STATISTICAL QUANTUM NEURAL NETWORKS
Nội dung chính của bài viết
Tóm tắt
We explain a new idea of how to use the high probability interval thresholds for neurons in quantum neural networks. Some basic quantum neural networks were analyzed and constructed in a recent work of the author. In particular the Least Square Error Problem (LSEP) and the Linear Regression Problem (LRP) was discussed. In this paper we an- alyze a new look on the threshold rules for neurons, taking the intervals of high probability in place of classical sigmoid half-line threshold and then we construct the least-square quantum neural network (LS-QNN), the poly- nomial interpolation quantum neural network (PI-QNN), the polynomial regression quantum neural network (PR-QNN) and chi-squared quantum neural network (X2-QNN). We use the corresponding solutions or statistical tests as the threshold for the corresponding training rules.
Chi tiết bài viết
Từ khóa
Qubit, quantum gate, quantum network, statistical tests
Tài liệu tham khảo
[2] D. N. Diep, Some quantum neural networks, Intl. J. Theor. Phys. 59 (2020), No. 6, 1179-1187.
[3] A. A. Ezhov, D. Ventura, Quantum neural networks, in Future Directions for Intelligent Systems and Information Science, N. Kasabov (ed.), Physica-Verlag, pp. 213-235, 2000. [4] S. Gupta, R.K. P. Zia, Quantum Neural Network, Journal of computer and system sciences, 63(2001), 355-383.
[5] G. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Department of Computer Science, University of Toronto.
[6] K. Nagata, S. K. Patro, H. Geurdes, S. Heidari, D. N. Diep, T. Nakamura, Various New Forms of the Bernstein-Vazirani Algorithm Beyond Qubit Systems, Asian J. Math. & Phys., 3, No 1(2019) 1-12.
[7] M. Schuld, I. Sinayskiy, Petruccione, An introduction to quantum machine learning, arXiv:1409.3097v1[quant-ph]2014.
[8] M. Schuld, I. Sinayskiy, F. Petruccione, Prediction by linear regression on a quantum computer, arXiv:1601.07823v2[quant-ph], 2016.
[9] N. Wiebe, A. Kapoor, K. Swore, Quantum deep learning, arXiv:1412.3489v2[quant-ph], 2015.