà Huy Vui; Zaharia, Alexandru Families of polynomials with total Milnor number constant. Math. Ann. 304 (1996), no. 3, 481–488.
36. Ha, Huy Vui La formule de Picard-Lefschetz affine. (French) [Affine Picard-Lefschetz formula] C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no.6, 747–750.
37. Cassou-Noguès, Pierrette; Hà Huy Vui, Sur le nombre de Łojasiewicz à l’infini d’un polynôme. (French) Ann. Polon. Math. 62 (1995), no. 1, 23–44. 38. Nguyen Viet Dung; Hà Huy Vui, The fundamental group of complex hyperplanes arrangements. Acta Math. Vietnam. 20 (1995), no. 1, 31–41. 39. Hà Huy Vui, A version at infinity of the Kuiper-Kuo theorem. Acta Math.Vietnam. 19 (1994), no. 2, 3–12.
40. Ha Huy Vui, Sur l’irrégularité du diagramme splice pour l’entrelacement à l’infini des courbes planes. (French) [On the irregularity of the splice diagram for the link at infinity of plane curves] C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 5, 277–280.
41. Ha Huy Vui, Nombres de Lojasiewicz et singularités à l’infini des polynômes de deux variables complexes. (French) [Łojasiewicz numbers and singularities at infinity of polynomials of two complex variables] C. R. Acad.Sci. Paris Sér. I Math. 311 (1990), no. 7, 429–432.
42. Hà Huy Vui, Sur la fibration globale des polynômes de deux variables complexes. (French) [On the global fibration defined by polynomials of two complex variables] C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 4, 231–234.
43. Hà Huy Vui; Nguyen Le Anh, Le comportement géométrique à l’infini des polynômes de deux variables complexes. (French) [On the Milnor fibration at infinity for a polynomial in two complex variables] C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 3, 183–186.
44. Hà Huy Vui; Lê Dũng Tráng, Sur la topologie des polynômes complexes. (French) [The topology of complex polynomials] Acta Math. Vietnam. 9 (1984), no. 1, 21–32.
45. Hà Huy Vui Minimums de Pareto locaux. (French) [Local Pareto minima] C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 10, 329–331.46. Ha Huy Vui, Sure les points d’optimum de Pareto local de determination finie ou infinie. C.R. Acad. Sci. Paris ser.A-B.290(1980), no.15, 184-192.
47. Nguyen Tu Cuong, Nguyen Huu Duc, Nguyen Si Minh, Ha Huy Vui,Germs of infinite determinacy. (Russian) Acta Math. Vietnam. 3 (1978), no.1, 43–50. 48. Nguyen Tu Cuong, Nguyen Huu Duc, Nguyen Si Minh, Ha Huy Vui, Sur les germes de fonctions infiniment déterminés. (French) C. R. Acad. Sci.Paris Sér. A-B 285 (1977), no. 16, A1045–A1048 .49. Knjazev, P. N.; Ha Vuĭ The weak convergence of operators. (Russian) Vescī Akad. Navuk BSSR Ser. Fīz.‐Mat. Navuk 1975, no. 2, 23–27,138–139.