A uniqueness theorem for meromorphic functions ignoring multiplicity

Nguyen Duy Phuong1,
1 Thai Nguyen University of Education

Nội dung chính của bài viết

Tóm tắt

In this paper, we give a uniqueness theorem for meromorphic functions ignoring multiplicity , which generalizes a An’s theorem in

Chi tiết bài viết

Tài liệu tham khảo

[1] Vu Hoai An, A new class of unique range sets for meromorphic functions ignoring multiplicity with 15 elements, Journal of Mathematics and Mathematical Sciences(2022), Vol. 1, 1-14.
[2] A. Banerjee, A new class of strong uniqueness polynomial satisfying Fujimoto’s conditions, Ann. Acad. Sci. Fenn. Math. Vol. 40, 2015, 465-474.
[3] A. Banerjee, B. Chakraborty, S. Mallickc, Further Investigations on Fujimoto Type Strong Uniqueness Polynomials, Filomat 31:16 (2017), 5203-
5216.
[4] S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring multiplicities, Compl. Var. Theory Appl., 39, 85-92 (1999).
[5] B. Chakraborty, On the Cardinality of a Reduced Unique-Range Set, Ukr. Math. J., Vol. 72, No. 11, April, 2021, DOI 10.1007/s11253-021-01889-z.
[6] A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs (2008), V.236.
[7] G.Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements, Compl. Var. Theory Appl. 37:1, 1998, 185-193.
[8] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math. 122, 2000, 1175-1203.
[9] H.Fujimoto, On uniqueness polynomials for meromorphic functions, Nagoya Math. J., 170, 33-46 (2003).
[10] F.Gross, Factorization of meromorphic functions and some open problems, Complex Analysis(Proc. Conf . Univ. Kentucky, Lexington, Ky. 1976), pp.51-69, Lecture Notes in Math. Vol. 599, Springer, Berlin, 1977.
[11] Ha Huy Khoai, Some remarks on the genericity of unique range sets for meromorphic functions, Sci. China Ser. A Mathematics, Vol. 48, 2005,
262-267.
[12] Ha Huy Khoai, Vu Hoai An, and Pham Ngoc Hoa,On functional equations for meromorphic functions and applications, Arch. Math, DOI
10.1007/s00013- 017-1093-5, 2017.